Ling 5801: Lecture Notes 11
From CFG Recognition to Probabilistic Parsing

Contents
[I1.1 Generalization of algorithms using semiring substitution| 1
[11.2 Generalized parsing| 2
[I1.3 From recognition to parsing|. vt e 3
(11.4 Weight calculation| 5
(11.5 Weighted Parsing| 7
[I1.6 FSA can also be generalized 8
[I1.7 Where do weights come from? 8
[I1.8 A case against the dynamic programming parser as a human model| 9

11.1 Generalization of algorithms using semiring substitution

Operations in an algorithm can be replaced, keeping the same structure.
For ‘dynamic programming’ algorithms, this can be done using semiring substitution:
A semiring is a tuple (V,®, ®, v, v+) such that:
e V is a domain of values
e @ is afunction V X V — V such that:
— @ is associative (parens in sequences of operands don’t matter):
ve@Wev)=waev)ev’
— @ is commutative (order of operands doesn’t matter):
VoY =V ey
e ®is a function V X V — V such that:
— ® is associative (parens in sequences of operands don’t matter):
v eV)=@mvev)ev’
— ® distributes over @ (that is, ® with common operands can jump outside @):
veVv)e(w®V)=ve(&Vv’),
Veve(' ev) =0 eVv)ev

or in the case of limit operators (which we often use in dynamic programming):

@v@v’zv@@v’
»

Vv

e.g. products involving variables not bound by sums may move outside sum ‘loop’:

(ak.a.

or conjuncts may move outside disjunct ‘loop’:

e v, is an identity element for & and annihilator for ® (like O in reals):

v, eV
vodv, =vandv, dv=v

vV, =v,andv, Qv =v,

e v is an identity element for ® (like 1 in reals):

vreV

vevr=vand v ®v=1v

Parser can generalize, using different semirings for operators @,® and initial values of V:

e boolean semiring : get original recognizer
e state sequences . get set of possible trees/sequences

e forward/inside : get probability

e tropical semiring : get best tree/sequence prob

e state sequence X tropical: best tree/sequence and probability

11.2 Generalized parsing

Any time you want to calculate something of the form:

ifi'=j: if ¢ =xy :vy
if#Exp vy

fle,xix)) = @ ® ifi’<j : @R(C' —d')

T w. root {c,i,j) {¢’,i',]’ YeT

kde s.t. (dik) e k'+,] et

you can apply generalized distributive axiom (pull meta-conjunct out of meta-disjunction):

iz {1fc:x,- ST

ifc#x; v,
fle,x.xj) =
iti<j:PrRe-deoe| B X i-le| D X) |-
k.d,e 7/ w. root {d,i,k) {(ci’,j’Yet’ 77 w. root {e.,k+1,j) (i, j" yer""

and identify recursive instances of f(c, x;..x;):

if i) {1fc=x,- TV

Flesxix)) = ifc#x; v,
e ifi<j: @R(c —de)®f(d, xi. x)Qf (e, Xis1..X;)
k,d,e

then code, memoize, tabularize using dynamic programming, still preserving the generality:

def Parse (cS, X)
T = len (X)
for j in range (0, T)
for 1 in range(j,-1,-1)
for ¢ in C

if 1 ==
if (c==X[i]) : VI[c,1,3] = vt
else : Vic,1i,3] = vy
else
V[Clilj] = VL
for k in range (i, J)
for d in C

for e in C
if (c¢,d,e) in R :
Vic,i,31 = Vic,i,31 ® X (val(c,d, e),
vi[d,i, k],
Vie,k+1,31)
return V[cS,0,T-1]

11.3 From recognition to parsing

Semiring basis lets us substitute the Boolean semiring of recognizer ({T, F}, v, A, F, T) with union
/ Cartesian product: (set of trees, U, X, 0, {()})

Tree sets:

ey i =X {O)
ii=7: {ifc’ix,v 10

if i< UR(C' —>de)

kde' s.t. (dik)ek'+l,] yer

fle,x.xj) = U
T w. root {c,i,j) {c’,i’,]’ et
can be computed with:

import sys
import re

import model

S = model.Model (’S’)
C = model.Model ('C")
R = model.Model ("R")
Vo= {}
def val(c,d,e):
return [c]
def prod(l1l,12,13)
lo = []
for el in 11
for e2 in 12
for e3 in 13
lo = lo + [(el,e2,e3)]
return lo
def Parse (cS, X)
T = len (X)
for j in range (0, T)
for i in range(j,-1,-1)
for ¢ in C
if i == 3 :
if (c==X[i]) Vic,1,3] = [X[i]]
else Vic,i,3] = [1
else
Vic,1,3]1 = []
for k in range (i, j)
for d in C
for e in C
if (c¢,d,e) in R
Vic,i,3j] = Vi[c,i,3j] + prod(val(c,d,e),
vid,i, k1,
Vie,k+1,731)
return V[cS,0,T-1]
for line in sys.stdin:
S.read(line)
C.read(line)
R.read(line)
print Parse(’'S’,re.split(’ +’,’the cat hit the toy off the mat’))

run on the CFG model:

S

@]

Q

aQ Q0

S =1

S =1
VP =1
NP = 1
PP 1
the = 1

gives output (indented by me to help you see what happened):

You can turn any recognizer into an analyzer/parser with this trick!

(‘real’ parsers use probability weights to choose a single tree; but that’s another semiring)

Correctness: mostly the same

loop invariant: each c, i, j computes set of trees with root ¢ spanning x;..x;

Complexity: same (with assumptions)

no change to program structure (assuming prod implemented w. references, which this ain’t)

Worked example: (blackboard)

11.4 Weight calculation

Define weights for trees based on (product of) weights for rules:
ifc’=x,:1.0
if ¢’ #xy:0.0
ifi’<j:) R(c" > d¢)

kd'e' s.t. (d,ik)(ek'+,] er

ifi'=j":
P(xi..xjlc) =

T w. root {c,i,j) {c’,i’,j'YeT

can be computed with:

import sys
import re
import model

S = model.Model (’S’)
model.Model ("C’)
R = model.Model ('R")

(@}
Il

v = {}

def val(c,d,e):
return R[c,d, e]

def Parse (cS, X)
T = len (X)
for 7 in range(0,T)
for 1 in range(j,-1,-1)
for ¢ in C

if i == 3 :
if (c==X[1i]) : VIc,1i,7] 1.0
else : V[c,1i,3] = 0.0
else
Vic,i,3] = 0.0
for k in range (i, j)
for d in C
for e in C
if (c,d,e) in R
Vic,i,3] = Vic,i,3] + (val(c,d,e) =
vid,i,k] =
Vie,k+1,71)

return V[cS,0,T-1]

for line in sys.stdin:
S.read(line)
C.read(line)
R.read(line)

print Parse(’S’,re.split(’ +’,’the cat hit the toy off the mat’))

run on the weighted CFG model:

(0p]

S =1

VP 1
NP = 1
PP =1
the =
cat =
hit

toy =
under = 1

[OHOHONOINONONONONS!
e

@]

mat = 1

Py}

S NP VP = 1.0
VP VP PP .5
VP hit NP = .5

P

sl

PP off NP =

NP NP PP = .25
NP the cat = .2
NP the toy = .25
NP the mat = .25

U

=

o 0w

outputs the combined weight of the string, given these rule weights:

N

N NNEQEQRTE
0.005859)

(

11.5 Weighted Parsing

Choose a single tree using weighted rules:

import sys
import re
import model

S = model.Model ("S")

C = model.Model ('C’")
R = model.Model ('R")
v = {}

def val(c,d,e):
return (R[c,d,el,c)

def max_argmax (ptl,pt2)
if ptl[0]>=pt2[0] : return ptl
else : return pt2

def prod_pair (ptl,pt2,pt3)
return (ptl[0]xpt2[0]+pt3[0], (ptl[l],pt2[1],pt3[1]))

def Parse (cS, X)
T = len (X)
for j in range (0, T)
for i in range(j,-1,-1)
for ¢ in C
if i == 3 :
if (c==X[1]) : V][c
else : V[c,i,3j] = (0.
else
Vic,i,3] = (0.0, ())
for k in range (i, J)
for d in C
for e in C
if (c¢,d,e) in R
Vic,1i,Jj] = max_argmax(V([c,i, Jl,
prod_pair(val(c,d,e),
vid, i, k],
Vie,k+1,31))
return V[cS,0,T-1]

for line in sys.stdin:
S.read(line)
C.read(line)
R.read(line)

print Parse(’S’,re.split(’ +’,’the cat hit the toy off the mat’))

This prints most weighty tree for this string, and its weight:

Worked example: (blackboard)

11.6 FSA can also be generalized

Agsa can now be generalized:

initialize table of possible states at each time step using start states

v ={}
for g in Q:
V[0,gq] = S.get(q,vy)

for each possible state gP in V at time t, for each gP,x,q in M, add g
for t in range(l,len(Input)):
for gP in Q:
for g in Q:
Vit,q]l = V.get((t,gq),vy) & (V[t-1,gP] ® M.get ((gP, Input[t-1]1,q9),v.))

11.7 Where do weights come from?

Weights are well defined as probabilities.

In this view, parser (human or machine) estimates prob. of speaker generating utterance.
Probability in this view is a subjective measure of belief about speaker behavior

Specifically, belief of proposition x in domain X
Domain: set of mutually exclusive possible propositions (e.g. FSA states / PDA store-states)

Belief: given an infinite number of trials of X, x would happen p of the time

notation of propositions:

X, Y, U,V uncertain true/false proposition (e.g.), believed w. some probability

X a domain of possible mutually-exclusive propositions (e.g.)
xVx either x or x’ is true (e.g.)

x,x" (= xAx") both x and x” are true (separate variables; e.g.)
T tautology / empty proposition

notation of limit operators:

Direx @ sum of ¢ over all x in X
[Tiex @ product of ¢ over all x in X
max,cx ¢ maximum of ¢ over all x in X

argmax, ., ¢ value of x that maximizes ¢ over all values in X

notation of probability terms:

F(x) frequency of x in trials
P(x) or P(x| T) prior probability = F(x)/ 3 ex F(0)
P(x|y) conditional probability = F(x,y)/ ey F(x,y)

P.(x) or Py(x|y) prior/conditional probability as defined in some model or 8

Probability axioms: all probabilities P(x|y) are real numbers such that. ..

e 0<P(x|ly) <1

® DexPlxly) =1

o Vivex P(xV x'[y) =P(x[y) + P(x"|y)
This means, if X = V X U:

e Puvvly) =Puly)+PW|y) —P(u,v|y) (xandx’ may be underspecified)
E.g.,if and

°

.

Probabilities of grammar rule expansions:
P(c — d e|c) probability speaker decided to expand c into d followed by e
‘branching process model’ assigns probability to any tree / sentence

widely used in comp ling / comp psycholing

11.8 A case against the dynamic programming parser as a human model

DP/‘chart’ parsers are simple and tractable, but cognitively implausible:

1. human language processing uses short-term working memory:

e Just and Carpenter: memory load affects processing [Just and Carpenter, 1992]
2. short-term working memory is very limited:

e Miller: 7 +/- 2 ‘chunks’ [Miller, 1956]

e Cowan: 4 +/- 1 [[Cowan, 2001]]

o Lewis: 2 +/- 1 [Lewis, 1996]

e McElree and Dosher: 1, but continuous [[McElree and Dosher, 2001]]
3. short-term memory is short-term (no trees in memory):

e Sachs: can’t remember words between sentences [[Sachs, 1967]]

e Jarvella: can’t remember words within sentences [Jarvella, 1971]]
4. reference interacts incrementally with processing

e Tanenhaus et al.: can-..., frog on ... (can’t do bottom-up) [Tanenhaus et al., 19935]]
5. don’t need more than working memory anyway:

e Schuler et al.: parse treebank using 3-4 chunks [Schuler et al., 2010]

Let’s implement an incremental comprehension model...

References

[Cowan, 2001] Cowan, N. (2001). The magical number 4 in short-term memory: A reconsidera-
tion of mental storage capacity. Behavioral and Brain Sciences, 24:87—-185.

[Jarvella, 1971] Jarvella, R.J. (1971). Syntactic processing of connected speech. Journal of Verbal
Learning and Verbal Behavior, 10:409-416.

[Just and Carpenter, 1992] Just, M. A. and Carpenter, P. A. (1992). A capacity theory of compre-
hension: Individual differences in working memory. Psychological Review, 99:122—149.

[Lewis, 1996] Lewis, R. L. (1996). Interference in short-term memory: The magical number two
(or three) in sentence processing. The Journal of Psycholinguistic Research, 25:93—115.

[McElree and Dosher, 2001] McElree, B. and Dosher, B. A. (2001). The focus of attention across
space and across time. Behavioral and Brain Sciences, 24:129-130.

[Miller, 1956] Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological Review, 63:81-97.

[Sachs, 1967] Sachs, J. (1967). Recognition memory for syntactic and semantic aspects of con-
nected discourse. Perception and Psychophysics, 2:437-442.

10

[Schuler et al., 2010] Schuler, W., AbdelRahman, S., Miller, T., and Schwartz, L. (2010). Broad-
coverage incremental parsing using human-like memory constraints. Computational Linguis-
tics, 36(1):1-30.

[Tanenhaus et al., 1995] Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., and Sedivy,
J. E. (1995). Integration of visual and linguistic information in spoken language comprehension.
Science, 268:1632—1634.

11

	Generalization of algorithms using semiring substitution
	Generalized parsing
	From recognition to parsing
	Weight calculation
	Weighted Parsing
	FSA can also be generalized
	Where do weights come from?
	A case against the dynamic programming parser as a human model

