Ling 5801: Problem Set 1

Due via Carmen dropbox at 11:59 PM 9/11.

1. [5 pts.] Draw an FSA, according to the definition in the lecture notes, that recognizes the following language: $\left(0^{*} \mid 1 * 0\right)$. (The bar out-scopes the other operators, so this is equivalent to: $\left(0^{*}\right) \mid(1 * 0)$.) Try to define your FSA using the fewest states possible.
2. [5 pts.] Write a regular expression, according to the definition in the lecture notes, that recognizes any string of 1 's and/or 0's containing an even number of 0 's. Try to make your regular expression as concise as possible.
3. [5 pts.] Draw an FSA, according to the definition in the lecture notes, that recognizes any string of 1 's and/or 0 's containing an odd number of 0 's and an odd number of 1 's. Try to define your FSA using the fewest states possible.
4. [1 pt. extra credit - tricky!] What language does the following FSA generate? Answer using a regular expression. Try to make your regular expression as concise as possible.

5. [30 pts.] PROGRAMMING:
(In general for your programming problems you should hand in the following as separate files - DO ${ }^{*}$ NOT * submit a single zip or tar file or other collection, this will result in a 2 point deduction for each problem):

- a copy of your Makefile (NOTE: please rename it 'Makefile.txt' so I can read the text!)
- a copy of each script you write,
- a representative sample of each source (input) file you use,
- a representative sample of each target (output) you produce.

You may use the 'sample text' file on the course web page, which has several big numbers in it.

Write a Makefile that can do all of the following -
(a) [10 pts.] Using the unix commands described in lecture notes, make a target '\%.numlines' file, consisting of the lines in a corresponding source '\%.txt' file that contain a number, defined here to be a maximal sequence of digits, commas, or decimal points ending in a digit. If a number in prose is immediately followed by a comma or period, you should not assume the comma or period is part of the number.
So, for example, for the following text file:
Kilograms are units of mass.

There are 2.2 pounds in a kilogram.
Your program should print:
There are 2.2 pounds in a kilogram.
(b) [10 pts.] Using the unix commands described in lecture notes, make a target ' $\%$.ints' file, consisting of the non-decimal numbers themselves (one per line) in a corresponding '\%.txt' file. These are numbers (defined here to be a maximal sequence of digits, commas, or decimal points ending in a digit) that do not contain a decimal point.
So, for example, for the following text file:
There are 2.2 pounds in a kilogram.
That's less than 3.
Your program should print:
3
(c) [10 pts.] Using the unix commands described in lecture notes, make a target '\%.numclass' file, by replacing every number in a corresponding source '\%.txt' file (numbers defined here to be a maximal sequence of digits, commas, or decimal points ending in a digit) with the string 'BIGNUM' if the number is greater than or equal to 10,000 , or the string 'SMALLNUM' if the number is less than 10,000 . (Remember that numbers may include commas and decimal points.)
So, for example, for the following text file:
There are 2.20462 pounds in a kilogram.
Your program should print:
There are SMALLNUM pounds in a kilogram.

