11.1 Generalization of algorithms using semiring substitution

Operations in an algorithm can be replaced, keeping the same structure.

For ‘dynamic programming’ algorithms, this can be done using semiring substitution:

A semiring is a tuple \(\langle V, \oplus, \otimes, v_\perp, v_\top \rangle \) such that:

- \(V \) is a domain of values
- \(\oplus \) is a function \(V \times V \to V \) such that:
 - \(\oplus \) is associative (parentheses in sequences of operands don’t matter):
 \[v \oplus (v' \oplus v'') = (v \oplus v') \oplus v'' \]
 - \(\oplus \) is commutative (order of operands doesn’t matter):
 \[v \oplus v' = v' \oplus v \]

- \(\otimes \) is a function \(V \times V \to V \) such that:
 - \(\otimes \) is associative (parentheses in sequences of operands don’t matter):
 \[v \otimes (v' \otimes v''') = (v \otimes v') \otimes v''' \]
 - \(\otimes \) distributes over \(\oplus \) (that is, \(\otimes \) with common operands can jump outside \(\oplus \)):
 \[(v \otimes v') \oplus (v \otimes v'') = v \otimes (v' \oplus v''), \]
 \[(v' \otimes v) \oplus (v'' \otimes v) = (v' \oplus v'') \otimes v \]

or in the case of limit operators (which we often use in dynamic programming):
\[\bigoplus v \otimes v' = v \otimes \bigoplus v' \]

e.g. products involving variables not bound by sums may move outside sum ‘loop’:
\[\sum_{p'} p \cdot p' = p \cdot \sum_{p'} p' \quad (5 \cdot 1 + 5 \cdot 2 = 5 \cdot (1 + 2) \text{ a.k.a. } \sum_{p' \in \{1,2\}} 5 \cdot p' = 5 \cdot \sum_{p' \in \{1,2\}} p') \]
or conjuncts may move outside disjunct ‘loop’:
\[\bigvee_{b'} b \land b' = b \land \bigvee_{b'} b' \]

- \(v_\bot \) is an identity element for \(\oplus \) and annihilator for \(\otimes \) (like 0 in reals):
 - \(v_\bot \in V \)
 - \(v \oplus v_\bot = v \) and \(v_\bot \oplus v = v \)
 - \(v \otimes v_\bot = v_\bot \) and \(v_\bot \otimes v = v_\bot \)

- \(v_\top \) is an identity element for \(\otimes \) (like 1 in reals):
 - \(v_\top \in V \)
 - \(v \otimes v_\top = v \) and \(v_\top \otimes v = v \)

Parser can generalize, using different semirings for operators \(\oplus, \otimes \) and initial values of \(V \):
- boolean semiring \(\langle \{\text{TRUE, FALSE}\}, \lor, \land, \text{FALSE, TRUE} \rangle \): get original recognizer
- state sequences \(\langle Q^*, |, \circ, q_\bot, e \rangle \): get set of possible trees/sequences
- forward/inside \(\langle \mathbb{R}_0^\infty, +, \cdot, 0, 1 \rangle \): get probability
- tropical semiring \(\langle \mathbb{R}_0^\infty \cup \{-\infty\}, \text{min}, +, -\infty, 0 \rangle \): get best tree/sequence prob
- state sequence \(\times \) tropical: best tree/sequence and probability
- ...

11.2 Generalized parsing

Any time you want to calculate something of the form:

\[
f(c, x_i...x_j) = \bigoplus_{\tau \text{ w. root } (c,i,j)} \bigotimes_{(c',i',j') \in \tau} \begin{cases}
\text{if } i' = j' : & \text{if } c' = x_p : v_\top \\
& \text{if } c' \neq x_p : v_\bot \\
\text{if } i' < j' : & \bigoplus_{R(c' \rightarrow d' e')} \end{cases}
\]

you can apply generalized distributive axiom (pull meta-conjunct out of meta-disjunction):
\[
f(c, x_i \ldots x_j) = \begin{cases}
 \text{if } i = j : \begin{cases}
 \text{if } c = x_i : v_T \\
 \text{if } c \neq x_i : v_\perp
 \end{cases} \\
 \text{if } i < j : \bigoplus_{k,d,e} R(c \rightarrow d e) \otimes \left(\bigotimes_{\tau'} \text{ w. root } (d,i,k) \langle c',d',f' \rangle \in \tau' \right) \otimes \left(\bigotimes_{\tau''} \text{ w. root } (e,k+1,j) \langle c'',d',f'' \rangle \in \tau'' \right)
\end{cases}
\]

and identify recursive instances of \(f(c, x_i \ldots x_j) \):

\[
f(c, x_i \ldots x_j) = \begin{cases}
 \text{if } i = j : \begin{cases}
 \text{if } c = x_i : v_T \\
 \text{if } c \neq x_i : v_\perp
 \end{cases} \\
 \text{if } i < j : \bigoplus_{k,d,e} R(c \rightarrow d e) \otimes f(d, x_i \ldots x_k) \otimes f(e, x_{k+1} \ldots x_j)
\end{cases}
\]

then code, memoize, tabularize using dynamic programming, still preserving the generality:

```python
def Parse(cS, X) :
    T = len(X)
    V = {}  # memoization table
    for j in range(T) :
        for i in range(j, -1, -1) :
            for c in C :
                if i == j :
                    if ( c==X[i] ) : V[c,i,j] = v_T
                    else : V[c,i,j] = v_\perp
                else :
                    V[c,i,j] = v_\perp
                    for k in range(i,j) :
                        for d in C :
                            for e in C :
                                if (c,d,e) in R :
                                    V[c,i,j] = V[c,i,j] \oplus \left( \text{val}(c,d,e), V[d,i,k], V[e,k+1,j] \right)
    return V[cS,0,T-1]
```

11.3 From recognition to parsing

Semiring basis lets us substitute the Boolean semiring of recognizer \(\langle \{T, F\}, \lor, \land, F, T \rangle \) with union / Cartesian product: \(\langle \text{set of trees, } \cup, \times, \emptyset, \{\} \rangle \)

Tree sets:

\[
f(c, x_i \ldots x_j) = \bigcup_{\tau \text{ w. root } (c,j)} \bigotimes_{\langle c',d',f' \rangle \in \tau} \begin{cases}
 \text{if } i' = j' : \begin{cases}
 \text{if } c' = x_i : \{\} \\
 \text{if } c' \neq x_i : \emptyset
 \end{cases} \\
 \text{if } i' < j' : \bigcup_{k,d,e' \text{ s.t. } (d',e',k), (c',d',f') \in \tau} R(c' \rightarrow d' e')
\end{cases}
\]

can be computed with:

```python
import sys
import re
```
import model

S = model.Model('S')
C = model.Model('C')
R = model.Model('R')

V = {}

def val(c, d, e):
 return [c]

def prod(l1, l2, l3):
 lo = []
 for e1 in l1:
 for e2 in l2:
 for e3 in l3:
 lo = lo + [(e1, e2, e3)]
 return lo

def Parse(cS, X):
 T = len(X)
 for j in range(0, T):
 for i in range(j, -1, -1):
 for c in C:
 if i == j:
 if (c == X[i]): V[c, i, j] = [X[i]]
 else: V[c, i, j] = []
 else:
 V[c, i, j] = []
 for k in range(i, j):
 for d in C:
 for e in C:
 if (c, d, e) in R:
 V[c, i, j] = V[c, i, j] + prod(val(c, d, e),
 V[d, i, k],
 V[e, k + 1, j])
 return V[cS, 0, T - 1]

for line in sys.stdin:
 S.read(line)
 C.read(line)
 R.read(line)

print Parse('S', re.split(' +', 'the cat hit the toy off the mat'))

run on the CFG model:

S : S = 1
C : S = 1
C : VP = 1
C : NP = 1
C : PP = 1
C : the = 1
\[
P(x_i...x_j | c) = \sum_{\tau \text{ w. root } (c,i,j)} \prod_{(c',i',j') \in \tau} \begin{cases}
 1 & \text{if } i' = j' \\
 0 & \text{if } c' \neq x_r
\end{cases} + \sum_{k \neq d, d' \text{ s.t. } (d,d',k,k',4,j') \in \tau} R(c' \rightarrow d' d')
\]

can be computed with:

```python
import sys
import re
import model
```
S = model.Model('S')
C = model.Model('C')
R = model.Model('R')

V = {}

def val(c,d,e):
 return R[c,d,e]

def Parse(cS,X):
 T = len(X)
 for j in range(0,T):
 for i in range(j,-1,-1):
 for c in C:
 if i == j:
 if (c==X[i]): V[c,i,j] = 1.0
 else: V[c,i,j] = 0.0
 else:
 V[c,i,j] = 0.0
 for k in range(i,j):
 for d in C:
 for e in C:
 if (c,d,e) in R:
 V[c,i,j] = V[c,i,j] + (val(c,d,e) * V[d,i,k] * V[e,k+1,j])

 return V[cS,0,T-1]

for line in sys.stdin:
 S.read(line)
 C.read(line)
 R.read(line)

print Parse('S',re.split(' +','the cat hit the toy off the mat'))

run on the weighted CFG model:

S : S = 1
C : S = 1
C : VP = 1
C : NP = 1
C : PP = 1
C : the = 1
C : cat = 1
C : hit = 1
C : toy = 1
C : under = 1
C : mat = 1

R : S NP VP = 1.0
R : VP VP PP = .5
R : VP hit NP = .5
R : PP off NP = 1
R : NP NP PP = .25
R : NP the cat = .25
R : NP the toy = .25
R : NP the mat = .25

outputs the combined weight of the string, given these rule weights:
0.005859375

11.5 Weighted Parsing

Choose a single tree using weighted rules:

```python
import sys
import re
import model

S = model.Model('S')
C = model.Model('C')
R = model.Model('R')

V = {}

def val(c,d,e):
    return (R[c,d,e],c)

def max_argmax(pt1,pt2):
    if pt1[0]>=pt2[0]: return pt1
    else: return pt2

def prod_pair(pt1,pt2,pt3):
    return ( pt1[0]*pt2[0]*pt3[0], (pt1[1],pt2[1],pt3[1]) )

def Parse(cS,X):
    T = len(X)
    for j in range(0,T):
        for i in range(j,-1,-1):
            for c in C:
                if i == j:
                    if ( c==X[i] ) : V[c,i,j] = (1.0,X[i])
                    else : V[c,i,j] = (0.0,())
                else:
                    V[c,i,j] = (0.0,())
                    for k in range(i,j):
                        for d in C:
                            for e in C:
                                if (c,d,e) in R:
                                    V[c,i,j] = max_argmax(V[c,i,j],
                                    prod_pair(val(c,d,e),
                                    V[d,i,k],
                                    V[e,k+1,j]))
    return V[cS,0,T-1]
```
for line in sys.stdin:
 S.read(line)
 C.read(line)
 R.read(line)

print Parse('S', re.split(' +', 'the cat hit the toy off the mat'))

This prints most weighty tree for this string, and its weight:

(0.00390625, ('S', ('NP', 'the', 'cat'), ('VP', ('VP', 'hit', ('NP', 'the', 'toy')), ('PP', 'off', ('NP', 'the', 'mat')))))

Worked example: (blackboard)

11.6 FSA can also be generalized

A_{FSA} can now be generalized:

```python
# initialize table of possible states at each time step using start states
V = {}
for q in Q:
    V[0, q] = S.get(q, v⊥)

# for each possible state qP in V at time t, for each qP, x, q in M, add q
for t in range(1, len(Input)):
    for qP in Q:
        for q in Q:
            V[t, q] = V.get((t, q), v⊥) ⊕ (V[t-1, qP] ⊗ M.get((qP, Input[t-1], q), v⊥))
```

11.7 Where do weights come from?

Weights are well defined as probabilities.
In this view, parser (human or machine) estimates prob. of speaker generating utterance.

Probability in this view is a subjective measure of belief about speaker behavior

Specifically, belief of proposition x in domain X

Domain: set of mutually exclusive possible propositions (e.g. FSA states / PDA store-states)
Belief: given an infinite number of trials of X, x would happen p of the time

notation of propositions:
uncertain true/false proposition (e.g. *Kim said ‘cost’*), believed w. some probability

either x or x' is true (e.g. *Kim said ‘cost’ or Kim said ‘caused’*)

both x and x' are true (separate variables; e.g. *Kim said ‘cost’ and Pat said ‘caused’*)

notation of limit operators:

- $\sum_{x \in X} \phi$: sum of ϕ over all x in X
- $\prod_{x \in X} \phi$: product of ϕ over all x in X
- $\max_{x \in X} \phi$: maximum of ϕ over all x in X
- $\text{argmax}_{x \in X} \phi$: value of x that maximizes ϕ over all values in X

notation of probability terms:

- $\hat{F}(x)$: frequency of x in trials
- $P(x)$ or $P(x | \top)$: prior probability $= \hat{F}(x) / \sum_{x \in X} \hat{F}(x)$
- $P(x | y)$: conditional probability $= \hat{F}(x, y) / \sum_{x \in X} \hat{F}(x, y)$
- $P_\pi(x)$ or $P_\theta(x | y)$: prior/conditional probability as defined in some model π or θ

Probability axioms: all probabilities $P(x | y)$ are real numbers such that . . .

- $0 \leq P(x | y) \leq 1$
- $\sum_{x \in X} P(x | y) = 1$
- $\forall x, x' \in X$ $P(x \lor x' | y) = P(x | y) + P(x' | y)$

This means, if $X = V \times U$:

- $P(u \lor v | y) = P(u | y) + P(v | y) - P(u, v | y)$ (x and x' may be underspecified)

E.g., if $V = \{\text{‘Kim said ‘cost’}, \ldots, \text{‘caused’}\}$ and $U = \{\text{‘Pat said ‘cost’}, \ldots, \text{‘caused’}\}$:

- $x_0 = K: \text{caus}, P: \text{caus}, x_1 = K: \text{caus}, P: \text{cost}, x_2 = K: \text{cost}, P: \text{caus}, x_3 = K: \text{cost}, P: \text{cost}$
- $v = K: \text{cost}, u = P: \text{cost}$
- $P(x_1 \lor x_2 \lor x_3 | y) = P(x_2 \lor x_3 | y) + P(x_1 \lor x_3 | y) - P(x_3 | y)$

Probabilities of grammar rule expansions:

- $P(c \rightarrow d e | c)$: probability speaker decided to expand c into d followed by e

‘branching process model’ assigns probability to any tree / sentence

widely used in comp ling / comp psycholing

11.8 A case against the dynamic programming parser as a human model

DP/‘chart’ parsers are simple and tractable, but cognitively implausible:
1. human language processing uses short-term working memory:
 - Just and Carpenter: memory load affects processing [Just and Carpenter, 1992]

2. short-term working memory is very limited:
 - Miller: 7 +/- 2 ‘chunks’ [Miller, 1956]
 - Cowan: 4 +/- 1 [Cowan, 2001]
 - Lewis: 2 +/- 1 [Lewis, 1996]
 - McElree and Dosher: 1, but continuous [McElree and Dosher, 2001]

3. short-term memory is short-term (no trees in memory):
 - Sachs: can’t remember words between sentences [Sachs, 1967]
 - Jarvella: can’t remember words within sentences [Jarvella, 1971]

4. reference interacts incrementally with processing
 - Tanenhaus et al.: can-..., frog on ... (can’t do bottom-up) [Tanenhaus et al., 1995]

5. don’t need more than working memory anyway:
 - Schuler et al.: parse treebank using 3-4 chunks [Schuler et al., 2010]

Let’s implement an incremental comprehension model...

References

