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Abstract

Hierarchical HMM (HHMM) parsers

make promising cognitive models: while

they use a bounded model of working

memory and pursue incremental hypothe-

ses in parallel, they still achieve parsing

accuracies competitive with chart-based

techniques. This paper aims to validate

that a right-corner HHMM parser is also

able to produce complexity metrics, which

quantify a reader’s incremental difficulty

in understanding a sentence. Besides

defining standard metrics in the HHMM

framework, a new metric, embedding

difference, is also proposed, which tests

the hypothesis that HHMM store elements

represents syntactic working memory.

Results show that HHMM surprisal

outperforms all other evaluated metrics

in predicting reading times, and that

embedding difference makes a significant,

independent contribution.

1 Introduction

Since the introduction of a parser-based calcula-

tion for surprisal by Hale (2001), statistical tech-

niques have been become common as models of

reading difficulty and linguistic complexity. Sur-

prisal has received a lot of attention in recent lit-

erature due to nice mathematical properties (Levy,

2008) and predictive ability on eye-tracking move-

ments (Demberg and Keller, 2008; Boston et al.,

2008a). Many other complexity metrics have

been suggested as mutually contributing to reading

difficulty; for example, entropy reduction (Hale,

2006), bigram probabilities (McDonald and Shill-

cock, 2003), and split-syntactic/lexical versions of

other metrics (Roark et al., 2009).

A parser-derived complexity metric such as sur-

prisal can only be as good (empirically) as the

model of language from which it derives (Frank,

2009). Ideally, a psychologically-plausible lan-

guage model would produce a surprisal that would

correlate better with linguistic complexity. There-

fore, the specification of how to encode a syntac-

tic language model is of utmost importance to the

quality of the metric.

However, it is difficult to quantify linguis-

tic complexity and reading difficulty. The two

commonly-used empirical quantifications of read-

ing difficulty are eye-tracking measurements and

word-by-word reading times; this paper uses read-

ing times to find the predictiveness of several

parser-derived complexity metrics. Various fac-

tors (i.e., from syntax, semantics, discourse) are

likely necessary for a full accounting of linguis-

tic complexity, so current computational models

(with some exceptions) narrow the scope to syn-

tactic or lexical complexity.

Three complexity metrics will be calculated in

a Hierarchical Hidden Markov Model (HHMM)

parser that recognizes trees in right-corner form

(the left-right dual of left-corner form). This type

of parser performs competitively on standard pars-

ing tasks (Schuler et al., 2010); also, it reflects

plausible accounts of human language processing

as incremental (Tanenhaus et al., 1995; Brants and

Crocker, 2000), as considering hypotheses proba-

bilistically in parallel (Dahan and Gaskell, 2007),

as bounding memory usage to short-term mem-

ory limits (Cowan, 2001), and as requiring more

memory storage for center-embedding structures

than for right- or left-branching ones (Chomsky

and Miller, 1963; Gibson, 1998). Also, unlike

most other parsers, this parser preserves the arc-

eager/arc-standard ambiguity of Abney and John-



son (1991). Typical parsing strategies are arc-

standard, keeping all right-descendants open for

subsequent attachment; but since there can be an

unbounded number of such open constituents, this

assumption is not compatible with simple mod-

els of bounded memory. A consistently arc-eager

strategy acknowledges memory bounds, but yields

dead-end parses. Both analyses are considered in

right-corner HHMM parsing.

The purpose of this paper is to determine

whether the language model defined by the

HHMM parser can also predict reading times —

it would be strange if a psychologically plausi-

ble model did not also produce viable complex-

ity metrics. In the course of showing that the

HHMM parser does, in fact, predict reading times,

we will define surprisal and entropy reduction in

the HHMM parser, and introduce a third metric

called embedding difference.

Gibson (1998; 2000) hypothesized two types

of syntactic processing costs: integration cost, in

which incremental input is combined with exist-

ing structures; and memory cost, where unfinished

syntactic constructions may incur some short-term

memory usage. HHMM surprisal and entropy

reduction may be considered forms of integra-

tion cost. Though typical PCFG surprisal has

been considered a forward-looking metric (Dem-

berg and Keller, 2008), the incremental nature of

the right-corner transform causes surprisal and en-

tropy reduction in the HHMM parser to measure

the likelihood of grammatical structures that were

hypothesized before evidence was observed for

them. Therefore, these HHMM metrics resemble

an integration cost encompassing both backward-

looking and forward-looking information.

On the other hand, embedding difference is

designed to model the cost of storing center-

embedded structures in working memory. Chen,

Gibson, and Wolf (2005) showed that sentences

requiring more syntactic memory during sen-

tence processing increased reading times, and it

is widely understood that center-embedding incurs

significant syntactic processing costs (Miller and

Chomsky, 1963; Gibson, 1998). Thus, we would

expect for the usage of the center-embedding

memory store in an HHMM parser to correlate

with reading times (and therefore linguistic com-

plexity).

The HHMM parser processes syntactic con-

structs using a bounded number of store states,

defined to represent short-term memory elements;

additional states are utilized whenever center-

embedded syntactic structures are present. Simi-

lar models such as Crocker and Brants (2000) im-

plicitly allow an infinite memory size, but Schuler

et al. (2008; 2010) showed that a right-corner

HHMM parser can parse most sentences in En-

glish with 4 or fewer center-embedded-depth lev-

els. This behavior is similar to the hypothesized

size of a human short-term memory store (Cowan,

2001). A positive result in predicting reading

times will lend additional validity to the claim

that the HHMM parser’s bounded memory cor-

responds to bounded memory in human sentence

processing.

The rest of this paper is organized as fol-

lows: Section 2 defines the language model of the

HHMM parser, including definitions of the three

complexity metrics. The methodology for evalu-

ating the complexity metrics is described in Sec-

tion 3, with actual results in Section 4. Further dis-

cussion on results, and comparisons to other work,

are in Section 5.

2 Parsing Model

This section describes an incremental parser in

which surprisal and entropy reduction are sim-

ple calculations (Section 2.1). The parser uses a

Hierarchical Hidden Markov Model (Section 2.2)

and recognizes trees in a right-corner form (Sec-

tion 2.3 and 2.4). The new complexity metric, em-

bedding difference (Section 2.5), is a natural con-

sequence of this HHMM definition. The model

is equivalent to previous HHMM parsers (Schuler,

2009), but reorganized into 5 cases to clarify the

right-corner structure of the parsed sentences.

2.1 Surprisal and Entropy in HMMs

Hidden Markov Models (HMMs) probabilistically

connect sequences of observed states ot and hid-

den states qt at corresponding time steps t. In pars-

ing, observed states are words; hidden states can

be a conglomerate state of linguistic information,

here taken to be syntactic.

The HMM is an incremental, time-series struc-

ture, so one of its by-products is the prefix prob-

ability, which will be used to calculate surprisal.

This is the probability that that words o1..t have

been observed at time t, regardless of which syn-

tactic states q1..t produced them. Bayes’ Law and

Markov independence assumptions allow this to



be calculated from two generative probability dis-

tributions.1

Pre(o1..t)=
∑

q1..t

P(o1..t q1..t) (1)

def
=

∑

q1..t

t
∏

τ=1

PΘA
(qτ | qτ–1)·PΘB

(oτ | qτ ) (2)

Here, probabilities arise from a Transition

Model (ΘA) between hidden states and an Ob-

servation Model (ΘB) that generates an observed

state from a hidden state. These models are so

termed for historical reasons (Rabiner, 1990).

Surprisal (Hale, 2001) is then a straightforward

calculation from the prefix probability.

Surprisal(t) = log2

Pre(o1..t–1)

Pre(o1..t)
(3)

This framing of prefix probability and surprisal in

a time-series model is equivalent to Hale’s (2001;

2006), assuming that q1..t ∈ Dt, i.e., that the syn-

tactic states we are considering form derivations

Dt, or partial trees, consistent with the observed

words. We will see that this is the case for our

parser in Sections 2.2–2.4.

Entropy is a measure of uncertainty, defined as

H(x) = −P(x) log2 P(x). Now, the entropy Ht

of a t-word string o1..t in an HMM can be written:

Ht =
∑

q1..t

P(q1..t o1..t) log2 P(q1..t o1..t) (4)

and entropy reduction (Hale, 2003; Hale, 2006) at

the tth word is then

ER(ot) = max(0, Ht−1 − Ht) (5)

Both of these metrics fall out naturally from the

time-series representation of the language model.

The third complexity metric, embedding differ-

ence, will be discussed after additional back-

ground in Section 2.5.

In the implementation of an HMM, candidate

states at a given time qt are kept in a trel-

lis, with step-by-step backpointers to the highest-

probability q1..t–1.2 Also, the best qt are often kept

in a beam Bt, discarding low-probability states.

1Technically, a prior distribution over hidden states,
P(q0), is necessary. This q0 is factored and taken to be a de-
terministic constant, and is therefore unimportant as a proba-
bility model.

2Typical tasks in an HMM include finding the most likely
sequence via the Viterbi algorithm, which stores these back-
pointers to maximum-probability previous states and can
uniquely find the most likely sequence.

This mitigates the problems of large state spaces

(e.g., that of all possible grammatical derivations).

Since beams have been shown to perform well

(Brants and Crocker, 2000; Roark, 2001; Boston

et al., 2008b), complexity metrics in this paper

are calculated on a beam rather than over all (un-

bounded) possible derivations Dt. The equations

above, then, will replace the assumption q1..t∈Dt

with qt∈Bt.

2.2 Hierarchical Hidden Markov Models

Hidden states q can have internal structure; in Hi-

erarchical HMMs (Fine et al., 1998; Murphy and

Paskin, 2001), this internal structure will be used

to represent syntax trees and looks like several

HMMs stacked on top of each other. As such, qt

is factored into sequences of depth-specific vari-

ables — one for each of D levels in the HMM hi-

erarchy. In addition, an intermediate variable ft is

introduced to interface between the levels.

qt
def
= 〈q1

t . . . qD
t 〉 (6)

ft
def
= 〈f1

t . . . fD
t 〉 (7)

Transition probabilities PΘA
(qt | qt–1) over com-

plex hidden states qt are calculated in two phases:

• Reduce phase. Yields an intermediate

state ft, in which component HMMs may ter-

minate. This ft tells “higher” HMMs to hold

over their information if “lower” levels are in

operation at any time step t, and tells lower

HMMs to signal when they’re done.

• Shift phase. Yields a modeled hidden state qt,

in which unterminated HMMs transition, and

terminated HMMs are re-initialized from

their parent HMMs.

Each phase is factored according to level-

specific reduce and shift models, ΘF and ΘQ:

PΘA
(qt|qt–1) =

∑

ft

P(ft|qt–1)·P(qt|ft qt–1) (8)

def
=

∑

f1..D
t

D
∏

d=1

PΘF
(fd

t |f
d+1
t qd

t–1q
d–1
t–1 )

· PΘQ
(qd

t |f
d+1
t fd

t qd
t–1q

d–1
t ) (9)

with fD+1
t and q0

t defined as constants. Note that

only qt is present at the end of the probability cal-

culation. In step t, ft–1 will be unused, so the

marginalization of Equation 9 does not lose any

information.
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(a) Dependency structure in the HHMM
parser. Conditional probabilities at a node are
dependent on incoming arcs.
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(b) HHMM parser as a store whose elements at each time step are listed
vertically, showing a good hypothesis on a sample sentence out of many
kept in parallel. Variables corresponding to qd

t are shown.
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(c) A sample sentence in CNF.
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(d) The right-corner transformed version of (c).

Figure 1: Various graphical representations of HHMM parser operation. (a) shows probabilistic depen-

dencies. (b) considers the qd
t store to be incremental syntactic information. (c)–(d) demonstrate the

right-corner transform, similar to a left-to-right traversal of (c). In ‘NP/NN’ we say that NP is the active

constituent and NN is the awaited.

The Observation Model ΘB is comparatively

much simpler. It is only dependent on the syntac-

tic state at D (or the deepest active HHMM level).

PΘB
(ot | qt)

def
= P(ot | q

D
t ) (10)

Figure 1(a) gives a schematic of the dependency

structure of Equations 8–10 for D = 3. Evalua-

tions in this paper are done with D = 4, following

the results of Schuler, et al. (2008).

2.3 Parsing right-corner trees

In this HHMM formulation, states and dependen-

cies are optimized for parsing right-corner trees

(Schuler et al., 2008; Schuler et al., 2010). A sam-

ple transformation between CNF and right-corner

trees is in Figures 1(c)–1(d).

Figure 1(b) shows the corresponding store-

element interpretation3 of the right corner tree

in 1(d). These can be used as a case study to

see what kind of operations need to occur in an

3This is technically a pushdown automoton (PDA), where
the store is limited to D elements. When referring to direc-
tions (e.g., up, down), PDAs are typically described opposite
of the one in Figure 1(b); here, we push “up” instead of down.

HHMM when parsing right-corner trees. There

is one unique set of HHMM state values for each

tree, so the operations can be seen on either the

tree or the store elements.

At each time step t, a certain number of el-

ements (maximum D) are kept in memory, i.e.,

in the store. New words are observed input, and

the bottom occupied element (the “frontier” of the

store) is the context; together, they determine what

the store will look like at t+1. We can characterize

the types of store-element changes by when they

happen in Figures 1(b) and 1(d):

Cross-level Expansion (CLE). Occupies a new

store element at a given time step. For exam-

ple, at t=1, a new store element is occupied

which can interact with the observed word,

“the.” At t = 3, an expansion occupies the

second store element.

In-level Reduction (ILR). Completes an active

constituent that is a unary child in the right-

corner tree; always accompanied by an in-

level expansion. At t = 2, “engineers” com-

pletes the active NP constituent; however, the



level is not yet complete since the NP is along

the left-branching trunk of the tree.

In-level Expansion (ILE). Starts a new active

constituent at an already-occupied store ele-

ment; always follows an in-level reduction.

With the NP complete in t = 2, a new active

constituent S is produced at t=3.

In-level Transition (ILT). Transitions the store

to a new state in the next time step at the same

level, where the awaited constituent changes

and the active constituent remains the same.

This describes each of the steps from t=4 to

t=8 at d=1 .

Cross-level Reduction (CLR). Vacates a store

element on seeing a complete active con-

stituent. This occurs after t = 4; “off”

completes the active (at depth 2) VBD con-

stituent, and vacates store element 2. This

is accompanied with an in-level transition at

depth 1, producing the store at t=5. It should

be noted that with some probability, complet-

ing the active constituent does not vacate the

store element, and the in-level reduction case

would have to be invoked.

The in-level/cross-level ambiguity occurs in the

expansion as well as the reduction, similar to Ab-

ney and Johnson’s arc-eager/arc-standard compo-

sition strategies (1991). At t=3, another possible

hypothesis would be to remain on store element

1 using an ILE instead of a CLE. The HHMM

parser, unlike most other parsers, will preserve this

in-level/cross-level ambiguity by considering both

hypotheses in parallel.

2.4 Reduce and Shift Models

With the understanding of what operations need to

occur, a formal definition of the language model is

in order. Let us begin with the relevant variables.

A shift variable qd
t at depth d and time step t is

a syntactic state that must represent the active and

awaited constituents of right-corner form:

qd
t

def
= 〈gA

qd
t
, gW

qd
t
〉 (11)

e.g., in Figure 1(b), q1
2=〈NP,NN〉=NP/NN. Each g is

a constituent from the pre-right-corner grammar,

G.

Reduce variables f are then enlisted to ensure

that in-level and cross-level operations are correct.

fd
t

def
= 〈kfd

t
, gfd

t
〉 (12)

First, kfd
t

is a switching variable that differenti-

ates between ILT, CLE/CLR, and ILE/ILR. This

switching is the most important aspect of fd
t , so

regardless of what gfd
t

is, we will use:

• fd
t ∈ F0 when kfd

t
=0, (ILT/no-op)

• fd
t ∈ F1 when kfd

t
=1, (CLE/CLR)

• fd
t ∈ FG when kfd

t
∈ G. (ILE/ILR)

Then, gfd
t

is used to keep track of a completely-

recognized constituent whenever a reduction oc-

curs (ILR or CLR). For example, in Figure 1(b),

after time step 2, an NP has been completely rec-

ognized and precipitates an ILR. The NP gets

stored in gf1
3

for use in the ensuing ILE instead

of appearing in the store-elements.

This leads us to a specification of the reduce and

shift probability models. The reduce step happens

first at each time step. True to its name, the re-

duce step handles in-level and cross-level reduc-

tions (the second and third case below):

PΘF
(fd

t | fd+1
t qd

t−1q
d−1
t−1 )

def
=

{

if fd+1
t 6∈FG : Jfd

t = 0K

if fd+1
t ∈FG, fd

t ∈ F1 : P̃ΘF-ILR,d
(fd

t | qd
t−1 qd−1

t−1 )

if fd+1
t ∈FG, fd

t ∈ FG : P̃ΘF-CLR,d
(fd

t | qd
t−1 qd−1

t−1 )
(13)

with edge cases q0
t and fD+1

t defined as appropri-

ate constants. The first case is just store-element

maintenance, in which the variable is not on the

“frontier” and therefore inactive.

Examining ΘF-ILR,d and ΘF-CLR,d, we see that

the produced fd
t variables are also used in the “if”

statement. These models can be thought of as

picking out a fd
t first, finding the matching case,

then applying the probability models that matches.

These models are actually two parts of the same

model when learned from trees.

Probabilities in the shift step are also split into

cases based on the reduce variables. More main-

tenance operations (first case) accompany transi-

tions producing new awaited constituents (second

case below) and expansions producing new active

constituents (third and fourth case):

PΘQ
(qd

t | f
d+1
t fd

t qd
t−1q

d−1
t )

def
=











if fd+1
t 6∈FG : Jqd

t = qd
t−1K

if fd+1
t ∈FG, fd

t ∈ F0 : P̃ΘQ-ILT,d
(qd

t | fd+1
t qd

t−1 qd−1
t )

if fd+1
t ∈FG, fd

t ∈ F1 : P̃ΘQ-ILE,d
(qd

t | fd
t qd

t−1 qd−1
t )

if fd+1
t ∈FG, fd

t ∈FG : P̃ΘQ-CLE,d
(qd

t | qd−1
t )

(14)



FACTOR DESCRIPTION EXPECTED

Word order in
narrative

For each story, words were indexed. Subjects would tend to read faster later in a story. negative
slope

Reciprocal
length

Log of the reciprocal of the number of letters in each word. A decrease in the reciprocal
(increase in length) might mean longer reading times.

positive
slope

Unigram
frequency

A log-transformed empirical count of word occurrences in the Brown Corpus section of
the Penn Treebank. Higher frequency should indicate shorter reading times.

negative
slope

Bigram
probability

A log-transformed empirical count of two-successive-word occurrences, with Good-
Turing smoothing on words occuring less than 10 times.

negative
slope

Embedding
difference

Amount of change in HHMM weighted-average embedding depth. Hypothesized to in-
crease with larger working memory requirements, which predict longer reading times.

positive
slope

Entropy
reduction

Amount of decrease in the HHMM’s uncertainty about the sentence. Larger reductions
in uncertainty are hypothesized to take longer.

positive
slope

Surprisal “Surprise value” of a word in the HHMM parser; models were trained on the Wall Street
Journal, sections 02–21. More surprising words may take longer to read.

positive
slope

Table 1: A list of factors hypothesized to contribute to reading times. All data was mean-centered.

A final note: the notation P̃Θ(· | ·) has been used

to indicate probability models that are empirical,

trained directly from frequency counts of right-

corner transformed trees in a large corpus. Alter-

natively, a standard PCFG could be trained on a

corpus (or hand-specified), and then the grammar

itself can be right-corner transformed (Schuler,

2009).

Taken together, Equations 11–14 define the

probabilistic structure of the HHMM for parsing

right-corner trees.

2.5 Embedding difference in the HHMM

It should be clear from Figure 1 that at any time

step while parsing depth-bounded right-corner

trees, the candidate hidden state qt will have a

“frontier” depth d(qt). At time t, the beam of

possible hidden states qt stores the syntactic state

(and a backpointer) along with its probability,

P(o1..t q1..t). The average embedding depth at a

time step is then

µEMB(o1..t) =
∑

qt∈Bt

d(qt) ·
P(o1..t q1..t)

∑

q′t∈Bt
P(o1..t q′1..t)

(15)

where we have directly used the beam notation.

The embedding difference metric is:

EmbDiff(o1..t) = µEMB(o1..t) − µEMB(o1..t−1)
(16)

There is a strong computational correspondence

between this definition of embedding difference

and the previous definition of surprisal. To see

this, we rewrite Equations 1 and 3:

Pre(o1..t)=
∑

qt∈Bt

P(o1..t q1..t) (1′)

Surprisal(t) = log2 Pre(o1..t–1) − log2 Pre(o1..t)
(3′)

Both surprisal and embedding difference include

summations over the elements of the beam, and

are calculated as a difference between previous

and current beam states.

Most differences between these metrics are rel-

atively inconsequential. For example, the dif-

ference in order of subtraction only assures that

a positive correlation with reading times is ex-

pected. Also, the presence of a logarithm is rel-

atively minor. Embedding difference weighs the

probabilities with center-embedding depths and

then normalizes the values; since the measure is

a weighted average of embedding depths rather

than a probability distribution, µEMB is not always

less than 1 and the correspondence with Kullback-

Leibler divergence (Levy, 2008) does not hold, so

it does not make sense to take the logs.

Therefore, the inclusion of the embedding

depth, d(qt), is the only significant difference

between the two metrics. The result is a met-

ric that, despite numerical correspondence to sur-

prisal, models the HHMM’s hypotheses about

memory cost.

3 Evaluation

Surprisal, entropy reduction, and embedding dif-

ference from the HHMM parser were evaluated

against a full array of factors (Table 1) on a cor-

pus of word-by-word reading times using a linear

mixed-effects model.



The corpus of reading times for 23 native En-

glish speakers was collected on a set of four nar-

ratives (Bachrach et al., 2009), each composed of

sentences that were syntactically complex but con-

structed to appear relatively natural. Using Linger

2.88, words appeared one-by-one on the screen,

and required a button-press in order to advance;

they were displayed in lines with 11.5 words on

average.

Following Roark et al.’s (2009) work on the

same corpus, reading times above 1500 ms (for

diverted attention) or below 150 ms (for button

presses planned before the word appeared) were

discarded. In addition, the first and last word of

each line on the screen were removed; this left

2926 words out of 3540 words in the corpus.

For some tests, a division between open- and

closed-class words was made, with 1450 and 1476

words, respectively. Closed-class words (e.g., de-

terminers or auxiliary verbs) usually play some

kind of syntactic function in a sentence; our evalu-

ations used Roark et al.’s list of stop words. Open

class words (e.g., nouns and other verbs) more

commonly include new words. Thus, one may ex-

pect reading times to differ for these two types of

words.

Linear mixed-effect regression analysis was

used on this data; this entails a set of fixed effects

and another of random effects. Reading times y
were modeled as a linear combination of factors

x, listed in Table 1 (fixed effects); some random

variation in the corpus might also be explained by

groupings according to subject i, word j, or sen-

tence k (random effects).

yijk = β0 +

m
X

ℓ=1

βℓxijkℓ + bi + bj + bk + ε (17)

This equation is solved for each of m fixed-

effect coefficients β with a measure of confidence

(t-value = β̂/SE(β̂), where SE is the standard er-

ror). β0 is the standard intercept to be estimated

along with the rest of the coefficients, to adjust for

affine relationships between the dependent and in-

dependent variables. We report factors as statisti-

cally significant contributors to reading time if the

absolute value of the t-value is greater than 2.

Two more types of comparisons will be made to

see the significance of factors. First, a model of

data with the full list of factors can be compared

to a model with a subset of those factors. This is

done with a likelihood ratio test, producing (for

mixed-effects models) a χ2
1 value and correspond-

ing probability that the smaller model could have

produced the same estimates as the larger model.

A lower probability indicates that the additional

factors in the larger model are significant.

Second, models with different fixed effects can

be compared to each other through various infor-

mation criteria; these trade off between having

a more explanatory model vs. a simpler model,

and can be calculated on any model. Here, we

use Akaike’s Information Criterion (AIC), where

lower values indicate better models.

All these statistics were calculated in R, using

the lme4 package (Bates et al., 2008).

4 Results

Using the full list of factors in Table 1, fixed-effect

coefficients were estimated in Table 2. Fitting the

best model by AIC would actually prune away

some of the factors as relatively insignificant, but

these smaller models largely accord with the sig-

nificance values in the table and are therefore not

presented.

The first data column shows the regression on

all data; the second and third columns divide the

data into open and closed classes, because an eval-

uation (not reported in detail here) showed statis-

tically significant interactions between word class

and 3 of the predictors. Additionally, this facil-

itates comparison with Roark et al. (2009), who

make the same division.

Out of the non-parser-based metrics, word order

and bigram probability are statistically significant

regardless of the data subset; though reciprocal

length and unigram frequency do not reach signif-

icance here, likelihood ratio tests (not shown) con-

firm that they contribute to the model as a whole.

It can be seen that nearly all the slopes have been

estimated with signs as expected, with the excep-

tion of reciprocal length (which is not statistically

significant).

Most notably, HHMM surprisal is seen here to

be a standout predictive measure for reading times

regardless of word class. If the HHMM parser is

a good psycholinguistic model, we would expect

it to at least produce a viable surprisal metric, and

Table 2 attests that this is indeed the case. Though

it seems to be less predictive of open classes, a

surprisal-only model has the best AIC (-7804) out

of any open-class model. Considering the AIC

on the full data, the worst model with surprisal



FULL DATA OPEN CLASS CLOSED CLASS

Coefficient Std. Err. t-value Coefficient Std. Err. t-value Coefficient Std. Err. t-value

(Intcpt) -9.340·10−3 5.347·10−2 -0.175 -1.237·10−2 5.217·10−2 -0.237 -6.295·10−2 7.930·10−2 -0.794

order -3.746·10−5 7.808·10−6 -4.797∗ -3.697·10−5 8.002·10−6 -4.621∗ -3.748·10−5 8.854·10−6 -4.232∗

rlength -2.002·10−2 1.635·10−2 -1.225 9.849·10−3 1.779·10−2 0.554 -2.839·10−2 3.283·10−2 -0.865

unigrm -8.090·10−2 3.690·10−1 -0.219 -1.047·10−1 2.681·10−1 -0.391 -3.847·10+0 5.976·10+0 -0.644

bigrm -2.074·10+0 8.132·10−1 -2.551∗ -2.615·10+0 8.050·10−1 -3.248∗ -5.052·10+1 1.910·10+1 -2.645∗

embdiff 9.390·10−3 3.268·10−3 2.873∗ 2.432·10−3 4.512·10−3 0.539 1.598·10−2 5.185·10−3 3.082∗

etrpyrd 2.753·10−2 6.792·10−3 4.052∗ 6.634·10−4 1.048·10−2 0.063 4.938·10−2 1.017·10−2 4.857∗

srprsl 3.950·10−3 3.452·10−4 11.442∗ 2.892·10−3 4.601·10−4 6.285∗ 5.201·10−3 5.601·10−4 9.286∗

Table 2: Results of linear mixed-effect modeling. Significance (indicated by ∗) is reported at p < 0.05.

(Intr) order rlngth ungrm bigrm emdiff entrpy

order .000
rlength -.006 -.003
unigrm .049 .000 -.479
bigrm .001 .005 -.006 -.073
emdiff .000 .009 -.049 -.089 .095
etrpyrd .000 .003 .016 -.014 .020 -.010
srprsl .000 -.008 -.033 -.079 .107 .362 .171

Table 3: Correlations in the full model.

(AIC=-10589) outperformed the best model with-

out it (AIC=-10478), indicating that the HHMM

surprisal is well worth including in the model re-

gardless of the presence of other significant fac-

tors.

HHMM entropy reduction predicts reading

times on the full dataset and on closed-class

words. However, its effect on open-class words is

insignificant; if we compare the model of column

2 against one without entropy reduction, a likeli-

hood ratio test gives χ2
1 = 0.0022, p = 0.9623

(the smaller model could easily generate the same

data).

The HHMM’s average embedding difference

is also significant except in the case of open-

class words — removing embedding difference on

open-class data yields χ2
1 = 0.2739, p = 0.6007.

But what is remarkable is that there is any signifi-

cance for this metric at all. Embedding difference

and surprisal were relatively correlated compared

to other predictors (see Table 3), which is expected

because embedding difference is calculated like

a weighted version of surprisal. Despite this, it

makes an independent contribution to the full-data

and closed-class models. Thus, we can conclude

that the average embedding depth component af-

fects reading times — i.e., the HHMM’s notion of

working memory behaves as we would expect hu-

man working memory to behave.

5 Discussion

As with previous work on large-scale parser-

derived complexity metrics, the linear mixed-

effect models suggest that sentence-level factors

are effective predictors for reading difficulty — in

these evaluations, better than commonly-used lex-

ical and near-neighbor predictors (Pollatsek et al.,

2006; Engbert et al., 2005). The fact that HHMM

surprisal outperforms even n-gram metrics points

to the importance of including a notion of sentence

structure. This is particularly true when the sen-

tence structure is defined in a language model that

is psycholinguistically plausible (here, bounded-

memory right-corner form).

This accords with an understated result of

Boston et al.’s eye-tracking study (2008a): a

richer language model predicts eye movements

during reading better than an oversimplified one.

The comparison there is between phrase struc-

ture surprisal (based on Hale’s (2001) calculation

from an Earley parser), and dependency grammar

surprisal (based on Nivre’s (2007) dependency

parser). Frank (2009) similarly reports improve-

ments in the reading-time predictiveness of unlexi-

calized surprisal when using a language model that

is more plausible than PCFGs.

The difference in predictivity due to word class

is difficult to explain. One theory may be that

closed-class words are less susceptible to random

effects because there is a finite set of them for

any language, making them overall easier to pre-

dict via parser-derived metrics. Or, we could note

that since closed-class words often serve grammat-

ical functions in addition to their lexical content,

they contribute more information to parser-derived

measures than open-class words. Previous work

with complexity metrics on this corpus (Roark et

al., 2009) suggests that these explanations only ac-

count for part of the word-class variation in the

performance of predictors.



Further comparsion to Roark et al. will show

other differences, such as the lesser role of word

length and unigram frequency, lower overall cor-

relations between factors, and the greater predic-

tivity of their entropy metric. In addition, their

metrics are different from ours in that they are de-

signed to tease apart lexical and syntactic contri-

butions to reading difficulty. Their notion of en-

tropy, in particular, estimates Hale’s definition of

entropy on whole derivations (2006) by isolating

the predictive entropy; they then proceed to define

separate lexical and syntactic predictive entropies.

Drawing more directly from Hale, our definition

is a whole-derivation metric based on the condi-

tional entropy of the words, given the root. (The

root constituent, though unwritten in our defini-

tions, is always included in the HHMM start state,

q0.)

More generally, the parser used in these evalu-

ations differs from other reported parsers in that

it is not lexicalized. One might expect for this

to be a weakness, allowing distributions of prob-

abilities at each time step in places not licensed

by the observed words, and therefore giving poor

probability-based complexity metrics. However,

we see that this language model performs well

despite its lack of lexicalization. This indicates

that lexicalization is not a requisite part of syntac-

tic parser performance with respect to predicting

linguistic complexity, corroborating the evidence

of Demberg and Keller’s (2008) ‘unlexicalized’

(POS-generating, not word-generating) parser.

Another difference is that previous parsers have

produced useful complexity metrics without main-

taining arc-eager/arc-standard ambiguity. Results

show that including this ambiguity in the HHMM

at least does not invalidate (and may in fact im-

prove) surprisal or entropy reduction as reading-

time predictors.

6 Conclusion

The task at hand was to determine whether the

HHMM could consistently be considered a plau-

sible psycholinguistic model, producing viable

complexity metrics while maintaining other char-

acteristics such as bounded memory usage. The

linear mixed-effects models on reading times val-

idate this claim. The HHMM can straightfor-

wardly produce highly-predictive, standard com-

plexity metrics (surprisal and entropy reduction).

HHMM surprisal performs very well in predicting

reading times regardless of word class. Our for-

mulation of entropy reduction is also significant

except in open-class words.

The new metric, embedding difference, uses the

average center-embedding depth of the HHMM

to model syntactic-processing memory cost. This

metric can only be calculated on parsers with an

explicit representation for short-term memory el-

ements like the right-corner HHMM parser. Re-

sults show that embedding difference does predict

reading times except in open-class words, yielding

a significant contribution independent of surprisal

despite the fact that its definition is similar to that

of surprisal.
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