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Abstract

This paper describes a dynamic Bayes net (DBN) language
model which allows recognition decisions to be conditionedon
features of entities in some environment, to which hypothesized
directives might refer. The accuracy of this model is then eval-
uated on spoken directives in various domains.

1. Introduction
The capacity to rapidly connect language to referential meaning
is an essential aspect of human communication. Eye-tracking
studies show that humans listening to spoken directives areable
to actively attend to the entities that the words in these direc-
tives might refer to, even while these words are still being pro-
nounced [1]. This timely access to referential (ordenotational)
information about input utterances may allow listeners to ad-
just their preferences among likely interpretations of noisy or
ambiguous utterances to favor those that make sense in the cur-
rent environment or discourse context, before any lower-level
disambiguation decisions have been made.

If provided early enough in the recognition process, it is
conceivable that this kind of information could significantly im-
prove recognition accuracy of spoken language interfaces,par-
ticularly for applications in which users and interfaced systems
have overlapping models of a common environment (e.g. event
scheduling, navigating maps or 3-D simulations, setting upsen-
sor networks, or directing robotic agents). Moreover, thisim-
mediate access to hypotheses about the referential meaningof
input utterances could allow interfaced agents to provide incre-
mental feedback to speakers using modalities other than speech
– e.g. selecting or pointing at objects as they are described– so
that speakers could adjust their descriptions of desired actions
while they are still speaking, without having to wait for a post-
recognition analysis of the complete utterance. Finally, arec-
ognizer that estimates probabilities of input analyses based on
the entities and relations they denote may be significantly eas-
ier to train and port across applications than one based onlyon
word co-occurrences in text corpora, since the associations be-
tween words and entities that such a model requires in order to
recognize input directives would be identical to those required
to understand and execute these directives once they have been
recognized. This re-use of training data could save considerable
expense in applications where task requirements are relatively
mutable and trained programmers are scarce.

This paper describes a probabilistic language model for a
spoken language interface which bases recognition decisions
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on this kind of denotational meaning. The proposed language
model resembles grammar-based or structural language mod-
els [2, 3], but instead of producing probability distributions on
word strings or phrase structure trees, the model produces dis-
tributions on denotations (things in the world model that the
utterance refers to), independent of the word string or treeused
to convey this. The model does still calculate the set of possible
word strings and trees used to convey denotations, but instead
of finding the most probable string or tree (using Viterbi esti-
mates), it marginalizes or sums them out (using forward prob-
ability estimates), leaving only a distribution on denotedenti-
ties. Other similar approaches [4, 5, 6] are either constrained
to discrete environments such as databases, or are linguistically
constrained to flat finite-state automata or incomplete context-
free grammar parses and therefore not able to model a complete,
recursive linguistic process from intended meaning to pronun-
ciation, as the current approach attempts to do.

2. Formal framework
This model divides the top-down process of deriving an utter-
ance from an intended denotation into three component proba-
bility models: one for semantic composition (choosing patterns
of constituent structure with which to describe an intendedde-
notation, based on a probabilistic context-free grammar);one
for lexicalization (choosing words to describe an intendedde-
notation); and one for attention (choosing other entities to use
as landmarks in a description). This is done within a dynamic
Bayes net (DBN) representation [7] corresponding to a vari-
ant of the Hierarchical Hidden Markov Model (HHMM) topol-
ogy [8], which has been adapted to represent phrase structure
trees with bounded center-recursion using aright-corner trans-
form, which is the left-right dual of a left-corner transform [9].
This transforms all right-recursion in a context-free grammar
into left-recursions of incomplete constituents (e.g.PP/NP for
a prepositional phrase lacking a noun phrase yet to come).1 A
sample right-corner transform is shown in Figure 1. As with a
left-corner transform, the right-corner transform minimizes the
number of stack elements required to incrementally recognize
a transformed grammar using a push-down automaton (PDA),
so that the PDA stack will only be expanded in cases of center-
recursion, which is notably rare in natural language.2

Each rule application in a thus-transformed syntactic cor-
pus can then be used to calculate probability distributionsfor
the memory elements in a finite stack of a pushdown automa-
ton, based on the rightward depth of the node expanded by each

1The l/l ′ notation indicates an incomplete constituent with labell
lacking a constituent with labell ′ to the right.

2As evinced by the difficulty humans show in recognizing heavily
center-embedded but otherwise grammatical constructions, such as ‘the
cart [the horse [the man bought] pulled] broke.’
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Figure 1: (a) ordinary phrase structure tree and (b) right-corner
transform of this tree for the sentence ‘pick up the brown can
straight in front of you.’

rule application (see Figure 2). The model treats each memory
elementd in this finite stack, at each framet of the input, as a
separate random variableSd

t with a distribution over labels〈c,~e〉
(containing a categoryc and denoted entities~e) in a right-corner
grammar. The model also introduces boolean random variables
Fd

t , similar to those used in the Murphy-Paskin formulation of
Hierarchic HMMs [8], in order to specify whether the HMM at
depthd has reached a final state at framet or not. Finally, the
model introduces additional random variablesRd

t , in order to al-
low one or more constituents on the stack to be combined within
a single frame (e.g. constituents ‘NP/N’ and ‘brown’ in frame 3,
or constituents ‘S/NP’ and ‘NP/N’ and ’can’ at frame 4 in Fig-
ure 2c), which is necessary in order to produce branching phrase
structure derivations. This distinction has interesting correlation
with the operations in an Earley parser for context-free gram-
mars [10], withreduceoperations taking place atR variables,
andpredictandscanoperations taking place atSvariables (de-
pending on the values of theF variables, as in the Murphy-
Paskin formulation). TheseSd

t , Rd
t and Fd

t random variables
can be repeated at each 10-millisecond speech frame, condi-
tioned on the random variables for the previous frame and op-
erations applied to the stack, in a layered Dynamic Bayes Net
(DBN) representation [7]. This model is shown graphically in
Figure 2d.

The independence assumptions in this model are:
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Figure 2: Right-corner derivation of ‘pick up the brown can
straight in front of you,’ mapped to random variable positions
in DBN (c), with dependencies as shown in (d). Taken together,
each stack forms a complete analysis of the recognized inputat
every time framet. Quote marks in (c) indicate labels copied
from previous frame. Shaded nodes in (d) indicate observed ev-
idence:At are observed frames of acoustical features, boolean
F1

t are ‘true’ at the end of the utterance, ‘false’ otherwise.

The definitions forSd
t andRd

t are then further broken down into
‘composition’ (ΘC), ‘attention’ (ΘA), and ‘lexicalization’ (ΘL)
components explained below, in which allf are true or false, all
c are syntactic categories (e.g. ‘S’ or ‘NP’ or ‘S/NP’), all~v are
entity coindexation or re-write patterns described below,and all
~e are tuples of entities from the environment that are referred
to or denotedby this instance of categoryc (e.g. a single entity
denoted by a noun phrase like ‘the box’, or a pair of related
entities denoted by a preposition ‘in’):

P(Sd
t =〈c,~e〉 | Fd

t-1= f ′, Fd+1
t-1 = f ′′, Sd-1

t =〈c′,~e′〉, Rd
t =〈c′′,~e′′〉)

= P(~v | f ′, f ′′, c′, ~e′, c′′, ~e′′) ·

P(~e |~v, f ′, f ′′, c′, ~e′, c′′, ~e′′) ·

P(c |~e, ~v, f ′, f ′′, c′, ~e′, c′′, ~e′′) (4)
.
= PΘC,d, f ′, f ′′

(~v | c′, c′′) ·

PΘA(~e |~v, ~e′, ~e′′) ·

PΘL,d, f ′, f ′′
(c |~e, c′, c′′) (5)

The breakdown forRd
t is essentially identical to that shown

above forSd
t except that it contains no termf ′′.

Each lexicalization modelPΘL(c | ~e, c′, c′′) in the above
equations is then calculated as the normalized product of the
probabilityPΘL1(c | c′, c′′) of using categoryc in the context of
categoriesc′ andc′′, times the probabilityPΘL2(~x1..~xa | c, c′, c′′)
of describing each denoted entityei (with features~xi ) using cat-



egoryc in contextc′,c′′:

PΘL(c |~e, c′, c′′) = PΘL(c | e1..ea, c′, c′′) (6)
.
= PΘL(c |~x1..~xa, c′, c′′) (7)

=
PΘL1(c | c′, c′′) ·PΘL2(~x1..~xa | c, c′, c′′)

∑c PΘL1(c | c′, c′′) ·PΘL2(~x1..~xa | c, c′, c′′)
(8)

Since modelsΘC andΘL1 do not directly depend on enti-
ties, they can be extracted from phrase-structure- and reference-
annotated training sentences collected in different environments
from those used in evaluation. These are transcribed inputsfrom
similar applications, whose phrasal and clausal constituents
are enclosed with brackets and annotated with category labels
(c) and vectors of denoted entities (~e). Training instances for
PΘC(~v | c′, c′′) andPΘL1(c | c′, c′′) are then extracted from right-
corner transformed and DBN-aligned versions of these sen-
tences, with coindexation patterns~v determined by the patterns
of identical entities in the conditions and conclusions of these
training instances.

The remaining modelsΘA and ΘL2 are directly based on
entities, but can still be abstracted across environments using
features of entities (e.g. relative position or size) rather the par-
ticular entities themselves. In the experiments describedin Sec-
tion 3, training instances forPΘL2(~x1..~xa | c, c′, c′′) were ex-
tracted from example images or feature vectors chosen by a
trainer, and fit to Gaussian or other continuous distributions
over entities, given a category context. In discrete environ-
ments, whose only features are boolean predicates over entities,
these distributions were simply defined to be uniform over en-
tities satisfying the appropriate predicate. The attention model
PΘA(~e|~v, ~e′, ~e′′) was taken to be uniform for each ‘NEW’ entity
in each experiment.

Viewed as a generative process, this language model begins
with the composition model selecting a coindexation pattern~v
for a new constituent. This coindexation pattern contains an in-
dex pointer for each argument positioni in ~e, which points to
the first entity in~e,~e′ or~e′′ that exactly matchesei , or is set to
‘ NEW’ if position i contains the first occurrence ofei . Once the
coindexation pattern has been chosen, each ‘NEW’ entity is then
selected from the environment using the attention model. For
example, if a sentence constituent were being generated at the
top level, a new entity would be chosen using a singleton coin-
dexation of ‘NEW’; or if some decomposition of a prepositional
phrase were being generated, a ‘NEW’ landmark entity might be
chosen for use in further description (as the NP complement of
the PP), based on its proximity and relation to an existing (coin-
dexed) trajector entity. Finally, the lexicalization model selects
a word or syntactic category (or a multi-word/category combi-
nation such as ‘in front of NP’) to describe the chosen entityor
relation among entities in a tuple.

By generating probabilities for hypotheses in this manner,
the model can incrementally recognize right-corner derivations
while still preserving explicit representations of intermediate
constituents at all levels of the integrated model: e.g. repre-
senting subphone symbols3 in the DBN’s lowest (d=6) level,
partial phonemes in the next (d=5) level,4 partial words in the
following (d = 4) level, and partial phrases and denotations at

3These correspond to the onset, middle, and ending sounds of in-
dividual phonemes, whose distributions can be obtained using existing
acoustical models.

4This level and the one below it are isomorphic to the state andemit
variables in a Hidden Markov Model for subphone composition, which
can also be extracted from existing acoustical models.

subsequent (d≤3) levels, until eventually the denotation of a
complete sentence can be recognized in the top level, at the end
of the utterance.

3. Evaluation
The accuracy of this denotational language model was evalu-
ated in a live interface to a mobile robot, a (batch-mode) inter-
face to a manipulator robot, and a (batch-mode) applicationfor
manipulating objects in a graphic display, each of which hasa
different kind of environment for calculating denotations.

3.1. Mobile robot interface

The robot interface used a relatively self-contained set ofrecog-
nizable directives relating to wheel movement: ‘start/stop mov-
ing,’ ‘ start/stop turning left/right,’ and the relevant sensors for
the denotational recognizer: left and right wheel tachometers.
75 input utterances were collected by asking two subjects todi-
rect a voice-controlled mobile robot using the above commands.

TheΘL2 component of the denotational language model (as
described in Section 2) was trained on a small set of moving and
turning scenarios staged by a trainer, consisting of three scenar-
ios for each directive. These scenarios were intended to corre-
spond to the preconditions of sample events that might be pro-
vided for each type of directive by an (experienced) user teach-
ing the system different ways of changing trajectory. TheΘC
andΘL1 components were trained on a hand-constructed anno-
tated corpus listing the full set of possible directives.

The denotational model was compared with a baseline tri-
gram Hidden Markov Model (HMM)-based language model
trained on the sample set of directives described above. Of the
75 collected utterances, the integrated denotational model rec-
ognized 71 correctly, whereas the baseline HMM-based model
recognized only 58 correctly. This represents a 70% reduction
in recognition error due to the denotational model. This is a
statistically significant improvement withp≤ .01 using a two-
tailed t-test.

3.2. Manipulator robot interface

The denotational language model described above was also
evaluated on collected directives to a voice-directed mobile ma-
nipulator arm in front of a shelf stacked with everyday house-
hold objects (cereal boxes, soft drink cans, etc.), which was
photographed using a 3-D laser scanning camera.5 The re-
sulting 3-D point cloud was polygonized into a triangle mesh
and segmented into entitiesei corresponding to convex regions
of this mesh, each with continuous features~xei specifying the
entity’s size (exposed surface area), shape (ratio of longest to
second longest perpendicular dimensions), spatial location (3-D
coordinates of centroid), and color (average hue, saturation, and
intensity over all pixels in the segment). Word meanings inΘL2
were modeled for adjectives and prepositions using multivariate
Gaussians in this feature space (defined on color, size, and shape
features for adjectives, and on differences in centroid coordi-
nates for prepositions), which were developed partially byhand
as a domain-independent language resource. Verbs and com-
mon nouns were considered domain-specific and were trained

5Subjects were asked to direct the manipulator arm to pick up several
objects from the shelf. The objects were visually designated (by point-
ing), in order to avoid biasing subjects toward any linguistic description.
As a result, some of the collected directives contain very long, complex
definite descriptions. The manipulator arm was a non-functional prop
during this data collection.



automatically on a version of the collected corpus of arm direc-
tives that was annotated with phrase structure (labeled brackets)
and constituent denotations (in the associated training environ-
ment). TheΘC and ΘL1 components were trained on (right-
corner transforms of) the denotation-annotated phrase structure
trees in this same annotated corpus. All training and testing
using this corpus was done using the leave-one-out method of
cross-validation.

The accuracy of the sentence-level denotations obtained
from the integrated denotational language model was tested
against that of denotations obtained through the widely-used
practice of parsing and interpreting the single sentence output
of a trigram HMM language model, trained on transcriptions of
the same collected corpus, using a parser and interpreter trained
on the annotated version of the same corpus (again using leave-
one-out cross-validation). However, primarily due to a high rate
of speech repairs for this somewhat unnatural task of directing
a manipulator arm in a unimodal interface (i.e. without point-
ing), the HMM language model yielded a relatively high (47%)
word error rate on the collected utterances,6 with no sentences
yielding correct denotations. The denotational model did yield
54 parses (of 165 total), but only 20% of these had correct de-
notations (p<.1 due to chance) – a nevertheless statistically sig-
nificant improvement (p<.01 using a two-tailed t-test), which
was evenly distributed across task environments.

3.3. Graphical display interface

The final evaluation of the denotational language model was
performed in a discrete environment, within an applicationfor
manipulating 2-D objects on a graphical display. The graphical
display consisted of nested colored boxes, some of which were
linked to other boxes using thick black lines. The task was in-
tended to represent a directory structure in a form that could be
instantly perceived by test subjects. The sentences were roughly
similar to those collected in the manipulator arm environment.
Again, an annotated corpus of 160 collected utterances was used
for training ΘC and ΘL1 (with leave-one-out cross-validation
in testing), but the discrete relations were handled using auni-
form distribution over satisfying entities inΘL2. Since this task
was somewhat more natural than the manipulator arm task, the
HMM had a word error rate of only 20%, but still did not pro-
duce any entirely correct sentences which could be successfully
parsed and interpreted using a parser trained on transcriptions of
these utterances (largely because it most often missed short but
semantically significant words like ‘in’), whereas the denota-
tional model was able to parse and correctly recognize denoted
entities in approx. 50% of inputs (approx. 10 candidate entities
per environment; improvement p<.01).

4. Conclusions and future work
This paper has described a DBN language model which allows
recognition decisions to be influenced by information aboutthe
entities or relations (tuples of entities) denoted by spoken direc-
tives. Unlike similar approaches, the model provides complete,
recursive, probabilistic analyses of language production(with
unlimited left- or right-recursion and human-like memory lim-
its on internal recursion in syntax). This model has been shown
to provide more accurate recognition than conventional HMM-
based language models. In addition, this denotational model
has two interesting properties not found in other models:

6Average sentence length was>19 words.

1. Since it incrementally models the denotational meaning
of each utterance, it can be configured to provide incre-
mental feedback at a referential level (using other modal-
ities such as gesture, gaze, or graphical displays to indi-
cated hypothesized denotations); and

2. Since it incrementally models the denotational mean-
ing of each utterance, it does not need to compute
(e.g. Viterbi) most likely sequences of words. This
means it can be configured to run as a continuous recog-
nition process, providing overlapping feedback in other
modalities without having to wait for utterance bound-
aries.

These possibilities will be explored in future work in the
context of a general multi-sensor interface architecture for com-
municative agents. Further information about this research can
be found athttp://www.cs.umn.edu/research/nlp.
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