6.1 Operations in an algorithm

The syntax rules used in every program defines a tree.

For example:

```python
for x in X :
    print x
```

has the following tree:

```
(program)
  |
(stmt)
  |
for (num-var) in (num-list-expr) :
  |  NEWLINE
  |  (suite)
    |
    x (num-list-var)
    |
    X
    |
    INDENT
    |
    (program)
    |
    DEDENT
    |
    (stmt)
    |
    print (num-expr)
    |
    (num-var)
    |
    x
```

In this tree, each *non-unary lexicalized* rule counts as an operation:

- ‘non-unary’ rules have more than one child
- ‘lexicalized’ rules contain at least one terminal symbol (other than NEWLINE, INDENT, or DEDENT)

(or count first keyword of each rule: ‘if’, ‘for’, ‘=’, ‘+’, ‘[’, ...)
Each operation takes some number of clock cycles to execute

Loops execute all operations under loop on *each iteration*!

(so time complexity of loops within loops grows exponentially with each loop)

6.2 Complexity: how efficient is a program/algorithm?

Time taken by an algorithm A can be measured in terms of *complexity classes*:

- **linear**: $A \in \mathcal{O}(n)$
- **quadratic**: $A \in \mathcal{O}(n^2)$
- **cubic**: $A \in \mathcal{O}(n^3)$
- **...**: $A \in \mathcal{O}(g(n))$

Definition of (worst-case) complexity classes:

$A \in \mathcal{O}(g(n))$ if and only if

\[
\exists n_0, c. \quad \forall x_1 \ldots x_n. \quad n > n_0 \rightarrow \tau(A(x_1 \ldots x_n)) \leq c \cdot g(n)
\]

where:

- n_0 is a point at which higher-order terms overtake lower-order terms in $g(n)$
- c is a constant time cost for the group of most deeply nested statements
- $x_1 \ldots x_n$ is an input sequence of observations of length n
- $\tau(A(x_1 \ldots x_n))$ is the time (in number of operations) required to execute A on $x_1 \ldots x_n$

In other words, an algorithm A is in class $\mathcal{O}(g(n))$ if there is a length n_0 beyond which all input $x_1 \ldots x_n$ takes time within a constant c multiple of $g(n)$.

For example:

![Graph](image)

What counts as input? Our `FSA rec` has input X (n is the number of characters defining X)
Other terms? if algo is flexible, they count too (separately): \(q \) chars defining \(S, F, M \)

For loops, complexity (in statements executed) exponential on number of nested loops.

For example, our FSA recognizer:

```python
# initialize table of possible states at time step 0 using start states
V = {}
for q in Q:
    V[0,q] = S.get(q,False)

# for each possible state qP in V at time t-1, for each qP,x,q in M, add q
for t in range(1,len(Input)):
    for qP in Q:
        for q in Q:
            V[t,q] = V.get((t,q),False) or (V[t-1,qP] and M.get((qP,Input[t],q),False))
```

requires \(A_{FSA} \in \mathcal{O}(n \cdot q^2) \) because a statement is nested in one loop over \(X \), two loops over \(Q \)

6.3 Correctness: does a program do what it should?

Correctness of an algorithm (abstraction of a program) depends on correctness of statements.

Most statements are straightforward.

But loops are more complex; usually proven by induction:

- define a loop invariant
- base case: demonstrate invariant satisfied at beginning of loop
- induction step: demonstrate invariant satisfied after each iteration if satisfied before
- demonstrate if invariant is satisfied at end, program is correct

For example, using our FSA implementation (prior to final state checking):

```python
# initialize table of possible states at time step 0 using start states
V = {}
for q in Q:
    V[0,q] = S.get(q,False)

# for each possible state qP in V at time t-1, for each qP,x,q in M, add q
for t in range(1,len(Input)):
    for qP in Q:
        for q in Q:
            V[t,q] = V.get((t,q),False) or (V[t-1,qP] and M.get((qP,Input[t],q),False))
```

We can prove correctness of the inner loop over \(q \) in the last nesting group, given \(t \) and \(qP \):

- loop invariant:

 After each iteration, \(V \) shows states at or before \(q \) reachable from states at or before \(qP \) on input up to time \(t \).
• base case:

Before loop begins, \(V \) shows states reachable from sources before \(q_P \) on input up to time \(t \).

• induction step:

After each iteration, \(V \) shows states at or before \(q \) reachable from states at or before \(q_P \) on input up to time \(t \) if:

1. \(V \) shows states before \(q \) reachable from states at or before \(q_P \) at time \(t \) before iter,
2. \(V \) shows \(q_P \) was reachable on input up to \(t-1 \), and
3. \(M \) contains a transition from \(q_P \) to \(q \) on the input at \(t \).

• correctness:

After loop ends, because it looped over all states, \(V \) shows all reachable states from \(q_P \) on input up to time \(t \).

We can now prove correctness of the next inner loop over \(q_P \), given \(t \):

• loop invariant:

After each iteration, \(V \) shows states reachable from states at or before \(q_P \) on input up to time \(t \).

• base case:

Before loop begins, \(V \) shows states reachable on input up to the previous time \(t-1 \).

• induction step:

After each iteration, \(V \) shows states reachable from states at or before \(q_P \) on input up to time \(t \) if

1. \(V \) shows states reachable from states before \(q_P \) on input up to time \(t \), and
2. the inner loop leaves \(V \) showing reachable states from \(q_P \) on input up to time \(t \).

• correctness:

After loop ends, because it looped over all states, \(V \) shows reachable states at or before time \(t \).

We can now prove correctness of the outer loop over \(t \):

• loop invariant:

After each iteration, \(V \) shows reachable states at time \(t \).

• base case:

Before loop begins, \(V \) contains only initial states.

• induction step:

After each iteration, \(V \) shows states reachable on input up to \(t \) if
1. V shows states reachable on input up to time $t-1$, and
2. the inner two loops leave V showing reachable states on input at time t.

- correctness:
 After loop ends, V shows reachable states at end of input.

Then do same for other loops, proving correctness of assumptions in induction step.