Ling 5801: Lecture Notes 12
From Probabilistic CFGs to Probability Models
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12.1 Full joint models

A probability model ) is a tuple consisting of:
e an ordered set X, of random variables X, ..., X|x,,| with uncertain values,
e adomain mapping D), from random variables X; in &) to their domains Dy, and
e a full joint probability distribution ), over each combination of values of X',

M = (X, Dy, Onr) where Xy = (X4, ..., Xjxy,)
andDMI {<X17DX1>7"'7<X|XIW‘7IDX\XNI\>}
and 0,; € DX1 X ... X DXIXM\ — Ré

For example, a model of pronunciation variation:

1. Domains of random variables (upper case) are sets of mutually-exclusive values (lower case):
/ "
Dx, = {wz;,x}, 2!, ...}

For example:



Dge;, = {ohio, phil, ...}, (speaker region)
Dw,q = {/nek/,/nzk/, ...}, (speaker’s intended word)
Dacow = {[nek], [nk], ...} (listener’s observed phone)

2. Py assigns a probability to each combination of random variable values (‘atomic event’):
® Var, oty €%, < x D, | Pous (21, ..., T)xy,)) € RE (each probis 0 to 1),
° Zzl .... — Po, (@1, ..., 2x,) = 1 (total prob of all atomic events is 1)

For example, Ohians never pronounce /=/ as ||, but Philadelphians often do:

Po,,.. (Reg =ohio, Wrd = /nzk/, Acou=[nek]) = .2

Po,,.. (Reg=ohio, Wrd=/nzk/, Acou=[nek]) = 0

Po,,.. (Reg=ohio, Wrd=/nek/, Acou=[nxk])=0 (never)
Po,,.. (Reg=ohio, Wrd=/nek/, Acou=[nek]) = .3

Py, (Reg=phil, Wrd=/n®k/, Acou=[nzk]) =

Po,,.. (Reg =phil, Wrd=/nzk/, Acou=[nek]) =0

Po,,.. (Reg=phil, Wrd=/nek/, Acou=[nzk])= .2 (often)
Po,,.. (Reg=phil, Wrd=/nek/, Acou=[nek]) = .1

Write as probability table, rows sum to one:

Po,,.. (Reg, Wrd, Acou) =

‘Oth ohio ohio ohio phil phil phil phil ‘
‘ /nzk/ /nzk/ /nek/ /nek/ /nzk/ /nzk/ /nek/  /nek/ ‘
| [nzk] [nek] [nak] [nek] [nazk] [nek] [nek] [nek] |
|2 |

0 0 3 2 0 2 1

Each probability in the model is called a parameter.

There’s one for each combination of values: in this case 2 - 2 - 2 — 8.

12.2 Inference / prediction
We can use a probability model to infer answers to questions.

First, we will adopt a notational shorthand Py,, (X’), which means:

P9M<X1=.I1, ,X|X| =.T|X|) for all Xl, ,X|X| € X and all xy, ...,JJ|X| € Xl, ,X|X‘

Now we can define. ..

1. Marginals: for any query X', sum probability over values of all variables not in X'

VX/QXM P9M (X/) = Z P9M (XM>

For example:



Po,,.. (Wrd=w,Acou=a) = Z Po,,. (Reg=r, Wrd=w,Acou=a)
rEReg
/n&k/ /nxk/ /nek/  /nek/ ‘

|
Po,.., (Wrd, Acou) :‘ [nek] |[nek] [naek] [nek] ‘
|4 0 2 4 |

Another example:

Po,,.. (Acou=a) = Z Po,,,. (Reg=1, Wrd=w,Acou=a)

reReg,weWrd

&l el
Po,,.., (Acou) = [21 Kl [2 Kl

2. Conditionals: divide modeled & conditioned variables over conditioned variables

Pg,, (XU X")

Yy xn Py (X' |X) = 22 — "~
xrxnCxy Poy (X[ XY) Py (A7)

For example:

Po,,.. (Wrd=w,Acou=a)
Po,,.. (Acou=a)
D reReg Popno, (Reg=1, Wrd=w,Acou=a)
a Y reregwewrd Popron (Reg =1, Wrd=w, Acou=a)

Poy,.,(Wrd=w |Acou=a) =

Table has one row for each combination of conditioned-on variable values:

‘ Acou | lnxek/ /nek/ ‘
Po,,.. (Wrd | Acou) ‘ [nek] | .667 333 ‘
‘ nek] | O 1 ‘

So, by our model, we can calculate that [n&k] is probably from /n&k/ in the general case:

-/) -
Po,,.. (Wrd=/nak/ | Acou=[nzk]) = o = .667
e 24+04+ .24 .2

but if the speaker is from Philadelphia, the odds are even:

I3

Poy,.. (Wrd=/na&k/ | Acou=[nzk], Reg =phil) = 3+ 2 =

Practice

Write a Python program to calculate P (W< | Acou) in a dictionary WoivA [w, o] given a full joint
distribution P (Reg, Wrd. Acou) in a dictionary RWA [, w, a .

12.3 Factored models

The full joint distribution #,; can sometimes be very large.
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To simplify it, we’ll first factor it into an ordered set of distributions for each variable:
1. A factored probability model ) is a tuple:

M = <XM,DA[,CM,9]\4> where XM[: <X1, ---7X|XM|>
and DMI {<X17DX1>, ceny <X‘XM|7’DX|XM\>}
and CM: {<X1,CX1>7 ceey <X|XM|7CX\XM\>}
and HM: {<X1,9X1>, ceey <X‘XM‘79X\XM|>}
and, for now, Vx,cx,, Cx, = {X1, ..., Xi_1}

Now our model of pronunciation variation becomes:

2. We can now define full joint probabilities as a product of these factors.

This is a chain rule decomposition, using the definition of conditional probability:

Py, (X Xix,,|) = Pop (X1)  Poy, (X1,X2)  Pgy, (X1,X5,X3)  Poy (X Xy )
91\/1 1y ooy |XJL1‘ 1 PQI\J(Xl) PQA/[(XLXQ) POJW(XI ..... X\X]W\fl)

- PQM(‘Xl)'PGM(‘X2 | Xl)'PeM(X?) | X17X2>"~'P9M(X|XM\ |X17 ey XIXM\—l)
= H‘zi]iﬁ P9A4(Xi ’ D, G Xifl)

= T15" Py, (Xi | Cx,)

We now have a bunch of conditional probability distributions instead of a full joint.

We’ll name them after the variables they model:

Pexi (X7 ‘ CXz) déf P9M (XZ | CXq)

Now, in our example:

3. Now the number of parameters in any variable’s conditional probability distribution:
PQXI_ (XZ ‘ X1> ceuy Xi71>
is the product of the cardinalities of its modeled and conditioned-on variables:

0| = 12Xl - 1 Xa] - [ X

In our example:

So far this is no better than the full joint distribution. . . but that’s ok for now.



12.4 Graphical representation (‘Bayes net’)

Terms Py, (X;|Cx,) from chain can be represented graphically —

each variable X is a circle, with an edge from each variable in the condition Cx;:

For example:

Graphical models are like sudoku: some values given, some unknown, values interdepend

In fact, they can be considered a generalization of sudoku puzzles!

12.5 Conditional probability model class

Extend * ’ to implement conditional model: dictionary of dictionary

(You may find this useful for certain problem set questions!)



# define model to map condition tuples to distributions

class CondModel (dict) :

# populate with default values when queried on missing keys

def _ missing  (self,k):
self[k]=Model ()
return self[k]
# define get without promiscuity
def get (self,k):
return dict.get (self,k,Model ())
# init with model id
def _ init__ (self,i):
self.id = i
# read model
def read(self,s):
m = re.search(’” *x’+self.id+’ +(.*?)
if m is not None:

c = tuple(re.split (' +’,m.group(l)))

if len(c)==1: c = c[0]

v = tuple(re.split(’ +’,m.group(2)))
if len(v)==1l: v = v[0]

selflc]([v] = float (m.group(3))

# write model
def write (self):
for ¢ in sorted(self):
for v in sorted(selfc]):
if selfc][v]>0.0:
print self.id,
if type(c) is tuple:
for £ in c:
print £,
else: print c,
print " :7,
if type(v) 1is tuple:
for £ in v:
print £,
else: print v,
print "=’ ,selfc] [V]

Example, e.g. type into a program file ‘myprog.py’:

import re
import sys
import model

# read in params beginning with "R’ (prior model:

# read
# read

in params beginning with W’ (prior model:
in params beginning with "A’ (cond model:

+(.x?) += +(.x) *',8)

no value before colon)
no value before colon)
value before colon)



Reads files in the following format:

then describes the information in the file and then prints the probability of /nek/:

12.6 Estimating ¢ from fully-specified (‘annotated’) data

Every 0y, is a conditional probability table Py, (X;|Cx,).
Simply count instances of x4, ..., z; € Cx, xX; and divide by count of z1, ..., ;1 € Cyx,.

This is called relative frequency estimation.



12.7 Inducing ¢ from not-fully-specified (‘unannotated’) data

You’ll study this in comp ling 2!

12.8 Simplification using independence assumptions

We can now make independence assumptions about which dependencies don’t matter:
Define conditioned-on variables as a subset of preceding vars:
inGX]\J CXi Q{le ceey Xifl}

For example, our model of pronunciation variation becomes:

The joint probability is:

Po,.,(Wrd | Reg)

Wrd

Po Wrd ( Wrd )

because of independence assumption: Py, (Wrd | Reg) “'p, oo (Wrd)

Graphically:

12.9 Another example: speech components (Phone, Voice, Back, Formant
frequencies (binned))

1. Chain rule decomposition (no independence assumptions):



PHS[)(P7 V, B, Fy, I, F2> - PQP(P) ’ P(’v (‘/7 | P) ’ P913<B | P, ‘/)'
Par, (Fo| P,V, B) - Po,. (Fy | P,V, B, Fy) - Po, (s | PV, B, Fy, F)

Here (/| — 100-2-2-2-100- 100 = & 000,000 parameters!

2. With independence assumptions:

Mg, = ({P,V, B, Fy, F\, Fy),
{(PAAL M) (VA+, = 1), (B A+, = 1), (Fo, 1Y), (F, 1Y), (F, ) 3
{(P,0),(V.{P}),(B.{P}), (Fo,{V}),(F1,{B}), (F», {B})},
Pf)p (V,0v),(B,0g),(Fy,0r,), (F1,0r), (F3,0r,)})

/@\

Pos, (P, V, B, Fy, Fy, Fy) Py (P) - Py, (V| P) - Py, (B| P)-

Pos, (F0 | V) - Py (F1 | B) - Py, (F2 | B)

Now |(,| = 100 - 2 = 200 parameters!

Practice

1. Draw a model of pet communication given random variables for vocalization, hunger, loca-
tion, and tail being stepped on. The pet vocalizes when it’s hungry, or when its tail is stepped
on. Its tail gets stepped on only when it is in the kitchen.

2. Write the factored equation for P(Hunger, TailStep | Voc, Loc)

3. Write a program to do this calculation in modHTgivVL|v,1]/h.t| given models
modL[1], modT[1][t], modH[h], modV|t, h][v]



12.10 Generative vs discriminative models

Models that condition observed variables on un-observed variables are called generative.
Models that don’t, and ignore the observed variable model, are called discriminative.

Discrim models have annoying properties (‘label-bias’), need overlapping joint variables.

12.11 Efficient inference by ‘message passing’

Most queries don’t need to calculate the full joint distribution (through 8,000,000 iterations):

2

Instead, marginalize as we go, storing marginals (conditional probability tables) as ‘messages’:

(poor(pe i (el vt (Seim)

(Re-arrangement of terms just comes from distributing products over sums in the full joint.)
Blue parens show forward messages: distributions over free modeled variables (subscripts).

Red parens show backward messages: likelihood fns over free conditioned-on variables (subscr).

AN

Now just need space of a conditional probability distribution per variable!

12.12 Example

For example, to solve the following query (where variable Fj is actually observed):

10



Pos, (b, fo=12) = > Py, (p,0,b, fo=12, f1, f2)
P, f1,[2

dﬁfg(f (zwp (f=1211))- PO ) (ZPf1|b)-(bfZP<fzb>)

given the following models:

A T
Por(P) =36

P+ —|
Po, (VIP)=|/A/ [ 8 2
w10
(V]... 11 12 13 .|
Poo, (Fo| V)= + ... .04 .02 .0l
— ... .01 .01 .01
P+ -
Po,(BIP)=|/i/ |0 1
nolSs s

we would generate the following messages:

V12
from Foto Vi P(F=12 V) = + .02
— 1 .01

P | Fp =12

fil | Poy (12]+4) - Pg, (+[/i/) + Py, (12] =) - Py, (—[/i/)
from V to P: P(F,=12| ) — = .02-.8+.01-.2=.018

/| Py, (12 | +) - Poy, (| /0/) + Poy, (12] =) - Py, (— | /)
=.02-1+.01-0=.020

P=li/, Fy=12 P=//, Fy=12
from P to B: P(P, Fy=12) =| Py, (/i/) - P(Fy=12| P=/i/) Py, (/u/) - P(Fo=12| P=/u/)
= .4-.018 =.0072 = .6-.020 = .0120
B | any
from Fy to B: Plany /)| B) = + |
-1
B | any
from Fyto B: Plany /| B) = + |
— |1

Product of model and three messages at B:

11



P(B, Fy=12) =

B=+, Fy=12 B=— Fy=12 ‘
P(P=/il, Fy=12) - Pp(+|/i/) - 1-1 P(P=/i/, Fy=12) - Pg(—|/i/) - 1-1 ‘
+ P(P:/u/ Fo=12) - Pp(+ \ /u )-1-1 + P(P=N/, F4=12) - Pp(— \/u )-1-1 ‘
=.0072-0-1-14+.0120-5-1-1=.0060 =.0072-1-1-1+.0120-.5-1-1=.0132 ‘
Normalized:
B=—+ B=— |
P(B ‘ F(]:IQ) *‘ 0060 . 0132 QP
‘ ()()ooﬁ {m 55 = 9120 Ggeor.0mz — 0879 ‘

12.13 Example program

Find P (72| I, = 12) from Model modr, CondModels modV, modB, modi 0, modi 1, modi2:

bkwdF0 = {}

for v in modFO: # obtain likelihood of observation given V (backward message)
bkwdFO[v] = modFO[v]["12"]

bkwdv = {}

for p in modV: # marginalize or ’sum out’ V to get likelihood given P (bkwd msg)
for v in modV[p]:

bkwdV[p] = bkwdV.get (p,0.0) + (modV[p][v] * bkwdFO[v])

fwrdP = {}

for p in P: # multiply prior over P by likelihood given P (backward message)
fwrdP [p] = modP[p] * bkwdV([p]

Practice

Complete the above example.

12.14 Limits of message passing

Message passing degrades when network is not singly-connected.
For example, adding variable for height w. dependencies from P, to F5, creates a ‘diamond’:

Ms, = ((P,V,B,H, Fo, Fy, ),
UP ALY VA =1) (B, = 1), (HL {4+, =1, (Fo I9), (L I9), (B, I9) ),
{P.0), (V. AP}, (B, PV, (H, PV, (Fo, (VD (Fy, {BY), (Fo, 1B, B},
{(P.0p), (V.0v), (B.0s), (H, 8), (Fo,Or), (1, 0r,) (F, )} )

This means some marginals will have multiple free variables (which makes them larger):

12



Pé)gp (1)) — Z Pesp (p‘» v, bﬂ /1'1 ]L() fl ) fZ)

pv;h.fo,f1,f2

< o (o () v o)

Graphically, messages must pass through ‘junctions’ of joint variables:

Well, they’re not full joints at least.

13
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