
Ling 8700: Lecture Notes 4
From Cued Association Semantics to

Sentence Processing
So far, we have introduced a model of complex ideas, consisting of. . .

• referential states: countable, distinguishable entities

(at algorithmic level, modeled as vectors of activation in attentional focus)

(at computational level, notated as entities u, v, w, x, y, z)

• cued associations: labeled relations between entities

(at algorithmic level, modeled as matrices of synaptic weights in associative memory)

(at computational level, notated as functions f from referential states to referential states)

• these form elementary predications: referential states which have. . .

1. predication type constants: information that defines the specific role of each participant.

(at algorithmic level, modeled as characteristic features of patterns)

(notated as association f0 from elementary predications to type constants xα)

2. participants: related referential states s.t. relation and predication have same extent

(notated as numbered associations: f1, f2, . . . , from elem. predications to participants)

• these form cued association structures: sets of cued associations in associative memory

(notated as functions p, q, etc. from referential states to truth values)

These lecture notes describe a model of sentence processing as encoding complex ideas.
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4.1 Typed signs

The sentence processing model described in these notes operates on signs (Saussure, 1916).

Signs are referential states for instances of words, phrases and clauses, with. . .

1. signified referential states: referential states described by signs

(notated using fsig associations from signs to signified referential states)

2. hierarchic associations: superordinate incomplete signs, to be completed later in processing

(notated using fA and fB associations from signs to superordinate signs)

3. syntactic type constants: category information which helps disambiguate structural attachments

(types are features, but the relationship between signs and types is notated using f0 functions)

(type values are notated with variables α, β, γ, δ, and ε over domain S )

Syntactic type constants consist of . . . (Ajdukiewicz, 1935; Bar-Hillel, 1953; Oehrle, 1994)

(a) a primitive clausal type: distinct types for complete clauses with no unsatisfied arguments

(notated τ or υ over domain T )

(b) zero or more syntactic dependency types: types for required argument/conjunct/... signs

(notated ϕ or ψ over domain O × S )

Syntactic dependency types consist of. . .

i. a type-constructing operator (e.g. argument, modifier, gap filler), in domain O

ii. another syntactic type constant for the dependent sign, in domain S
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Additionally signified referential states may have. . .

• syntactic dependencies (subject, direct object, etc.), corresponding to the type of the sign

(notated as associations f1′ , f2′ , . . . from signified referential states to dependent referential states)

4.2 Syntactic types for English (Nguyen et al., 2012)

Here is a list of primitive clausal types for English (distinguished by non-substitutability):

V: finite verb clause (e.g. She believes that [V he knows the truth].)
I: infinitive clause (e.g. She allows [I him to know the truth].)
B: base-form clause (e.g. She requires that [B he know the truth].)
L: participial clause (e.g. They have [L-aN known the truth] — no complete clause)
A: adjectival / predicative clause (e.g. She kept [A him knowing the truth].)
R: adverbial clause (e.g. They do it [R-aN knowingly] — no complete clause)
G: gerund clause (e.g. She works without [G him knowing the truth].)
P: particle (e.g. She picked him [Pup up] — lexical item specified in type)
T: top-level discourse (used for most superordinate incomplete sign in parser)
S: top-level utterance (e.g. She says: [S know the truth]!)
Q: subject-auxiliary inverted (e.g. She asks: [Q did he know the truth]?)
C: complementized finite verb (e.g. She fretted [C that he knows the truth].)
F: complementized infinitive (e.g. She waits [F for him to know the truth].)
E: complementized base-form (e.g. She requires [E that he know the truth].)
N: nominal clause / noun phrase (e.g. She talks about [N his knowledge of the truth].)
D: determiner / possesive (e.g. She calculates [D his knowledge of the truth’s] effect.)
O: non-possessive genitive (e.g. She tires [O of his knowledge of the truth].)

English type-constructing operators w. examples distinguishing N-op-N contexts:

-a,-b: for unsatisfied requirements of preceding/succeeding ordinary arguments

(distinguishing signs that look ahead from signs that look behind for ordinary arguments):

(1) a. We find [A [N our hero] [A-aN [N a dollar] [A-aN-aN short]]].
b. We find [A [N our hero] [A-aN [A-aN-bN with] [N only two dollars]]].

-c,-d: for unsatisfied requirements of preceding/succeeding conjunct arguments
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(distinguishing conjunct requirements from argument requirements):

(2) a. The spy stole [N files] [N-cN and documents].
b. The spy stole files [N-cN-dN and] [N documents].

-g: for unsatisfied requirements of gap filler arguments

(distinguishing gap-filler requirements from argument or conjunct requirements):

(3) These are the bridges the boss was [A-aN-gN expected to think _ were unsafe].

-h: for unsatisfied requirements of extraposed or heavy shifted categories

(distinguishing extraposition and heavy shift from gap filler requirements):

(4) An article was [A-aN-hN expected to condemn _] this week over 100 unsafe bridges.

(note requirements for extraposition and heavy shift are more restrictive than for gap fillers):

(5) ? The boss was [A-aN-hN expected to think _ were unsafe] this week over 100 bridges.

-v: for unsatisfied requirements of passivized arguments

(distinguishing passive argument requirements from gap filler and heavy shift requirements):

(6) a. That bridge was slept [R-aN-vN under _].
b. ? That bridge was considered [A-vN _ unsafe].

(note that passivization is more restrictive than extraposition or heavy shift):

(7) ** That bridge was considered [A-vN [N the boss] [A-aN-vN a critic of _]].

-i,-r: for unsatisfied requirements of interrogative or relative pronoun antecedents

(interrogative/relative pronoun antecedent requirements differ from ea. other & other deps):

(8) a. The spies knew [N-iN what] they had to steal _.
b. The spies knew of a device [N-rN the plans for which] they could steal _.

Combinations of these primitive categories and type-combining operators create complex cate-
gories which can define several subcategorization frames:

V-aN: intransitive (e.g. Pat [V-aN stayed].)
V-aN-bN: transitive (e.g. Pat [V-aN-bN described] the plan.)
V-aN-bN-bN: ditransitive (e.g. Pat [V-aN-bN-bN gave] the chief the plans.)
V-aN-bC: sentential complement (e.g. Pat [V-aN-bC thought] that it rained.)
V-aN-bC-bN: ditransitive sentential complement (e.g. Pat [V-aN-bC-bN told] us that it rained.)
V-aN-b(I-aN): subject control (e.g. Pat [V-aN-b(I-aN) decided] to leave.)
V-aN-b(L-aN): auxiliary (e.g. Pat [V-aN-b(L-aN) has] waited.)

These subcategorizations can be generalized across verb forms:

B-aN: intransitive (e.g. We let Pat [B-aN stay].)
B-aN-bN: transitive (e.g. We let Pat [B-aN-bN describe] the plan.)
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B-aN-bN-bN: ditransitive (e.g. We let Pat [B-aN-bN-bN give] the chief the plans.)
B-aN-bC: sentential complement (e.g. We let Pat [B-aN-bC think] that it rained.)
B-aN-bC-bN: ditransitive sentential complement (e.g. We let Pat [B-aN-bC-bN tell] us that it rained.)
B-aN-b(I-aN): subject control (e.g. We let Pat [B-aN-b(I-aN) decide] to leave.)

and to nominalizations:

N-aD: intransitive (e.g. We talked about Pat’s [N-aD stay].)
N-aD-bO: transitive (e.g. We talked about Pat’s [N-aD-bO description] of the plan.)
N-aD-bC: sentential complement (e.g. We talked about Pat’s [N-aD-bC thought] that it rained.)
N-aD-b(I-aN): subject control (e.g. We talked about Pat’s [N-aD-b(I-aN) decision] to leave.)

This specification of argument categories also allows marker words to be defined:

C-bV: finite complementizer (e.g. We thought [C-bV that] it rained.)
F-bI: infinitive complementizer (e.g. We waited [F-bI for] it to rain.)
E-bB: base-form complementizer (e.g. We required [E-bB that] it rain.)
O-bN: genitive marker (e.g. We got tired [O-bN of] the rain.)
D-aN: possessive marker (e.g. That was Pat [D-aN ’s] flight.)

4.3 Prediction hierarchies

Semantic associations must be formed as each lexeme is encountered during comprehension.

Hierarchic associations may form at the same time, based on recurrent transitions (Schuler, 2014).

Hierarchic transitions also hypothesized for learning hierarchic plans (making tea; Botvinick, 2007).

Left-corner parsers (Rosenkrantz and Lewis, 1970; Johnson-Laird, 1983; Resnik, 1992) assume
working memory stores a prediction hierarchy of nested contexts, starting w. most recent sign b.

Can represent as a cued-association structure p concatenated w. sequence of input words w1,w2, ..:

p ⋅ w1 ⋅ w2 ⋅ w3 ⋯ where p = (λb (f0 b)=β, (f0○fA b)=α, (f0○fB○fA b)=β′, (f0○fA○fB○fA b)=α′, . . . )

Between sentences, a parser may expect a discourse (T) to complete a discourse (T) as a default:

p ⋅ w1 ⋅w2 ⋅ w3 ⋯ where p = (λb (f0 b)=T, (f0○fA b)=T)

After the word ‘the,’ it may then expect a common noun (N-aD) to complete a noun phrase (N),
within a discourse (T) to complete a discourse (T):

p ⋅ w1 ⋅w2 ⋅ w3 ⋯ where p = (λb (f0 b)=N-aD, (f0○fA b)=N, (f0○fB○fA b)=T, (f0○fA○fB○fA b)=T)

This function can be drawn as a path from an expected syntactic node to the root, skipping se-
quences of left- and right-children:
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This may also be thought of as a sequence of nested incomplete sign fragments T/T and N/N-aD.

Left-corner parsers rarely need more than four incomplete sign fragments (Schuler et al., 2010).

4.4 Typed store functions as a shorthand for prediction hierarchies

Cued association structures for prediction hierarchies take up a lot of space:

p ⋅ w1 ⋅w2 ⋅ w3 ⋯ where p = (λb (f0 b)=N-aD, (f0○fA b)=N, (f0○fB○fA b)=T, (f0○fA○fB○fA b)=T)

Let’s shorten the syntactic specifications of prediction hierarchies using typed store functions g:

g ∶N-aD� (N�T)�T ⋅ unit ∶ω1 ⋅ unit ∶ω2 ⋅ unit ∶ω3 ⋯

This will simplify our grammatical inference rules, defined in the next section.

We base our definitions on terms from typed lambda calculus (Church, 1940):

• Typed lambda calculus is defined over base objects called ‘individuals’ or ‘entities’.

• Base objects of semantic expressions from the last lecture notes are things (stimuli sources).

• Base objects of store functions defined here are signified referential states.

• Properties p are functions from entities (e.g. signified ref. states) to truth values.

We now define the following:

• Type constants xα, xβ, ... in cued assoc. structures (properties over signs a, b, ...) are entities.

• Properties over signified ref. states x, y, ... have subtypes α, β, ..., specifying syntactic type

(types provide syntactic specifications, property functions provide semantic specifications).

• Holes h are functions from properties to properties (e.g. from N to T, above).

• Store functions g are functions from properties and holes to properties.
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Translation from store functions to cued-association structures depends on the type of the store:

T (g ∶ α
®

top sign

) = (λa (f0 a)=xα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

const for top sign

, (g (fsig a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
store fn applied at signified state of top sign

) (Base Case)

T (g ∶ β
®

expected sign

�Γ) = (λb (f0 b)=xβ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

const for expected sign

, ((T (g (λx (fsig b)=x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

property of sig state of exp sign

))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cued-assoc struct of store fn after expected sign

(fA b)
²

sign after expected sign

)) (L. Child)

T (g ∶ (α�∆)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

hole between incomplete signs

�Γ) = (λa (f0 a)=xα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

const for beginning of hole

, ((T (λh∶∆ g (λp∶α h, (p (fsig a)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

original hole

))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cued-assoc struct of store fn after beginning of hole

(fB a)
²
sign after beginning of hole

)) (R. Child)

We now represent the syntax of partial analyses as stores (and words as units with unit subtypes):

g ∶β�

hole between incomplete signs
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
(α�β′) � (α′�β′′)� . . . �α′′ ⋅ unit ∶ω1 ⋅ unit ∶ω2 ⋅ unit ∶ω3 ⋯

For example:
g ∶N-aD� (N�T)�T ⋅ unit ∶ω1 ⋅ unit ∶ω2 ⋅ unit ∶ω3 ⋯

Derivation of translation:

T(g ∶N-aD � (N � T)� T)
R.C. λb (f0 b)=N-aD, ((T (g (λx (fsig b)=x)) ∶ (N � T)� T) (fA b))

L.C. λb (f0 b)=N-aD, ((λa (f0 a)=N, ((T (λh (g (λx (fsig b)=x) (λp h, (p (fsig a)))) ∶T � T)) (fB a)))(fA b))

reduce λb (f0 b)=N-aD, (f0○fA b)=N, ((T (λh (g (λx (fsig b)=x) (λp h, (p (fsig○fA b)))) ∶T � T)) (fB○fA b))

R.C. λb (f0 b)=N-aD, (f0○fA b)=N, ((λb′ (f0 b′)=T, ((T ((λh (g (λx (fsig b)=x) (λp h, (p (fsig○fA b))))) (λx (fsig b′)=x)) ∶T) (fA b′)))(fB○fA b))

reduce λb (f0 b)=N-aD, (f0○fA b)=N, ((λb′ (f0 b′)=T, ((T (g (λx (fsig b)=x) (λp λx (fsig b′)=x, (p (fsig○fA b)))) ∶T) (fA b′)))(fB○fA b))

reduce λb (f0 b)=N-aD, (f0○fA b)=N, (f0○fB○fA b)=T, ((T (g (λx (fsig b)=x) (λp λx (fsig○fB○fA b)=x, (p (fsig○fA b)))) ∶T) (fA○fB○fA b))

B.C. λb (f0 b)=N-aD, (f0○fA b)=N, (f0○fB○fA b)=T, ((λa(f0 a)=T, (g (λx (fsig b)=x) (λp λx (fsig○fB○fA b)=x, (p (fsig○fA b))) (fsig a)) ∶T) (fA○fB○fA b))

reduce λb (f0 b)=N-aD, (f0○fA b)=N, (f0○fB○fA b)=T, (f0○fA○fB○fA b)=T, (g (λx (fsig b)=x) (λp λx (fsig○fB○fA b)=x, (p (fsig○fA b))) (fsig○fA○fB○fA b)) ∶T

This will simplify our grammatical inference rules, defined in the next section.

4.5 Left-corner parsing operations (Johnson-Laird, 1983)

Left-corner parsing uses four kinds of operations:

1. first, two possible outcomes of a fork decision – whether to use a word to expand the store:

• yes-fork – use the next word to increase the size of the store

g ∶β�Γ ⋅ w ∶ω ⋯

λh ∶ δ� β (g (h (λx true))) ∶Γ ⋯

left corner
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ

β
+

→
G
δ ...,

lexical rule
­
δ→

G
ω (+F)
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• no-fork – use the next word to match the lowest store element

g ∶β�Γ ⋅ w ∶ω ⋯

(g (λx true)) ∶Γ ⋯

match
¬
β = δ,

lexical rule
­
δ→

G
ω (−F)

graphically:

+F:

0
β

A

0
δ

B

−F:

0
β = δ

A

2. then, two possible outcomes of a join decision – whether to use a rule to reduce the store:

• yes-join – use a grammatical inference rule to decrease the size of the store

g ∶ (δ�β)�Γ ⋯

λq ∶ ε (g (λp ∶ δ λx true)) ∶Γ ⋯

match
¬
β = γ,

grammar rule
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
γ →

G
δ ε (+J)

• no-join – use a grammatical inference rule to extend the lowest store element

g ∶ (δ�β)�Γ ⋯

λq ∶ ε λh ∶ γ� β (g (λp ∶ δ h (λx true))) ∶Γ ⋯

left corner
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ

β
+

→
G
γ ...,

grammar rule
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
γ →

G
δ ε (−J)

graphically:

+J:

0
δ

0
β = γ

B

A

0
ε

A

−J:

0
δ

0
βB

A

0
ε

0
γ

A

B

8



Sample run – notice process is monotonic, nothing gets deleted, just dereferenced:
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We now generalize these operations to use (learned) inference rules r with semantic constraints:

1. fork decision, using lexical inference rule:

• yes-fork (‘shift without match’ in Johnson-Laird terms):

g ∶β�Γ ⋅ w ∶ω ⋯

(r g w) ∶ (δ�∆′)�Γ′ ⋯
r ∶

old store
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(β�Γ)�

word
©
ω �

new store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(δ�∆′)�Γ′ ∈ R, (+F)

• no-fork (‘shift with match’ in Johnson-Laird terms – (λp p) is the match):

g ∶β�Γ ⋅ w ∶ω ⋯

(r g w (λp p)) ∶Γ′ ⋯
r ∶

old store
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(β�Γ)�

word
©
ω �

new store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(β�β)�Γ′ ∈ R, (−F)

2. join decision, using grammatical inference rule:

• yes-join (‘predict with match’ in Johnson-Laird terms – (λp p) is the match):

g ∶ (δ�∆)�Γ ⋯

λq1...n ∶ ε1...n(r g q1...n (λp p)) ∶Γ′ ⋯
r ∶

old store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((δ�∆)�Γ)�

new store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ε1...n � (γ�γ)�Γ′ ∈ R, (+J)

• no-join (‘predict without match’ in Johnson-Laird terms):

g ∶ (δ�∆)�Γ ⋯

(r g) ∶ ε1...n � (γ�∆′)�Γ′ ⋯
r ∶

old store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((δ�∆)�Γ)�

new store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ε1...n � (γ�∆′)�Γ′ ∈ R, (−J)
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4.6 Lexical inference rules (Nguyen et al., 2012)

Lexical inference rules integrate word meanings into a cued association structure.

They are of type

old store
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(β�Γ) �

word
©
ω �

new store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

((

preterminal
©
δ �∆′)�Γ′).

For example, the word ‘everything’ would use following lexical inference rule:

λg ∶ β� Γ λw ∶ everything λh ∶N � β (g○h (λx ∃u (f0 u)=Every, (f1 u)=(frin x), (f2 u)=x,
∃v (f0 v)=BeingAThing, (f1 v)=(frin x))) ∶Γ ∈ R

graphically (top arrow indicates lambda input / attachment site):

x
rin

v
1

BeingAThing
0

u

1
2

Every
0

and the word ‘works’ would use the rule:

λg ∶ β� Γ λw ∶works λh ∶V-aN � β (g○h (λx (f0○frin x)=Working, (f1○frin x)=(f1′ x))) ∶Γ ∈ R

graphically (top arrow indicates lambda input / attachment site):

x
rin

Working
0

1′

1

Here, predications like Working are in restrictors. This is because they can be quantified.

For example, using ‘usually’ as a (raised) quantifier:

(9) a. I usually like rainstorms. (means I like most rainstorms.)
b. I usually like that it rains / for it to rain. (means I like most instances of it raining.)
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4.7 Grammatical inference rules (Nguyen et al., 2012)

Grammatical inference rules integrate compositional meaning into a cued association structure:

1. ‘Binary’ inference rules build signs of type γ from left and right children of type δ and ε.

These rules are of type

old store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

((

l. child
©
δ �∆)�Γ) �

new store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(

r. child
©
ε1 � ...� εn � (

parent
©
γ �∆′)�Γ′).

2. ‘Unary’ inference rules build signs of type δ′ from single chidren of type δ.

These rules are of type

old store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

((

child
©
δ �∆)�Γ) �

new store
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

((

parent
©
δ′ �∆′)�Γ′).

Lexical inference rules may combine with one or more unary rules:

for

lexical inference rule
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
r ∶ (β�Γ)�ω� (δ�∆)�Γ′,

unary rule
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
r′ ∶ ((δ�∆)�Γ′)� (δ′�∆′)�Γ′′ ∈ R,

λg ∶ β� Γ r′ ○ (r g) ∶ω� (δ′�∆′)�γ′′ ∈ R (1)

Grammatical inference rules may also combine with one or more unary rules:

for

grammatical inference rule
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
r ∶ ((δ�∆)�Γ)� ε1 � ...� εn � (γ�∆′)�Γ′,

unary rule
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
r′ ∶ ((γ�∆′)�Γ′)� (γ′�∆′′)�Γ′′ ∈ R,

λg ∶ (δ� ∆)� Γ r′ ○ (r g) ∶ ε1 � ...� εn � (γ′�∆′′)�Γ′′ ∈ R (2)

Below is a set of grammatical inference rules for English . . .

4.7.1 Discourse attachment (binary)

First, we introduce a naive discourse attachment rule to apply at the end of each sentence:

λg ∶ (δ� T)� T λq ∶T λh ∶T � T (g (λp h (λy ∃x (p x), (q y)))) ∶Γ ∈ R (D)

Graphically:
D:

0
T

0
T

0
δ

sig sig

sig

This doesn’t connect anything in the sentence to anything outside the sentence.

(Other discourse connectives are possible, and desirable.)
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4.7.2 Argument attachment (binary)

Add rules to attach one sign as the nth argument of another using a cued association labeled n′:

λg ∶ (γψ1..` � ∆)� Γ λq ∶ τϕ1..n−1-aγψ`+1..m λh ∶ τϕ1..n−1ψ1..m � ∆

(g (λp h (λy ∃x (p x), (q y), x=(fn′ y)))) ∶Γ ∈ R (Aa)
λg ∶ (τϕ1..n−1-bγψ1..` � ∆)� Γ λq ∶ γψ`+1..m λh ∶ τϕ1..n−1ψ1..m � ∆

(g (λp h (λx ∃y (p x), (q y), (fn′ x)=y))) ∶Γ ∈ R (Ab)

Graphically:

Aa:
0

τϕ1..n−1ψ1..m

0
τϕ1..n−1-aγψ`+1..m

0
γψ1..`

sig sig
n′

sig

Ab:
0

τϕ1..n−1ψ1..m

0
γψ`+1..m

0
τϕ1..n−1-bγψ1..`

sig sig
n′

sig

For example, a parse of the sentence ‘Everything works:’

λq,x0 (q x0) ∶T � T unit ∶ everything +F
λh,x0 h (λx1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1)) ∶ (N � T)� T −JAa
λq,h,x0 h (λx2 ∃x1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(q x2), (f1′ x2)=x1) ∶V-aN � (S � T)� T unit ∶works

−F
λh,x0 h (λx2 ∃x1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=Working, (f1 (frin x2))=x1, (f1′ x2)=x1) ∶ (S � T)� T +JD

λq,x0 ∃x1,x2∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=Working, (f1 (frin x2))=x1, (f1′ x2)=x1, (q x0)) ∶T � T

Graphical representation of resulting cued association structure:
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0
T

. . . 0
T

0
S

0
N

sig

rin1

BeingAThing

0
1 2

Every

0

0
V-aN

sig
sig1’

rin
1

Working

0

0
T

t=0
+F

t=0.5
−JAa
t=1

−F
t=1.5

+JD
t=2

4.7.3 Auxiliary attachment (binary)

This model also allows attachment of arguments that keeps the argument in attentional focus:

λg ∶ (γψ1..` � ∆)� Γ λq ∶ τϕ1..n−1-aγψ`+1..m λh ∶ τϕ1..n−1ψ1..m � ∆

(g (λp h (λx ∃y (p x), (q y), x=(fn′ y)))) ∶Γ ∈ R (Ua)
λg ∶ (τϕ1..n−1-bγψ1..` � ∆)� Γ λq ∶ γψ`+1..m λh ∶ τϕ1..n−1ψ1..m � ∆

(g (λp h (λy ∃x (p x), (q y), (fn′ x)=y))) ∶Γ ∈ R (Ub)

Graphically:

Ua:
0

τϕ1..n−1ψ1..m

0
τϕ1..n−1-aγψ`+1..m

0
γψ1..`

sig sig
n′

sig

Ub:
0

τϕ1..n−1ψ1..m

0
γψ`+1..m

0
τϕ1..n−1-bγψ1..`

sig sig
n′

sig

For example, with the following lexical inference rules for ‘is’ and ‘here’:
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a)

rin

BeingNow
0

1′
2′

1′

1

b)
x

rin

BeingHere
0

1′

1

For example, a parse of the sentence ‘Everything is here,’:

λq,x0 (q x0) ∶T � T unit ∶ everything +F
λh,x0 h (λx1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1)) ∶ (N � T)� T −JAa
λq,h,x0 h (λx2 ∃x1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(q x2), (f1′ x2)=x1) ∶V-aN � (S � T)� T unit ∶ is

+F
λh,x0 h (λx2 ∃x1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingNow, (f1 (frin x2))=(f2′ x2),
(f1′ x2)=x1, (f1′ (f2′ x2))=x1) ∶ (V-aN-b(A-aN) � V-aN)� (S � T)� T +JUb

λq,h,x0 h (λx3 ∃x1,x2∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,
∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingNow, (f1 (frin x2))=(f2′ x2)=x3,
(f1′ x2)=x1, (f1′ (f2′ x2))=x1, (q x3)) ∶A-aN � (S � T)� T unit ∶here

−F
λh,x0 h (λx3 ∃x1,x2∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingNow, (f1 (frin x2))=(f2′ x2)=x3,
(f0 (frin x3))=BeingHere, (f1 (frin x3))=x1,
(f1′ x2)=x1, (f1′ (f2′ x2))=x1) ∶ (S � T)� T +JD

λq,x0 ∃x1,x2,x3∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,
∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingNow, (f1 (frin x2))=(f2′ x2)=x3,
(f0 (frin x3))=BeingHere, (f1 (frin x3))=x1,
(f1′ x2)=x1, (f1′ (f2′ x2))=x1, (q x0)) ∶T � T

Graphical representation of resulting cued association structure:
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0
T

. . . 0
T

0
S

0
N

sig

rin1

BeingAThing

0
12

Every

0

0
V-aN

0
V-aN-b(A-aN)

B

sig1′

rin

BeingNow

0

0
A-aN

sig

1′
2′

1

sig

sig

rin

1
BeingHere

0

0
T

t=0
+F

t=0.5
−JAa
t=1

+F
t=1.5

+JUb
t=2

−F
t=2.5

+JD
t=3

(This rule is also used for quantifiers.)

4.7.4 Modifier attachment (binary)

This model also allows attachment of modifiers:

λg ∶ (τ-aυψ1..` � ∆)� Γ λq ∶ γψ`+1..m λh ∶ γψ1..m � ∆

(g (λp h (λy ∃x (p x), (q y), (f1′ x)=(frin y)))) ∶Γ ∈ R (Ma)
λg ∶ (γψ1..` � ∆)� Γ λq ∶ τ-aυψ`+1..m λh ∶ γψ1..m � ∆

(g (λp h (λx ∃y (p x), (q y), (frin x)=(f1′ y)))) ∶Γ ∈ R (Mb)

Graphically:

Ma:
0
γψ1..m

0
γψ`+1..m

0
τ-aυψ1..`

sig sig

rin

n′

sig

Mb:
0
γψ1..m

0
τ-aυψ`+1..m

0
γψ1..`

sig

rin

sign′

sig

For example, a parse of the sentence ‘Everything here works’:
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λq,x0 (q x0) ∶T � T unit ∶ everything +F
λh,x0 h (λx1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1)) ∶ (N � T)� T −JMb
λq,h,x0 h (λx2 ∃x1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(q x2), (f1′ x2)=(frin x1)) ∶A-aN � (S � T)� T unit ∶here

−F
λh,x0 h (λx1 ∃x2∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1)) ∶ (S � T)� T −JAa

λq,h,x0 h (λx3 ∃x1,x2∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,
∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1),
(q x3), (f1′ x3)=x1) ∶V-aN � (S � T)� T unit ∶works

−F
λh,x0 h (λx3 ∃x1,x2∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1),
(f0 (frin x3))=Working, (f1 (frin x3))=(f1′ x3)=x1) ∶ (S � T)� T +JD

λq,x0 ∃x1,x2,x3∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,
∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1),
(f0 (frin x3))=Working, (f1 (frin x3))=(f1′ x3)=x1, (q x0)) ∶T � T

Graphical representation of resulting cued association structure:

0
T

. . . 0
T

0
S

0
N

0
N

sig
sig

rin1

BeingAThing

0
12

Every

0

0
A-aN

sig
1′

rin

1

BeingHere

0

0
V-aN

sig1′ sig

sig

rin

1
Working

0

0
T

t=0
+F

t=0.5
−JMb
t=1

−F
t=1.5

−JAa
t=2

−F
t=2.5

+JD
t=3

This special set of modifier rules allows post-copular predicatives:

(10) a. A gear failure was [A-aN similar to this].
b. A gear failure was [A-aN in the pump].
c. A gear failure was [A-aN slowing the pump].
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to also be used as post-nominal modifiers:

(11) a. A gear failure [A-aN similar to this] was reported.
b. A gear failure [A-aN in the pump] was reported.
c. A gear failure [A-aN slowing the pump] was reported.

and, in a similar context, as post-verbal modifiers:

(12) a. A gear failed [R-aN similarly to this].
b. A gear failed [R-aN in the pump].
c. A gear failed [R-aN slowing the pump].

4.7.5 Conjunct attachment (binary)

This model also allows attachment of left, middle, and right conjuncts:

λg ∶ (τϕ1..n � ∆)� Γ λq ∶ γ-cτϕ1..n λh ∶ γ� ∆ (g (λp h (λy ∃x (p x), (q y),
(f1′ x)=(f1′ y), ..., (fn′ x)=(fn′ y), (fcin x)=y, (fcin○frin x)=(frin y)))) ∶Γ ∈ R (Ca)

λg ∶ (τϕ1..n � ∆)� Γ λq ∶ γ-cτϕ1..n λh ∶ γ-cτϕ1..n � ∆ (g (λp h (λy ∃x (p x), (q y),
(f1′ x)=(f1′ y), ..., (fn′ x)=(fn′ y), (fcin x)=y, (fcin○frin x)=(frin y)))) ∶Γ ∈ R (Cb)

λg ∶ (γ-dτϕ1..n � ∆)� Γ λq ∶ τϕ1..n λh ∶ γ� ∆ (g (λp h (λx ∃y (p x), (q y),
(f1′ x)=(f1′ y), ..., (fn′ x)=(fn′ y), x=(fcin y), (frin x)=(fcin○frin y)))) ∶Γ ∈ R (Cc)

Graphically:

Ca:
0
γ

0
γ-cτϕ1..n

0
τϕ1..n

rin

sig

1′
sig

rin
cin cin

1′

sig

Cb:
0

γ-cτϕ1..n

0
γ-cτϕ1..n

0
τϕ1..n

rin

sig

1′
sig

rin
cin cin

1′

sig

Cc:
0
γ

0
τϕ1..n

0
γ-dτϕ1..n

rin

sig

1′
sig

rin
cin cin

1′

sig

Example: ‘Everything starts, runs and stops.’
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0
T

0
T

0
T

0
S

0
V-aN

0
V-aN-c(V-aN)

0
V-aN-c(V-aN)

0
V-aN

0
V-aN-c(V-aN)-d(V-aN)

0
V-aN

0
V-aN

0
N

. . .

t=0

sig

rin1

BeingAThing

0
1 2

Every

0

+F
t=0.5

sig
sig

1′

−JAa

t=1

sig

rin

Starting

0

+F
t=1.5

rin

cin
1

cin

1′

sig

+JCa

t=2

sig

rin

Running

0

+F
t=2.5

cin1 cin

1′ sig

+JCb

t=3

sig

1

+F
t=3.5

sig

rin
cin

1

cin

1′

+JCc

t=4

Stopping

0

−F
t=4.5

+JD

t=5

Example: ‘Everything and everyone works.’

rin rin rin rin

work

0

1

thing

0

1

one
0

1
2

every
0

1
2

every
0

cin cin cin cin

1′

1

4.7.6 Gap-filler attachment (binary)

This model also allows attachment of gap fillers, creating non-local dependencies:

λg ∶ (δψ1..m � ∆)� Γ λq ∶ γ-gδ λq′ ∶ -gδ λh ∶ γψ1..m � ∆ (g (λp h (λy ∃x (p x), (q y), (q′ x)))) ∶Γ ∈ R (G)
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G:
0
γψ1..m

0
γ-gδ

0
δψ1..m

0
-gδ

sig sigsigsig

A

4.7.7 Non-local dependency removal (unary)

Non-local dependencies can be re-used, so we will need a separate rule to clean them up

(learned to apply only if dependency no longer occurs in store: ψ /∈ α, β, α′, β′, . . . ).

λg ∶ (α� β)� (α′ � β′)� ...�ψs � Γ λh ∶α� β, h′ ∶α′ � β′, ... (g h h′ . . . (λz true)) ∶Γ ∈ R (N)

4.7.8 Extraction (unary)

Non-local dependencies can then be used as arguments or modifiers:

λg ∶ (τϕ1..n � ∆)� ...�ψ� Γ λh ∶ τϕ1..n−1ψ� ∆ . . . λq′∶ψ

∃y (g (λp h (λx (p x), (fn′ x)=y)) . . . (λz (q′ z), (fein y)=z)) ∶Γ ∈ R (Ea)
λg ∶ (τϕ1..n � ∆)� ...�ψ� Γ λh ∶ τϕ1..n−1ψ� ∆ . . . λq′∶ψ

∃y (g (λp h (λx (p x), (rrin x)=(f1′ y))) . . . (λz (q′ z), (fein y)=z)) ∶Γ ∈ R (Eb)

Ea:

0
τϕ1..n−1ψ

0
τϕ1..n

0
ψs

(A∣B)+

sig
sig

n′

sig

ein

Eb:

0
αψ

0
α

0
ψs

(A∣B)+

sig
sig

rin

1′

sig

ein

For example:
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λq,x0 (q x0) ∶T � T unit ∶ everything
+F

λh,x0 h (λx1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,
∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1)) ∶ (N � T)� T

−JMb
λq,h,x0 h (λx2 ∃x1∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(q x2), (f1′ x2)=(frin x1)) ∶A-aN � (S � T)� T unit ∶here

−F
λh,x0 h (λx1 ∃x2∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1)) ∶ (S � T)� T

−JG
λq,h,x0 h (λx3 ∃x1 ,x2∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1),
(q x3)) ∶S-gN � -gN � (S � T)� T unit ∶ someone

+F
λh,x0 h (λx3 ∃x1 ,x2∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1),
∃u3 (f0 u3)=Some, (f1 u3)=(frin x3), (f2 u1)=x3,
∃v3 (f0 v3)=BeingAOne, (f1 v3)=(frin x3)) ∶ (N � S − gN)� -gN � (S � T)� T

+JAa
λh,x0 h (λx4 ∃x1 ,x2 ,x3∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1),
∃u3 (f0 u3)=Some, (f1 u3)=(frin x3), (f2 u1)=x3,
∃v3 (f0 v3)=BeingAOne, (f1 v3)=(frin x3),
(q x4), (f1′ x4)=x3) ∶V − aN − gN � -gN � (S � T)� T unit ∶ likes

−FEa,N
λh,x0 h (λx4 ∃x1 ,x2 ,x3∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1),
∃u3 (f0 u3)=Some, (f1 u3)=(frin x3), (f2 u1)=x3,
∃v3 (f0 v3)=BeingAOne, (f1 v3)=(frin x3),
(f0 (frin x4))=Liking, (f1 (frin x4))=(f1′ x4)=x3, (f2 (frin x4))=(f2′ x4),
(fein (f2′ x4))=x1) ∶ (S � T)� T

+JD
λh,x0 h (λx4 ∃x1 ,x2 ,x3 ,x4∃u1 (f0 u1)=Every, (f1 u1)=(frin x1), (f2 u1)=x1,

∃v1 (f0 v1)=BeingAThing, (f1 v1)=(frin x1),
(f0 (frin x2))=BeingHere, (f1 (frin x2))=(f1′ x2)=(frin x1),
∃u3 (f0 u3)=Some, (f1 u3)=(frin x3), (f2 u1)=x3,
∃v3 (f0 v3)=BeingAOne, (f1 v3)=(frin x3),
(f0 (frin x4))=Liking, (f1 (frin x4))=(f1′ x4)=x3, (f2 (frin x4))=(f2′ x4),
(fein (f2′ x4))=x1) ∶T � T

Graphical representation:
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0
T

. . . 0
T

0
S

0
N

0
N

sig
sig

rin1

BeingAThing

0
12

Every

0

0
A-aN

sig
1′

rin

1

BeingHere

0

0
-gN

sig
0
S-gN

0
N

0
V-aN-gN

sig

rin1

BeingAOne

0
12

Some

0

sigsig

sig sig
1′

rin
1

2′

2

ein

Liking

0

0
T

t=0
+F

t=0.5
−JMb
t=1

−F
t=1.5

−JG
t=2

+F
t=2.5

+JAa
t=3

−FEa,N
t=3.5

+JD
t=4

We need additional extraction rules that introduce nonlocal dependencies for arguments (Ec), mod-
ifiers (Ed), and modificands of nested nonlocal dependencies (Ee):

λg ∶ (τϕ1..n � β)� Γ λh ∶ τϕ1..n−1ψ� β λq′ ∶ψ (g (λp h (λx ∃y (p x), (q′ (fein y)), (fn′ x)=y))) ∶Γ ∈ R (Ec)
λg ∶ (α� β)� Γ λh ∶αψ� β λq′ ∶ψ (g (λp h (λx ∃y (p x), (q′ (fein y)), (frin x)=(f1′ y)))) ∶Γ ∈ R (Ed)
λg ∶ (α� β)� Γ λh ∶αψ� β λq′ ∶ψ (g (λp h (λx (p x), (q′ (fein x))))) ∶Γ ∈ R (Ee)

Ec:

0
τϕ1..n−1ψ

0
τϕ1..n

0
ψ

sig
sig

B

n′

sig

ein

Ed:

0
αψ

0
α

0
ψ

sig
sig

B

rin

1′

sig

ein
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Ee:

0
αψ

0
α

0
ψ

sig
sig

B

sig

ein

4.7.9 Heavy-shift / extraposition attachment (binary)

We need to extrapose or heavy-shift arguments and modifiers, or modificands for nested nonlocal
dependencies,

For example, constraints of predicates are applied to the nuclear scope sets of extraposed or heavy-
shifted arguments:

(13) The spy [V-aN-hO [V-aN-hO [V-aN-bN stole] [N-hO a plan]] yesterday] [O of every new jet].

but constraints of extraposed relative clauses and adverbial comparatives are applied to the restric-
tor sets of modificands:

(14) a. [V-h(C-rN) [N-h(C-rN) Everything _] stops] [C-rN that _ starts].
b. [N-h(Cthan-g(A-aN)) Every [A-aN-h(Cthan-g(A-aN)) taller _] house] [Cthan-g(A-aN) than my house is

wide] is gone.

Rules:

λg ∶ (γ-hδ� -hδ� ∆)� Γ λq ∶ ε λh ∶ γ� ∆

(g (λp λq′ h (λx ∃y (p x), (q y), (q′ y)))) ∶Γ ∈ R (Ha)
λg ∶ (γ-h(δψ)� -h(δψ)� ∆)� Γ λq ∶ ε λq′′ ∶ψ λh ∶ γ� ∆

(g (λp λq′ h (λx ∃y ∃z (p x), (q y), (q′ z), (q′′ (frin z))))) ∶Γ ∈ R (Hb)

Ha:

0
γ

0
δ

0
γ-hδ

0
-hδ

sig sig

B

sig

sig

Hb:

0
γ

0
δψ

0
γ-h(δψ)

0
-h(δψ)

0
ψ

sig sig

B

sig

A

rin

sig sig
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Example: ‘Everything stops that starts.’

0
T

0
T

0
T

0
S

0
C-rN

0
V-rN

0
C-bV

0
S-h(C-rN)

0
V-aN

0
N-h(C-rN)

. . .

0
-h(C-rN)

0
-rN

t=0

sig

rin1

BeingAThing

0
1 2

Every

0

sig

+FEe

t=0.5

sig
sig

1′

−JAa

t=1

rin
1

Stopping

0

−F
t=1.5

sig

sig

−JHb

t=2
+F

t=2.5

sig
sig

+JUa

t=3

1′

rin

1
Starting

0

−FEa,N

t=3.5
+JD

t=3

4.7.10 Interrogative clause attachment (binary)

We need to support arguments that become non-local dependencies.

This rule supports analyses for embedded questions, tough constructions, and free relatives:

(15) a. We [V-aN-b(V-iN) wonder] [V-iN [N-iN which pump] [V-gN Kim checked]].
b. Those pumps are [A-aN [A-aN-b(I-aN-gN) easy] [I-aN-gN to check]].
c. [N [N-b(V-gN) What] [V-gN Kim checked]] was the pump.

λg ∶ (τϕ1..n−1-b(γ-iδ)ψ1..m � ∆)� Γ λq ∶ γ-iδ λq′ ∶ -iδs λh ∶ τϕ1..n−1ψ1..m � ∆

(g (λp h (λx ∃y (p x), (q y), (q′ (fn′ x)))) ∶Γ ∈ R (I)
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I:

0
τϕ1..n−1ψ1..m

0
γ-iδ

0
τϕ1..n−1-b(γ-iδ)ψ1..m

0
-iδ

sig sig
sig

A

sig
n′

4.7.11 Type-change (unary)

We need type-changing rules to support bare relatives, that relatives, and full relatives:

(16) a. Something [C-rN [V-gN everyone likes]] is here.
b. Something [C-rN [C-gN that everyone likes]] is here.
c. Something [C-rN [V-rN which everyone likes]] is here.

English seems to allow categories for restrictive relative clauses to be conjoined, which suggests
that they belong to the same type:

(17) Every plan [C-rN [C-rN that the board approves] and [C-rN which is on the list]] is usable.

However, restrictive relative clauses cannot be conjoined with modifiers, suggesting a different
type:

(18) * Every plan [? [C-rN that the board approves] and [A-aN on the list]] is usable.

These rules also allow sentence types to be converted:

(19) a. [S [V We are here]].
b. [S [Q Are we here]]?
c. [S [Q-iN Where are we]]?
d. [S [B-aN Come here]]!

Rules:

λg ∶ (τϕ1..nψ1..m � ∆)� ...� (...�ψm � ...)� ...� (...�ψ1 � ...)� Γ

g ∶ (τ′ϕ′1..nψ
′

1..m �∆)� . . . � (...�ψ′m � ...)� . . . � (...�ψ′1 � ...)�Γ ∈ R (T)

Graphically:
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T:
0

τ′ϕ′1..nψ
′

1..m

0
τϕ1..nψ1..m

sig

...

...

sig

4.7.12 Relative clause attachment (binary)

This analysis also generalizes several forms of pied piping of relative pronoun dependencies
through argument and modifier compositions:

(20) That’s the person [N-rN a story [A-aN-rN about [N-rN [D-rN whose] life]]] was in the paper.

including those introducing quantifiers over the referent of a relative pronoun:

(21) There were ten pumps [N-rN half of which] were damaged.

Rules:

λg ∶ (γ� ∆)� Γ λq ∶ δ-rε λq′ ∶ -rε λh ∶ γ� ∆ (g (λp h (λx ∃y (p x), (q y), (q′ x)))) ∶Γ ∈ R (R)

Graphically:
R:

0
γ

0
δ-rε

0
γ

0
-rε

sig sig
sig

A

sig

Restrictive and non-restrictive relative clauses can be distinguished lexically:

λg ∶∆ � (α′ � ∆′)� (α′′ � ∆′′)� ...� -rN � Γ λw ∶which λh ∶N-rN � ∆, h′ ∶α′ � ∆′, h′′ ∶α′′ � ∆′′, ...

∃y (g (h (λx (fein○frin x)=y))h′ h′′ . . . (λz (frin z)=y)) ∶Γ ∈ R
λg ∶∆ � (α′ � ∆′)� (α′′ � ∆′′)� ...� -rN � Γ λw ∶which λh ∶N-rN � ∆, h′ ∶α′ � ∆′, h′′ ∶α′′ � ∆′′, ...

∃y (g (h (λx (fein○frin x)=y))h′ h′′ . . . (λz z=y)) ∶Γ ∈ R

or using a type-changing rule:

λg ∶ (V-gN � ∆)� (α′ � ∆′)� (α′′ � ∆′′)� ...� -gN � Γ λh ∶C-rN � ∆, h′ ∶α′ � ∆′, h′′ ∶α′′ � ∆′′, ..., q′∶-rN

(g (λp (h (λx (p x))))h′ h′′ . . . (λz ∃y(q′ y), (frin y)=z)) ∶Γ ∈ R
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4.7.13 Subject-auxiliary inversion (unary)

We need rules to support subject-auxiliary inverted questions.

Subject-auxiliary inversion can also occur in declarative contexts:

(22) There/here/somewhere [V-g(A-aN) [Q-g(A-aN) are two pumps]].

Rules:

λg ∶ (γϕ1ϕ2ψ1..m � ∆)� Γ λh ∶ γϕ2ϕ1ψ1..m � ∆

(g (λp h (λy ∃x (p x), (f2′ x)=(f1′ y), (f1′ x)=(f2′ y), (fein y)=x))) ∶Γ ∈ R (Q)

Graphically:

Q:
0

γϕ2ϕ1ψ1..m

0
γϕ1ϕ2ψ1..m

sig
1′

sig
2′2′ 1′

ein

4.7.14 Passive attachment (unary)

We also need rules for passives:

λg ∶ (L-aN-vN � -vN � ∆)� Γ λh ∶A-aN � ∆

(g (λp λq′ h (λy ∃x (p x), (fein y)=x, (q′ (f1′ y))))) ∶Γ ∈ R (V)

V:
0

A-aN

0
L-aN-vN

0
-vN

B

sig
sig

ein

1′

sig
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4.7.15 Zero-head introduction (unary)

Finally, we need some rules to fill in empty heads.

This supports analyses of predicative noun phrases and time noun phrases:

(23) a. We considered the plan [A-aN [N a good suggestion]].
b. We traveled [R-aN [N the week before we moved]].

Rules:

λg ∶ (N � ∆)� Γ λh ∶A-aN � ∆ (g (λp h (λy ∃x (p x), (f1′ y)=(frin x)))) ∶Γ ∈ R (Za)
λg ∶ (N � ∆)� Γ λh ∶ τ-aυ� ∆ (g (λp h (λy ∃x (p x),

(f0○frin y)=BeingDuring, (f1○frin y)=(f1′ y), (f2○frin y)=x))) ∶Γ ∈ R (Zb)

Graphically:

Za:
0

A-aN

0
N

sig

rin

sig

1′

Zb:
0
τ-aυ

0
N

sig
sig

rin

BeingDuring

01
2

1′

References
Ajdukiewicz, K. (1935). Die syntaktische konnexitat. In McCall, S., editor, Polish Logic 1920-

1939, pages 207–231. Oxford University Press. Translated from Studia Philosophica 1: 1–27.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description. Language, 29:47–58.

Botvinick, M. (2007). Multilevel structure in behavior and in the brain: a computational model
of Fuster’s hierarchy. Philosophical Transactions of the Royal Society, Series B: Biological
Sciences, 362:1615–1626.

Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56–68.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference,
and consciousness. Harvard University Press, Cambridge, MA, USA.

27



Nguyen, L., van Schijndel, M., and Schuler, W. (2012). Accurate unbounded dependency recovery
using generalized categorial grammars. In Proceedings of the 24th International Conference on
Computational Linguistics (COLING ’12), pages 2125–2140, Mumbai, India.

Oehrle, R. T. (1994). Term-labeled categorial type systems. Linguistics and Philosophy,
17(6):633–678.

Resnik, P. (1992). Left-corner parsing and psychological plausibility. In Proceedings of COLING,
pages 191–197, Nantes, France.

Rosenkrantz, S. J. and Lewis, II, P. M. (1970). Deterministic left corner parser. In IEEE Conference
Record of the 11th Annual Symposium on Switching and Automata, pages 139–152.

Saussure, F. d. (1916). Cours de Linguistique Générale. Payot.

Schuler, W. (2014). Sentence processing in a vectorial model of working memory. In Fifth Annual
Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2014).

Schuler, W., AbdelRahman, S., Miller, T., and Schwartz, L. (2010). Broad-coverage incremental
parsing using human-like memory constraints. Computational Linguistics, 36(1):1–30.

28


	Typed signs
	Syntactic types for English (Nguyen et al., 2012)
	Prediction hierarchies
	Typed store functions as a shorthand for prediction hierarchies
	Left-corner parsing operations (Johnson-Laird, 1983)
	Lexical inference rules (Nguyen et al., 2012)
	Grammatical inference rules (Nguyen et al., 2012)
	Discourse attachment (binary)
	Argument attachment (binary)
	Auxiliary attachment (binary)
	Modifier attachment (binary)
	Conjunct attachment (binary)
	Gap-filler attachment (binary)
	Non-local dependency removal (unary)
	Extraction (unary)
	Heavy-shift / extraposition attachment (binary)
	Interrogative clause attachment (binary)
	Type-change (unary)
	Relative clause attachment (binary)
	Subject-auxiliary inversion (unary)
	Passive attachment (unary)
	Zero-head introduction (unary)


