THE OHIo STATE UNIVERSITY

Modelblocks

Repository documentation

Last updated: February 23, 2017

Contents

1 Overview 3
2 Repository Policy 5
3 Terms 6
4 RESOURCE-LINETREES 7
4.1 %.linetoks 7
4.1.1 Recipe: %.1inetoks L L L 7

4.1.2 Recipe: %.morph.linetoks 7

4.1.3 Recipe: %.rev.linetoks oo 8

42 %.linetrees i i i e e e 8
4.2.1 Recipe: %.1linetrees i e e 8

4.22 Recipe: %.first.linetrees Lo 9

423 Recipe: %.last.linetrees 9

4.2.4 Recipe: %.onward.linetrees 9

4.2.5 Recipe: %.maxwords.linetrees 9

4.2.6 Recipe: %.nolabel.linetrees 10

4277 Recipe: %.nopunc.linetrees 10

4.2.8 Recipe: %.fromdeps.linetrees 10

43 %.lineitems 10
4.3.1 Recipe: %.1lineitems e 10

4.4 %.conll. 11
44.1 Recipe: %.conll 11

45 %.tokdeps e e 11
4.5.1 Recipe: %.tokdeps 11

4.6 %.syneval e e 11
4.6.1 Recipe: %.syneval e 11

477 %.bootstrapsignif. 12
4.7.1 Recipe: %.bootstrapsignif oL 12

48 %(.d).constiteval.txXt e 12
4.8.1 Recipe: %(.d.)constiteval.txt 12

4.8.2 Recipe: %.constiteval.txt 13

49 %.constitevaltable.txt 13

4.9.1 Recipe: %.constitevaltable.txt
4,10 %.1learning_CUTrVeS v v i v it e e e e e e e e
4.10.1 Recipe: %.learning_curves
RESOURCE-LCPARSE
5.1 %.linedeps e e
5.2 %.tokdecs e e
5.2.1 Recipe: %.fromlinetrees.tokdecs
5.3 %.decpars e e
5.3.1 Recipe: %.cpt.decpars. e
5.3.2 Recipe: %.mlr.decpars. e
54 %.parweightsfiles
5.4.1 Recipe: %.cpt.parweights
54.2 Recipe: %.mlr.parweights,
RESOURCE-RT
6.1 %.tokmeasures e e e e e
6.2 %.1itemmeasures v i i i e e e e e e e
6.2.1 Recipe: %.1temmeasures v v vt e e
6.3 %.€VIMEASULES . . . « v v v i e it e e e e e e e e e e
6.3.1 Recipe: %.evmeasures
RESOURCE-LMEFIT
7.1 %.rdatafiles e
7.2 %.1lmefitfiles
73 %.lrtsigniffiles
7.3.1 %.diamond.lrtsigniffiles

14
14
14
15
15
15
15
16
16
16

18
18
18
19
19
19

Chapter 1

Overview

Modelblocks is a collection of recipes related to cognitive modeling of sentence processing.

It is implemented as a set of directories containing Makefiles, consisting of:

e a config directory (‘config’) which contains a set of ‘user-*-directory.txt’ files
(these files contain locations of external code or data not part of Modelblocks);

e a set of resource directories, prefixed with ‘resource-’
(recipes and code in these directories are designed to be reusable); and

e aset of project directories (those not prefixed with ‘resource-’, other than ‘config’)
(recipes and code in these directories are designed to perform a single experiment).

Each resource or project directory contains a ‘Makefile’ file, containing its relevant recipes.

Resource and project directories also contain scripts, code, and curated data used in their recipes.

Makefiles in project directories usually begin with a default item, which replicates the main result
of the project, followed by a colon, e.g.:

default item: the main product of this directory...
genmodel /wsj02to021.gcgl5.linetrees:

This allows the main result of the project to be replicated by moving to that directory and typing:
make
Project Makefiles then contain a preamble, consisting of some useful make commands:

preamble. ..
.SUFFIXES:
.SECONDEXPANSION:

followed by a list of defined subdirectories which included files will make use of:

directories used by included items...
BIN := bin
GENMODEL := genmodel

Project Makefiles can then inherit recipes from resource directories:

included make items...
include $(dir $(CURDIR))resource-general/Makefile

Resource directories cannot include other resource directories because of limitations in the GNU
make include command.

Please note that because Modelblocks primarily uses GNU Make to automate the code in exper-
iments, dependencies to targets are created before the targets themselves. Thus, even though the
recipes below are presented in API format with inputs and outputs, you do not need to make the
inputs before making an output target. It should be sufficient to just type

make <stem>.<extension>

from the relevant directory to produce an output — make will handle the rest. For that reason,
generally the most important information in the following entries is the “Stem template” field,
which explains how to write and delimit parameters to targets so that they can be successfully
made.

Generally, targets with extensions like ‘widgetgadgets’ will be formatted as plain-text matrices
with rows for ‘widgets’ (delimited by newlines) and columns for ‘gadgets’ (delimited by spaces).

E.g. ‘tokdecs’ files are formatted as matrices with a row for each ‘tok(en)’ (delimited by newlines)
and a column for each ‘dec(ision)’ (delimited by spaces).

Chapter 2

Repository Policy

Modelblocks has a local OSU git repository, which 1ing.osu. edu account holders can access with:
git clone ssh://<username>@ling.osu.edu/home/compling/modelblocks-repository
Here are a few guidelines about repository etiquette within this project:

1. VERY IMPORTANT: Do not push any code or data that is available elsewhere, especially if
the license is not open-source! If you do, someone will have to purge the comp ling copy of
the repo and ask all users to delete their local repos!

This should instead be handled using ‘config/user-*-directory.txt’ pointer files.
2. Only add project or resource directories to the repo that are likely to be useful to other people.
Course projects, etc., can be maintained in private repos within your modelblocks directory.

3. Only create resource directories for recipes that are shared by more than one project.

Chapter 3

Terms

Modelblocks assumes the following definitions of terms:

e ‘line’: a sentence, title, or caption, which is syntactically independent of its neighbors.
(e.g. ‘April in Poetry’)

e ‘token’ (‘tok’): an (arbitrary) elementary unit of syntactic annotation (may not be a word).
(e.g. ‘they’, ‘do’, ‘n’t’, ‘?°)

e ‘item’: a word as delimited in a source corpus.!
(e.g. ‘they’, ‘don’t?’)

e ‘decision’ (‘dec’): an elementary unit of (processing) activity, as defined in annotated corpora.
(e.g. a decision to fork at token 3)

e ‘parameter’ (‘par’): the predictors and result of a decision according to a model.
(e.g. 'F 2 VP : 17)

e ‘event’ (‘ev’): an elementary unit of stimulus in human subject data (i.e. regression targets).

(e.g. exposure of subject 3 to region 22 of the stimulus)

'In some cases, parser input may need be tokenized more finely than the experimental stimuli are (e.g. splitting out
punctuation and contractions). In these cases, the ‘token’/‘item’ distinction becomes important. Tokens are always
nested inside items.

Chapter 4

RESOURCE-LINETREES

RESOURCE-LINETREES contains methods for generating and manipulating syntactic annotations
and evaluating parser accuracy.

41 %.linetoks

Extracts word sequences from an input %.linetrees file (i.e. deletes structure from a phrase-
structure tree).

File format:

Specification:

9

(row) — ((loken) (¢’ (token))*)
Example:

The cat did n’t sleep .

4.1.1 Recipe: %.1linetoks
Extracts word sequences from input trees.

Stem template:
(corpus-specification) ‘.1linetoks’

Input(s):
(corpus-specification) ‘.linetrees’
4.1.2 Recipe: %.morph.linetoks
Uses Morfessor to segment input %. 1inetoks.

Stem template:
(corpus-specification) ‘.morph.linetoks’

Input(s):

(corpus-specification) ‘.1linetoks’
4.1.3 Recipe: %.rev.linetoks
Reverses input %. linetoks.
Stem template: (corpus-specification) ‘.rev.linetoks’
Input(s):

(corpus-specification) ‘.1linetoks’

4.2 %.linetrees

Defines trees for each ‘line’ (sentence, title, caption, etc.) in a corpus using a generalization of the
Penn Treebank standard.

File format:
Specification:
(row) — (tree)
(tree) — ‘(C {(node-label) (¢ 7 (tree))+ 9’
(tree) — {node-label)
Example:

(S (S (NP The cat) (VP did n’t sleep)) (. .))

4.2.1 Recipe: %.linetrees

Generates a specification-conformant linetrees file from another file containing syntactic annota-
tions.

Option 1: Converting external annotations

Stem template:
(corpus-specification) ‘.linetrees’

Input(s):
External annotation (handlers provided by associated RESOURCE-* directory).
Option 2: Converting from %.tokdecs

Stem template:
(corpus-specification) ‘.linetrees’

Input(s):
(corpus-specification) *.tokdecs’

Option 3: Parsing source text using a probability model

Stem template:
(test-set-specification) ‘.’ {(dash-delimited-trained-model-name) ‘-parsed.linetrees’

Input(s):
(test-set-specification) ‘.linetoks’

(dot-delimited-trained-model-name) ‘.parweights’

4.2.2 Recipe: %.first.linetrees
Extracts the first (number) of lines from the input.

Stem template:
(corpus-specification) ‘.’ (number) ‘first.linetrees’

Input(s):
(corpus-specification) ‘.linetrees’
4.2.3 Recipe: %.last.linetrees
Extracts the last (number) of lines from the input.

Stem template:
(corpus-specification) ‘.’ (number) ‘last.linetrees’

Input(s):
(corpus-specification) ‘.linetrees’
4.2.4 Recipe: %.onward.linetrees
Extracts lines (number) and onward from the input.

Stem template:
(corpus-specification) ‘.’ (number) ‘onward.linetrees’

Input(s):
(corpus-specification) ‘.linetrees’
4.2.5 Recipe: %.maxwords.linetrees
Extracts only lines from the input containing at most (number) words.

Stem template:
(corpus-specification) ‘.’ (number) ‘maxwords.linetrees’

Input(s):

(corpus-specification) ‘.linetrees’

4.2.6 Recipe: %.nolabel.linetrees
Removes syntactic labels from the input.

Stem template:
(corpus-specification) ‘.nolabel.linetrees’

Input(s):

(corpus-specification) ‘.linetrees’

4.2.7 Recipe: %.nopunc.linetrees
Removes punctuation from the input.

Stem template:
(corpus-specification) ‘.nopunc.linetrees’

Input(s):
(corpus-specification) ‘.linetrees’
4.2.8 Recipe: %.fromdeps.linetrees

Converts dependency representations into constituency tree representations using the [?] algorith
(produces the flattest constituency trees permitted by the dependency graph).

Stem template:
(corpus-specification) ‘. fromdeps.linetrees’

Input(s):

(corpus-specification) *.tokdeps’

4.3 %.lineitems

Extracts word sequences from a corpus of psycholinguistic stimuli (where tokenizations generally
differ from those used for parsing), preserving original tokenization.

File format:
Specification:
{(row) — ((item) (< (item))*)

Example:

9

The cat didn’t sleep.

4.3.1 Recipe: %.lineitems

Stem template:
(corpus-specification) ‘.1lineitems’

Input(s):

10

External corpus

4.4 %.conll

Generates CoNLL-style dependencies from input %.linetrees by assigning the most frequently
co-occurring child as the head.

File format: See CoNLL documentation

4.4.1 Recipe: %.conll

Stem template:
(corpus-specification) ‘.conll’

Input(s):

(corpus-specification) ‘.linetrees’

4.5 %.tokdeps

Generates Stanford-style dependencies from input %.linetrees by assigning the most frequently
co-occurring child as the head.

File format: See Stanford Dependencies documentation

4.5.1 Recipe: %.tokdeps

Stem template:
(corpus-specification) *.tokdeps’

Input(s):

(corpus-specification) ‘.linetrees’

4.6 %.syneval

Generates human-readable report of differences between two %.linetrees inputs (typically a
gold and a hypothesized sequence of trees).

File format: Human-readable

4.6.1 Recipe: %.syneval

Stem template:
(dash-delimited-test-set-name) {dot-delimited-gold-editsy ‘.’ (processing-specifications)
‘.syneval’

Input(s):
RESOURCE-GENERAL/srcmodel /new.prm

(dot-delimited-test-set-name) {dot-delimited-gold-edits) ‘.linetrees’ (control/baseline
linetrees)

11

(dot-delimited-test-set-name) ‘.’ {processing-specifications) ‘.linetrees’ (test linetrees)

4.7 %.bootstrapsignif

Generates human-readable report of statistical significance of difference between two %. syneval
files (typically a control and a test sequence of eval scores) obtained via bootstrap resampling.

File format: Human-readable

4.7.1 Recipe: %.bootstrapsignif

Stem template:
{common-onset) Y (distinct-ctrl) Y (distinct-test)) {common-coda)
‘.bootstrapsignif’

Input(s):
RESOURCE-GENERAL/srcmodel /new.prm

3 b

(common-onset) ‘.’ {distinct-ctrly *.” {common-coda) ‘.syneval’ {common-coda) (con-
trol/baseline syneval)

{common-onset) °.’ {distinct-test) ‘.’ {common-coda) ‘.syneval’ {(common-coda) (test
syneval)

4.8 %(.d).constiteval.txt

Alternative to %. syneval with additional measures relevant to unsupervised PoS tagging, parsing,
and word segmentation (e.g. tagging and consituent labeling V-Measures, segmentation accuracy,
etc.). Can be used when gold and test tokenizations differ arbitrarily. Generates human-readable
report of differences between two %.linetrees inputs (typically a gold and a hypothesized se-
quence of trees).

File format: Human-readable

4.8.1 Recipe: %(.d.)constiteval.txt

Without the .d. option, generates summary metrics for entire input corpus. With it, generates
additional per-sentence metrics (more informative but consumes much more disk space).

Stem template:

(dash-delimited-test-set-name) {dot-delimited-gold-editsy ‘.’ (processing-specifications)
‘.syneval’
Input(s):
(distinct-ctrl) *.” (common-coda) {.) ‘.syneval’ {common-coda) (control/baseline line-
trees)

(distinct-test) ©.’
dtypecommon — coda {.) dcode.syneval (common-coda) (test linetrees)

12

4.8.2 Recipe: %.constiteval.txt

Stem template:
(distinct-ctrl) *. .’ {distinct-test) ‘.. {(common-coda) ‘.constiteval.txt’

Input(s):
(distinct-ctrl) *.” {common-coda) (control/baseline constiteval)

(common-onset) ‘.’ {distinct-test) ‘.’ {common-coda) (test constiteval)

4.9 %.constitevaltable.txt

Generates human-readable summary table of multiple %.constiteval.txt results that can be
used for plotting.

File format:
Specification:
PN
{(row) — ((index) (¢ 7 (eval-measure)))

Example:
iter bracketingFl segmentationFl ...
1 0.5611 0.9175 ...

4.9.1 Recipe: %.constitevaltable.txt

Stem template:
(corpus-specification) ‘.’ (distinct-test)
‘.constitevaltable.txt’

‘.7 {common-coda) .’ {constiteval-list)
Input(s):

(basename) ‘.constitevallist’ (file containing paths to %.constiteval files to aggre-
gate, in most cases must be created by hand)

410 %.learning_curves

Convenience target. Generates plots of a variety of learning curves from a
%.constitevaltable. txt file.

File format: Plot images

4.10.1 Recipe: %.learning_curves

Stem template:
(constiteval-list-specification) ‘.learning_curves’

Input(s):

(constiteval-list-specification) ‘.constitevallist.txt’

13

Chapter 5

RESOURCE-LCPARSE

RESOURCE-LCPARSE contains methods for generating representations of incremental left-corner
parsing operations.

5.1 %.linedeps

Generates sorted set of dependencies for each ‘line’ (sentence, title, caption, etc.) in a corpus. If
present, ‘0’ dependencies are used to indicate vertex types.

File format:
Specification:
(row) — ((dependency) (¢’ (dependency))*)?
(dependency) — {(source-)vertex) ‘,’ {dependency-label) ‘,’ {(destination-)vertex)

Example:
01,0,cats 02,0,sleep 02,1,01

TODO: Is this used? I don’t see any recipes anywhere in MB with this extension.

5.2 %.tokdecs

Generates list of modeled decisions for each token position in a corpus.
File format:
Specification:
(row) — (word) * ’ {(preterminal-)sign) * ’ (fork) * ’ (join) * ° ((deriv-fmg) (5’ (deriv-frag))*)?
(deriv-frag) — {(top-)sign) */’ {(bottom-)sign)

w7
(sign) = ‘[’ ((referential—context} (*,’ (referential-context))) ‘11’ (category-label)

14

Example:
the [the_0]:D 1 ® [the_1]:NP/[the_1]:N
very [very_0]:Adv 1 0 [the_1]:NP/[the_1]:N;[very_1]:AP/[very_1]:A

5.2.1 Recipe: %.fromlinetrees.tokdecs

Stem template:
(corpus-specification) ‘. fromlinetrees.tokdecs’

Input(s):

(corpus-specification) ‘.linetrees’

5.3 %.decpars

Generates list of parameterizations for training decisions. There are separate formats for ordinary
conditional probability and logistic regression parameters.

5.3.1 Recipe: %.cpt.decpars
Conditional probability decpars.
File format:
Specification:
(row) — (decision-type) (* * (predictor-value)) 2 (¢ (result-value))+

Example:
P20 1VP : VT

Note: This ordering has the advantage that, when sorted, parameters are grouped by condition

Stem template:
(training-set-specifications) ‘.cpt.decpars’

Input(s):
(training-set-specification) ‘.tokdecs’
5.3.2 Recipe: %.mlr.decpars
Multinomial logistic regression decpars.
File format:
Specification:
(row) — (decision-type) * °’ ((predictor} (¢, (predictor))*)? ¢ 1 {result-value)
{predictor)y — (predictor-name) ‘=" {predictor-value)
Example:

F dO&tT=1,d0&Top=1 : £f1&N-xX*:doctor_1

15

Note: This ordering has the advantage that, when sorted, parameters are grouped by condition

Stem template:
(training-set-specifications) ‘ .mlr.decpars’

Input(s):

(training-set-specification) ‘. tokdecs’

54 %.parweights files

Generates list of estimated parameter weights of a model. There are separate formats for ordinary
conditional probability and logistic regression parameters.

5.4.1 Recipe: %.cpt.parweights
Conditional probability parweights.
File format:
Specification:
(row) — (decision-type) (* * (predictor-value)) 2 (* " (result-value))+‘ = (weight)

Example:
P20 1VP : VT = 0.4237643

Note: This ordering has the advantage that, when sorted, parameters are grouped by condition

Stem template:
(training-set-specifications) ‘.cpt.parweights’

Input(s):
(training-set-specification) ‘.cpt.decpars’
5.4.2 Recipe: %.mlr.parweights
Multinomial logistic regression parweights.
File format:
Specification:
(row) — (decision-type) ¢ ’ (predictor-name) * : ’ (result-value) * = ’ (weight)

Example:
F dO&tT : fO&N-aD:doctor_1 = 0.318317

Note: This ordering has the advantage that, when sorted, parameters are grouped by condition

Stem template:
(training-set-specifications) ‘ .mlr.parweights’

Input(s):

16

(training-set-specification) ‘.decpars’

17

Chapter 6

RESOURCE-RT

RESOURCE-RT contains methods for aggregating measures from time-series psycholinguistic ex-
periments into a single data table. It also contains convenience recipes for a number of reading-time
experiment types.

6.1 %.tokmeasures

Generates a data table containing space-delimited columns of measurements for each token in a
corpus.

File format:
Specification:

*\7

{row) — ((loken) (¢’ (measure)))
Example:

word totsurp ...
Are 10.2871 ...
n’t 2.1029 ...
6.2 %.itemmeasures

Generates a data table containing space-delimited columns of measurements for each item in a
corpus.

File format:

Specification:

(row) — ((item) (¢ 7 (measure))*)?

Example:
word fwprob5 ...

18

Aren’t -11.0926 ...

6.2.1 Recipe: %.itemmeasures

6.3 %.evmeasures

Generates a data table containing space-delimited columns of measurements for each event (unit
of stimulus) in a psycholinguistic experiment.

File format:

Specification:

(row) — ((event} (¢’ {measure))*)?

Example:

word subject RT ...
Aren’t A 187 ...
Aren’t B 411 ...

6.3.1 Recipe: %.evmeasures

19

Chapter 7

RESOURCE-LMEFIT

RESOURCE-LMEFIT contains methods for statistical analysis of psycholinguistic measures. The
methods are primarily designed for use in reading time studies but should be generalizable to other
kinds of dependent measures, as long as those measures can be associated with words/tokens in
the stimuli.

7.1 %.rdata files

Generates saved binary of fitted linear mixed-effects regression model, along with a human-
readable summary file in %. lmefit (same stem, different extension).

File format: Binary file

7.2 %.lmefit files

Contains summary data from a fitted linear mixed-effects regression model. Cannot be generated
directly, but is instead generated as a secondary output of %.rdata.

File format: Human-readable

7.3 %.lrtsignif files

Generates a human-readable summary of results of likelihood ratio testing (LRT) two linear mixed-
effects regression models.

File format: Human-readable

7.3.1 %.diamond.lrtsignif files

Generates a special subtype of %. 1rtsigni f that contain results from a ‘diamond’ LRT comparing
two predictors against a baseline and against each other (i.e. four LRT comparisons rather than
two).

File format: Human-readable

20

