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Abstract

This paper describes a dynamic Bayes net (DBN) language
model which allows recognition decisions to be conditionad
features of entities in some environment, to which hypattees
directives might refer. The accuracy of this model is theal-ev
uated on spoken directives in various domains.

1. Introduction

The capacity to rapidly connect language to referentialrmimegn

is an essential aspect of human communication. Eye-trgckin
studies show that humans listening to spoken directivealzee

to actively attend to the entities that the words in theseddir
tives might refer to, even while these words are still beirg p
nounced [1]. This timely access to referential ¢enotational
information about input utterances may allow listenersde a
just their preferences among likely interpretations ofsgadr
ambiguous utterances to favor those that make sense intthe cu
rent environment or discourse context, before any lowestle
disambiguation decisions have been made.

If provided early enough in the recognition process, it is
conceivable that this kind of information could signifidgriin-
prove recognition accuracy of spoken language interfgzas,
ticularly for applications in which users and interfacedtsyns
have overlapping models of a common environment (e.g. event
scheduling, navigating maps or 3-D simulations, settingem
sor networks, or directing robotic agents). Moreover, this
mediate access to hypotheses about the referential meahing
input utterances could allow interfaced agents to provides-
mental feedback to speakers using modalities other thathpe
— e.g. selecting or pointing at objects as they are descritsx
that speakers could adjust their descriptions of desir&drec
while they are still speaking, without having to wait for aspo
recognition analysis of the complete utterance. Finallea
ognizer that estimates probabilities of input analysestham
the entities and relations they denote may be significarty e
ier to train and port across applications than one basedanly
word co-occurrences in text corpora, since the assocmtien
tween words and entities that such a model requires in ooder t
recognize input directives would be identical to those nexgli
to understand and execute these directives once they hawe be
recognized. This re-use of training data could save coredidie
expense in applications where task requirements arevelati
mutable and trained programmers are scarce.

This paper describes a probabilistic language model for a
spoken language interface which bases recognition desisio
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on this kind of denotational meaning. The proposed language
model resembles grammar-based or structural language mod-
els [2, 3], but instead of producing probability distrikars on
word strings or phrase structure trees, the model produses d
tributions on denotations (things in the world model tha th
utterance refers to), independent of the word string orussel

to convey this. The model does still calculate the set ofipéess
word strings and trees used to convey denotations, butaidste
of finding the most probable string or tree (using Viterbi-est
mates), it marginalizes or sums them out (using forward prob
ability estimates), leaving only a distribution on denotedi-

ties. Other similar approaches [4, 5, 6] are either conmsti

to discrete environments such as databases, or are lirgllist
constrained to flat finite-state automata or incompleteecdnt
free grammar parses and therefore not able to model a camplet
recursive linguistic process from intended meaning to pmen
ciation, as the current approach attempts to do.

2. Formal framework

This model divides the top-down process of deriving an utter
ance from an intended denotation into three component proba
bility models: one for semantic composition (choosing ¢rais

of constituent structure with which to describe an intended
notation, based on a probabilistic context-free grammamg

for lexicalization (choosing words to describe an intendee
notation); and one for attention (choosing other entitteage

as landmarks in a description). This is done within a dynamic
Bayes net (DBN) representation [7] corresponding to a vari-
ant of the Hierarchical Hidden Markov Model (HHMM) topol-
ogy [8], which has been adapted to represent phrase steuctur
trees with bounded center-recursion usingpat-corner trans-
form, which is the left-right dual of a left-corner transform [9]
This transforms all right-recursion in a context-free gnaan

into left-recursions of incomplete constituents (er/NP for

a prepositional phrase lacking a noun phrase yet to cénfe).
sample right-corner transform is shown in Figure 1. As with a
left-corner transform, the right-corner transform minies the
number of stack elements required to incrementally recgni

a transformed grammar using a push-down automaton (PDA),
so that the PDA stack will only be expanded in cases of center-
recursion, which is notably rare in natural langudge.

Each rule application in a thus-transformed syntactic cor-
pus can then be used to calculate probability distributfons
the memory elements in a finite stack of a pushdown automa-
ton, based on the rightward depth of the node expanded by each

1Thel /I notation indicates an incomplete constituent with ldbel
lacking a constituent with lab&l to the right.

2As evinced by the difficulty humans show in recognizing hisavi
center-embedded but otherwise grammatical constructineh as ‘the
cart [the horse [the man bought] pulled] broke.’
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Figure 1: (a) ordinary phrase structure tree and (b) rigihtver
transform of this tree for the sentence ‘pick up the brown can
straight in front of you.’

rule application (see Figure 2). The model treats each mgmor
elementd in this finite stack, at each frameof the input, as a
separate random variat#ig with a distribution over label&, &)
(containing a categonyand denoted entitie® in a right-corner
grammar. The model also introduces boolean random vasiable
Ftd, similar to those used in the Murphy-Paskin formulation of
Hierarchic HMMs [8], in order to specify whether the HMM at
depthd has reached a final state at framer not. Finally, the
model introduces additional random variatﬂés in order to al-
low one or more constituents on the stack to be combinedmvithi
a single frame (e.g. constituents ‘NP/N’ and ‘brown’ in fra@
or constituents ‘S/NP’ and ‘NP/N’ and 'can’ at frame 4 in Fig-
ure 2¢), which is necessary in order to produce branchinagghr
structure derivations. This distinction has interestiogelation
with the operations in an Earley parser for context-freargra
mars [10], withreduceoperations taking place & variables,
andpredictandscanoperations taking place &variables (de-
pending on the values of the variables, as in the Murphy-
Paskin formulation). Thes&, R¢ and ¥ random variables
can be repeated at each 10-millisecond speech frame, condi-
tioned on the random variables for the previous frame and op-
erations applied to the stack, in a layered Dynamic Bayes Net
(DBN) representation [7]. This model is shown graphicafly i
Figure 2d.

The independence assumptions in this model are:
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Figure 2: Right-corner derivation of ‘pick up the brown can
straight in front of you,” mapped to random variable pogitio

in DBN (c), with dependencies as shown in (d). Taken together
each stack forms a complete analysis of the recognized atput
every time framd. Quote marks in (c) indicate labels copied
from previous frame. Shaded nodes in (d) indicate observed e
idence: A; are observed frames of acoustical features, boolean
Ftl are ‘true’ at the end of the utterance, ‘false’ otherwise.

The definitions foi{! andR¢ are then further broken down into
‘composition’ @¢), ‘attention’ @4), and ‘lexicalization’ @)
components explained below, in which &lare true or false, all

c are syntactic categories (e.g. ‘S’ or ‘NP’ or ‘S/NP’), glare
entity coindexation or re-write patterns described bebovd all

8 are tuples of entities from the environment that are referre
to or denotedvy this instance of categoxy(e.g. a single entity
denoted by a noun phrase like ‘the box’, or a pair of related
entities denoted by a preposition ‘in’):
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The breakdown folRY is essentially identical to that shown
above fors!! except that it contains no teriff.

Each lexicalization modefPg, (c | & ¢/ ¢”’) in the above
equations is then calculated as the normalized producteof th
probabilityPg , (c | ¢/ ¢”) of using category in the context of
categories’ andc”, times the probabilitPe, , (X1..%a | ¢, ¢/ )
of describing each denoted entégy(with featuresX) using cat-
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Since model®¢ and®; do not directly depend on enti-
ties, they can be extracted from phrase-structure- ancerefe-
annotated training sentences collected in different envirents
from those used in evaluation. These are transcribed ifiuis
similar applications, whose phrasal and clausal constitue
are enclosed with brackets and annotated with categoryslabe
(c) and vectors of denoted entitieg)( Training instances for
Pec (V| c ) andPg, (c| ¢/ c”) are then extracted from right-
corner transformed and DBN-aligned versions of these sen-
tences, with coindexation pattervisietermined by the patterns
of identical entities in the conditions and conclusionstefse
training instances.

The remaining model®a and © 2 are directly based on
entities, but can still be abstracted across environmesitgyu
features of entities (e.g. relative position or size) rathe par-
ticular entities themselves. In the experiments descritb&ec-
tion 3, training instances foPg ,(X1..%a | C, ¢/ ¢”) were ex-
tracted from example images or feature vectors chosen by a
trainer, and fit to Gaussian or other continuous distrilmgio
over entities, given a category context. In discrete emviro
ments, whose only features are boolean predicates ovéesnti
these distributions were simply defined to be uniform over en
tities satisfying the appropriate predicate. The attentimdel
Po, (| Y, & &) was taken to be uniform for eackew’ entity
in each experiment.

Viewed as a generative process, this language model begins
with the composition model selecting a coindexation patter
for a new constituent. This coindexation pattern contamsa
dex pointer for each argument positioim & which points to
the first entity ing, & or 8” that exactly matches, or is set to
‘NEW if position i contains the first occurrence @f Once the
coindexation pattern has been chosen, ea€eh entity is then
selected from the environment using the attention modet. Fo
example, if a sentence constituent were being generatdut at t
top level, a new entity would be chosen using a singleton-coin
dexation of NEW’; or if some decomposition of a prepositional
phrase were being generatednaWw’ landmark entity might be
chosen for use in further description (as the NP complemient o
the PP), based on its proximity and relation to an existingntc
dexed) trajector entity. Finally, the lexicalization médelects
a word or syntactic category (or a multi-word/category cémb
nation such as ‘in front of NP’) to describe the chosen ermtity
relation among entities in a tuple.

By generating probabilities for hypotheses in this manner,
the model can incrementally recognize right-corner déioves
while still preserving explicit representations of intexdmate
constituents at all levels of the integrated model: e.greep
senting subphone symb8l: the DBN's lowest @ = 6) level,
partial phonemes in the nexd £5) level# partial words in the
following (d =4) level, and partial phrases and denotations at

3These correspond to the onset, middle, and ending sounds of i
dividual phonemes, whose distributions can be obtainetgusxisting
acoustical models.

4This level and the one below it are isomorphic to the statecamid
variables in a Hidden Markov Model for subphone composijtiehich
can also be extracted from existing acoustical models.

subsequentd < 3) levels, until eventually the denotation of a
complete sentence can be recognized in the top level, ahthe e
of the utterance.

3. Evaluation

The accuracy of this denotational language model was evalu-
ated in a live interface to a mobile robot, a (batch-modegrint
face to a manipulator robot, and a (batch-mode) applicdtion
manipulating objects in a graphic display, each of whichdas
different kind of environment for calculating denotations

3.1. Mobilerobot interface

The robot interface used a relatively self-contained setafg-
nizable directives relating to wheel movemeistart/stop mov-
ing, ‘ start/stop turning left/right and the relevant sensors for
the denotational recognizer: left and right wheel tachenset
75 input utterances were collected by asking two subjeats to
rect a voice-controlled mobile robot using the above contsan

The®, 2 component of the denotational language model (as
described in Section 2) was trained on a small set of movidg an
turning scenarios staged by a trainer, consisting of threpas-
ios for each directive. These scenarios were intended te-cor
spond to the preconditions of sample events that might be pro
vided for each type of directive by an (experienced) usasttea
ing the system different ways of changing trajectory. e
and®;; components were trained on a hand-constructed anno-
tated corpus listing the full set of possible directives.

The denotational model was compared with a baseline tri-
gram Hidden Markov Model (HMM)-based language model
trained on the sample set of directives described abovehef t
75 collected utterances, the integrated denotational hrede
ognized 71 correctly, whereas the baseline HMM-based model
recognized only 58 correctly. This represents a 70% redncti
in recognition error due to the denotational model. This is a
statistically significant improvement with < .01 using a two-
tailed t-test.

3.2. Manipulator robot interface

The denotational language model described above was also
evaluated on collected directives to a voice-directed feaha-
nipulator arm in front of a shelf stacked with everyday heuse
hold objects (cereal boxes, soft drink cans, etc.), whicks wa
photographed using a 3-D laser scanning carferahe re-
sulting 3-D point cloud was polygonized into a triangle mesh
and segmented into entitiescorresponding to convex regions

of this mesh, each with continuous featurgsspecifying the
entity’s size (exposed surface area), shape (ratio of ktnige
second longest perpendicular dimensions), spatial lmcé8-D
coordinates of centroid), and color (average hue, saturaind
intensity over all pixels in the segment). Word meaning®jin

were modeled for adjectives and prepositions using muisita
Gaussians in this feature space (defined on color, size hapes
features for adjectives, and on differences in centroidaieo
nates for prepositions), which were developed partiallhayd

as a domain-independent language resource. Verbs and com-
mon nouns were considered domain-specific and were trained

5Subjects were asked to direct the manipulator arm to picleuersl
objects from the shelf. The objects were visually desighébg point-
ing), in order to avoid biasing subjects toward any lingaidescription.
As aresult, some of the collected directives contain vemg)@omplex
definite descriptions. The manipulator arm was a non-foneti prop
during this data collection.



automatically on a version of the collected corpus of arreddir
tives that was annotated with phrase structure (labelezkbts)

and constituent denotations (in the associated trainingam
ment). The®c and® ;1 components were trained on (right-
corner transforms of) the denotation-annotated phragetste
trees in this same annotated corpus. All training and tgstin
using this corpus was done using the leave-one-out method of
cross-validation.

The accuracy of the sentence-level denotations obtained
from the integrated denotational language model was tested
against that of denotations obtained through the widegdus
practice of parsing and interpreting the single senten¢pubu
of a trigram HMM language model, trained on transcriptiohs o
the same collected corpus, using a parser and interprateetr
on the annotated version of the same corpus (again using-leav
one-out cross-validation). However, primarily due to atrigte
of speech repairs for this somewhat unnatural task of dirgct
a manipulator arm in a unimodal interface (i.e. without poin
ing), the HMM language model yielded a relatively high (47%)
word error rate on the collected utteranesith no sentences
yielding correct denotations. The denotational model dididy
54 parses (of 165 total), but only 20% of these had correct de-
notations (p<.1 due to chance) — a nevertheless statistically sig-
nificant improvement (g.01 using a two-tailed t-test), which
was evenly distributed across task environments.

(1]

(2]

3.3. Graphical display interface
(3]

The final evaluation of the denotational language model was
performed in a discrete environment, within an applicafan
manipulating 2-D objects on a graphical display. The greghi
display consisted of nested colored boxes, some of whick wer
linked to other boxes using thick black lines. The task was in
tended to represent a directory structure in a form thatccbel
instantly perceived by test subjects. The sentences weghly
similar to those collected in the manipulator arm environtne
Again, an annotated corpus of 160 collected utterances sek u
for training ©c and ©_ 1 (with leave-one-out cross-validation
in testing), but the discrete relations were handled usingia
form distribution over satisfying entities @ 2. Since this task
was somewhat more natural than the manipulator arm task, the
HMM had a word error rate of only 20%, but still did not pro-
duce any entirely correct sentences which could be suadbssf
parsed and interpreted using a parser trained on transorsif
these utterances (largely because it most often missettaitor
semantically significant words like ‘in’), whereas the d&no
tional model was able to parse and correctly recognize @enot
entities in approx. 50% of inputs (approx. 10 candidatetiesti
per environment; improvementp01).

(4]

(5]

(6]

(7]

(8]

4. Conclusionsand future work [9]

This paper has described a DBN language model which allows
recognition decisions to be influenced by information altbet
entities or relations (tuples of entities) denoted by spakieec-
tives. Unlike similar approaches, the model provides cetepl
recursive, probabilistic analyses of language productieith
unlimited left- or right-recursion and human-like memoiry-

its on internal recursion in syntax). This model has beemsho

to provide more accurate recognition than conventional HMM
based language models. In addition, this denotational mode
has two interesting properties not found in other models:

[10]

6Average sentence length wad9 words.

1. Since it incrementally models the denotational meaning

of each utterance, it can be configured to provide incre-
mental feedback at a referential level (using other modal-
ities such as gesture, gaze, or graphical displays to indi-
cated hypothesized denotations); and

2. Since it incrementally models the denotational mean-

ing of each utterance, it does not need to compute
(e.g. Viterbi) most likely sequences of words. This
means it can be configured to run as a continuous recog-
nition process, providing overlapping feedback in other
modalities without having to wait for utterance bound-
aries.

These possibilities will be explored in future work in the
context of a general multi-sensor interface architectoreém-
municative agents. Further information about this redeaan
be found att t p: // ww. c¢s. urm. edu/ r esear ch/ nl p.
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