
Ling 5801: Lecture Notes 1
Cognitive Models and Finite State Automata

Contents

1.1 Course goals . 1

1.2 Background: some math notation (in case you don’t know) 1

1.3 Finite State Automata: a simple model of language as letter strings 2

1.4 Graphical representation of FSAs . 2

1.5 Sink states . 3

1.6 FSAs can define languages . 3

1.7 What’s a state? . 3

1.8 What’s a final state? . 4

1.9 Example . 4

1.10 What does this have to do with human language? 5

1.11 FSAs are also a nice way to get information from text 5

1.1 Course goals

This course will cover three kinds of computational linguistics:

1. computation in language (modeling human comprehension)

2. computation on language (engineering solutions, information extraction)

3. computation for linguistics (intro programming)

We will start with computation in language

1.2 Background: some math notation (in case you don’t know)

Set notation, involving sets S , S ′ and entities x, x′, x′′, x1, x2, x3, . . . :

pair 〈x1, x2〉

tuple 〈x1, x2, x3, ...〉

set S = {x | ...} e.g. {x1, x2, x3}

empty/null set ∅ or {}

element x ∈ S e.g. x2 ∈ {x1, x2}, x3 < {x1, x2}

subset (or equal) S ⊂ S ′ e.g. {x1, x2} ⊂ {x1, x2, x3}, {x1, x2} ⊆ {x1, x2}

union S ∪ S ′ e.g. {x1, x2} ∪ {x2, x3} = {x1, x2, x3}

intersection S ∩ S ′ e.g. {x1, x2} ∩ {x2, x3} = {x2}

exclusion or complementation S − S ′ e.g. {x1, x2} − {x2, x3} = {x1}

Cartesian product S × S ′ e.g. {x1, x2} × {x3, x4} = {〈x1, x3〉, 〈x1, x4〉, 〈x2, x3〉, 〈x2, x4〉}

power set P(S) or 2S e.g. P({x1, x2}) = {∅, {x1}, {x2}, {x1, x2}}

relation R ⊆ S ×S ′ = {〈x, x′〉 | ...} e.g. R = {〈x1, x3〉, 〈x2, x3〉, 〈x2, x4〉}

1

function F : S→S ′ ⊆ S ×S ′ s.t. if 〈x, x′〉, 〈x, x′′〉 ∈ F then x′ = x′′

cardinality |S | = number of elements in S

First-order logic notation, involving propositions p, p′ – e.g. that 1<2 (true) or 1=2 (false):

conjunction p ∧ p′ or p, p′ e.g. 1<2 ∧ 2<3 or 1<2, 2<3

disjunction p ∨ p′ e.g. 1<2 ∨ 1>2

negation ¬p or ‘6 ’ e.g. ¬1=2 or 1,2

existential quantifier ∃x∈S . . . x . . . : disjunction over all x of proposition . . . x . . .

universal quantifier ∀x∈S . . . x . . . : conjunction over all x of proposition . . . x . . .

Limit notation, involving sets S and entities x:

existential quantifier
∨

x∈S . . . x . . . : disjunction over all x of proposition . . . x . . .

universal quantifier
∧

x∈S . . . x . . . : conjunction over all x of proposition . . . x . . .

limit union
⋃

x∈S . . . x . . . : union over all x of set . . . x . . .

limit intersection
⋂

x∈S . . . x . . . : intersection over all x of set . . . x . . .

limit Cartesian product
�

x∈S . . . x . . . : Cartesian product over all x of set . . . x . . .

limit sum
∑

x∈S . . . x . . . : sum over all x of number . . . x . . .

limit product
∏

x∈S . . . x . . . : product over all x of number . . . x . . .

1.3 Finite State Automata: a simple model of language as letter strings

Let’s start with a simple model to recognize the set of letter strings in a language

For example, the set of overheard phone conversation sequences:

{hello ok goodbye, hello ok ok goodbye, hello ok ok ok goodbye, . . . }

(These sets may be infinite, but can still have various kinds of complexity limits!)

(We won’t deal with the meanings of these strings yet, just the strings themselves.)

We can model this with a Finite State Automaton/Machine (FSA) A = 〈QA, XA, S A, FA,MA〉

• QA is a set of states (e.g. state of waiting for response / goodbye / verb phrase / . . .)

• XA is a set of observed symbols (e.g. letters, words or phonemes)

• S A ⊆ QA is a subset of start states (e.g. state when you answer the telephone)

• FA ⊆ QA is a subset of final states (e.g. state when it’s ok to hang up)

• MA ⊆ QA×XA×QA is a transition relation or ‘model’ (e.g. ‘hello’→ ‘ok’)

1.4 Graphical representation of FSAs

We can draw FSAs by representing:

2

• states as circles

• transitions as labeled arcs

• observed symbols as labels on arcs

• start states designated with short unlabeled arc

• final states designated with double circles

E.g. phone call: Q = conversation states (begin, middle, end); X = words (hello, ok, goodbye)

Q:{qB, qM, qE}, X:{h, o, g}, S :{qB}, F:{qE}, M:{〈qB, h, qM〉, 〈qM, o, qM〉, 〈qM, g, qE〉} =

qB qM qE

h
o

g

Like ‘Candyland’: states are board spaces, input x1..T is stack of cards (but, multiple pieces)

1.5 Sink states

We can define sink states q⊥ to give bad sequences a place to die.

qB qM qE

q⊥

h

o/g

o

h

g

h/o/g

h/o/g

These are often assumed, but not shown.

1.6 FSAs can define languages

Here, strings are sequences of observations x1..T = x1, x2, ..., xT−1, xT .

Formally, the set of strings or language L(A) recognized by an FSA A is:

L(A) = { x1..T
︸︷︷︸

set of observation sequences

|

there is a state sequence
︷︸︸︷

∃q0..T
q0∈S A
︸ ︷︷ ︸

starts in a start state

, qT ∈FA
︸ ︷︷ ︸

ends in a final state

,

for each observation
︷ ︸︸ ︷

∀t 1≤ t≤T→qt ∈QA, xt ∈XA, 〈qt−1, xt, qt〉∈MA
︸ ︷︷ ︸

state, observation, transition are in the FSA

}

The set of languages (so, the set of sets of strings) recognized by all FSAs is:

3

L(FSA) = {L | ∃ FSA A L = L(A)}

We can also think of FSAs as generating strings x1...xT .

Some think of FSAs as transducing (generating) state sequences q1...qT from observations x1...xT .

1.7 What’s a state?

A state is a description of some aspect of the world; a proposition.

It summarizes information about past observations needed to process future observations.

As propositions, states in an FSA are mutually exclusive: only one at a time is true.

(Later we will define probability distributions over them.)

1.8 What’s a final state?

It delimits a set of acceptable observation sequences (the strings in the language).

1.9 Example

FSA can recognize valid solutions to farmer river puzzle:

• farmer ‘f’, wolf ‘w’, goat ‘g’, cabbage ‘c’ want to cross river

• boat only holds two characters

• if farmer not present, wolf will eat goat / goat will eat cabbage

Observations are actions (farmer crossing river alone or with other character):

XFR = { ‘f>’, ‘fw>’, ‘fg>’, ‘fc>’, ‘<f’, ‘<fw’, ‘<fg’, ‘<fc’ }

States are configurations of characters on right (and implicitly left) side of river + fail:

QFR = { q∅, qf, qw, qfw, qg, qwg, qfg, qfwg, ..., qall }

q∅ qfg qg

qfgc

qfwg

qc

qw

qfwc qwc qall

fg>

<fg

<f

f>

fc><fc

fw>

<fw

fg>

<fg

fg>

<fg

fw>

<fw

fc><fc

<f

f>

fg>

<fg

Phone conversation model makes predictions, so some transitions not used.

4

Farm river model evaluates solutions, so need all transitions: use ‘sink’ state.

Practice:

Design an FSA to interpret pet utterances.

Your pet starts off satisfied, then becomes hungry. It vocalizes every few seconds, burbling con-

tentedly when satisfied, then whiffling crossly when it becomes hungry. It then stays hungry but

may either whiffle or burble, since it knows you will feed it soon. Your FSA should detect whether

your pet is hungry at the end of its utterance.

What elements would you use for Q, X, S , F, and M?

Draw your FSA.

Discussion:

How did you do? Anything unclear?

Are there other ways to extend model?

1.10 What does this have to do with human language?

An FSA is a simple system for recognizing sequences of observations over time.

It functions as a detector (e.g. of grammaticality)

Richer states can encode ‘states of cognition,’ with substates for syntax and meaning.

(In this case we don’t really need final states.)

1.11 FSAs are also a nice way to get information from text

• grep

• sed

• perl

• unix wildcard

• word processors

• ...

5

	Course goals
	Background: some math notation (in case you don't know)
	Finite State Automata: a simple model of language as letter strings
	Graphical representation of FSAs
	Sink states
	FSAs can define languages
	What's a state?
	What's a final state?
	Example
	What does this have to do with human language?
	FSAs are also a nice way to get information from text

