
Ling 5801: Problem Set 2
Due via Carmen dropbox at 11:59 PM 9/23.

1. For the following Python program:

n = 4
for i in range(0,n):

s = ’’
for j in range(0,i):

s = s + ’ X’
print(s)

(a) [4 pts.] What does it print?

(b) [6 pts.] What does each line do (provide a sentence for each line)?

2. [5 pts.] Provide a big-O complexity for the above code in terms of the value of the variable
n, as defined in the lecture notes on program correctness and complexity. (It may help to
think about how many ‘X’s would be added if n were 100 or 1000 or 1,000,000. . . )

3. PROGRAMMING: Using the syntax described in the lecture notes, write a single Python
program — not a Makefile — to do all of the items below. Your code should be as short as
possible.

(Remember to include a short representative sample of input and output for all programming
problems, as described in the previous problem set.)

(a) [10 pts.] Read an FSA from standard input using the appropriate code from the
‘fsarec.py’ program in the lecture notes on file access using Python; then print that
FSA to standard output in the same format (so that the output would be readable as
input by the same program). You must print from the FSA data structures; do not just
use the string input.

(b) [10 pts.] Then reverse that FSA as defined in the lecture notes on regular expressions,
and print the reversed FSA to standard output. (Hint: it may be easier to implement M
as a list of [q1,x,q2] lists.) Show the result of using your reversed FSA in fsarec.py.

For example, given the following via standard input:

S qHappy
F qHungry
M qHappy whiffle qHungry
M qHappy burble qHappy
M qHungry whiffle qHungry
M qHungry burble qHungry

your program should print:
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a)
S qHappy
F qHungry
M qHappy whiffle qHungry
M qHappy burble qHappy
M qHungry whiffle qHungry
M qHungry burble qHungry

b)
S qHungry
F qHappy
M qHungry whiffle qHappy
M qHappy burble qHappy
M qHungry whiffle qHungry
M qHungry burble qHungry

4. PROGRAMMING: Using the syntax in the lecture notes, write a single Python program —
not a Makefile — to do all of the items below. Your code should be as short as possible.

(Remember to include a short representative sample of input and output for all programming
problems, as described in the previous problem set.)

(a) [10 pts.] Read text from standard input, delete all punctuation marks, and print the
word tokens, one on each line, using spaces to delimit word tokens in the input.

(b) [10 pts.] Print the number of times each word appears in the input text. You may ignore
(‘truncate’) the fractional portion of this average.

(c) [10 pts.] Print the number of times each pair of adjacent words occurs in this input
(even across sentences or paragraphs). You may treat upper- and lower-case letters as
distinct.

For example, given the following via standard input:

Lions, tigers and bears!

your program should print:

a)
Lions
tigers
and
bears

b)
Lions 1
tigers 1
and 1
bears 1
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c)
Lions tigers 1
tigers and 1
and bears 1
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