
Preserving Semantic Dependencies in
Synchronous Tree Adjoining Grammar�

William Schuler
University of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104 USA
schuler@linc.cis.upenn.edu

Abstract

Rambow, Wier and Vijay-Shanker (Rambow et
al., 1995) point out the di�erences between TAG
derivation structures and semantic or predicate-
argument dependencies, and Joshi and Vijay-
Shanker (Joshi and Vijay-Shanker, 1999) de-
scribe a monotonic compositional semantics
based on attachment order that represents the
desired dependencies of a derivation without un-
derspecifying predicate-argument relationships
at any stage. In this paper, we apply the Joshi
and Vijay-Shanker conception of compositional
semantics to the problem of preserving seman-
tic dependencies in Synchronous TAG transla-
tion (Shieber and Schabes, 1990; Abeill�e et al.,
1990). In particular, we describe an algorithm
to obtain the semantic dependencies on a TAG
parse forest and construct a target derivation
forest with isomorphic or locally non-isomorphic
dependencies in O(n7) time.

1 Introduction

The primary goal of this paper is to solve the
problem of preserving semantic dependencies in
Isomorphic Synchronous Tree Adjoining Gram-
mar (ISTAG) (Shieber, 1994; Shieber and Sch-
abes, 1990), a variant of Tree Adjoining Gram-
mar (Joshi, 1985) in which source and target
elementary trees are assembled into isomorphic
derivations. The problem, �rst described in
Rambow, Wier and Vijay-Shanker (Rambow et
al., 1995), stems from the fact that the TAG
derivation structure { even using a 
at adjunc-
tion of modi�ers (Schabes and Shieber, 1994)
{ deviates from the appropriate dependency

�The author would like to thank Karin Kipper,
Aravind Joshi, Martha Palmer, Norm Badler, and
the anonymous reviewers for their valuable comments.
This work was partially supported by NSF Grant
SBR8920230 and ARO Grant DAAH0404-94-GE-0426.

structure in certain cases. This can result in
translation errors.
For example, if we parse sentence (1),

(1) X is supposed to be able to 
y.

using the trees in Figure 1, we get the following
derivation:1

�:
y

�1:be-able-to(VP)

�2:is-supposed-to(VP)

with the auxiliary is-supposed-to adjoining at
the VP to predicate over be-able-to and the aux-
iliary be-able-to adjoining at the VP to predi-
cate over 
y. If we then try to assemble an iso-
morphic tree in a language such as Portuguese
(which makes less use of raising verbs) using
the ISTAG transfer rules in Figure 2, we will be
forced into an ill-formed derivation:

�:voar

�1:�e-capaz-de(VP)

�2:�e-pressuposto-que(S?)

because the raising construction is-supposed-

to translates to a bridge construction �e-

pressuposto-que and cannot adjoin anywhere in
the tree for �e-capaz-de (the translation of be-

able-to) because there is no S-labeled adjunction
site.
The correct target derivation:

�:voar

�1:�e-capaz-de(VP) �2:�e-pressuposto-que(S)

1The subject is omitted to simplify the diagram.



VP

V�

is

VP

V�

supposed

VP

V�

to

VP*

VP

V�

be

VP

V�

able

VP

V�

to

VP*

S

NP# VP

V�


y

Figure 1: Sample elementary trees for \supposed to be able to 
y"

which yields the translation in sentence (2),

(2) �E pressuposto que X �e capaz de voar.

is not isomorphic to the source. Worse, this
non-isomorphism is unbounded, because the
bridge verb pressuposto may have to migrate
across any number of intervening raising verbs
to �nd an ancestor that contains an appropriate
adjunction site:

�:
y

�1:able(VP)

. . .

�n�1:going(VP)

�n:supp.(VP)

�:voar

�1:capaz(VP)

. . .

�n�1:vai(VP)

�n:press.(S)

This sort of non-local non-isomorphic transfer
cannot be handled in a synchronous TAG that
has an isomorphism restriction on derivation
trees. On the other hand, we do not wish to
return to the original non-local formulation of
synchronous TAG (Shieber and Schabes, 1990)
because the non-local inheritance of links on
the derived tree is di�cult to implement, and
because the non-local formulation can recog-
nize languages beyond the generative power of
TAG. Rambow, Wier and Vijay-Shanker them-
selves introduce D-Tree Grammar (Rambow et
al., 1995) and Candito and Kahane introduce
the DTG variant Graph Adjunction Grammar
(Candito and Kahane, 1998b) in order to solve
this problem using a derivation process that
mirrors composition more directly, but both in-
volve potentially signi�cantly greater recogni-
tion complexity than TAG.

2 Overview

Our solution is to retain ISTAG, but move
the isomorphism restriction from the deriva-
tion structure to the predicate-argument at-
tachment structure described in (Joshi and
Vijay-Shanker, 1999).

This structure represents the composition of
semantic predicates for lexicalized elementary
trees, each of which contains a `predicate' vari-
able associated with the situation or entity that
the predicate introduces, and a set of `argument'
variables associated with the foot node and sub-
stitution sites in the original elementary tree.
The predicates are composed by identifying the
predicate variable in one predicate with an ar-
gument variable in another, so that the two vari-
ables refer to the same situation or entity.

Composition proceeds from the bottom up on
the derivation tree, with adjuncts traversed in
order from the lowest to the highest adjunction
site in each elementary tree, in much the same
way that a parser produces a derivation. When-
ever an initial tree is substituted, its predicate
variable is identi�ed in the composed structure
with an argument variable of the tree it substi-
tutes into. Whenever an auxiliary tree is ad-
joined, the predicate variable of the tree it ad-
joins into is identi�ed in the composed struc-
ture with one of its own argument variables. In
cases of adjunction, an auxiliary tree's seman-
tics can also specify which variable will become
the predicate variable of the composed struc-
ture for use in subsequent adjunctions at higher
adjunction sites: a modi�er auxiliary will re-
turn the host tree's original predicate variable,
and a predicative auxiliary will return its own
predicate variable.2 Since the traversal must

2See (Schabes and Shieber, 1994) for de�nitions of
modi�er and predicative auxiliaries.



0
BBBBBBBBBBBBBBB@

VP

V�

is

VP

V�

supposed

VP

V�

to

VP*

S

V�

�e

S

V�

pressuposto

S

V�

que

S*

;

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

VP

V�

be

VP

V�

able

VP

V�

to

VP*

VP

V�

�e

VP

V�

capaz

VP

V�

de

VP*

;

1
CCCCCCCCCCCCCCA

0
BBBBBBBBB@

S

NP# VP

V�


y

S

NP# VP

V�

voar
;

1
CCCCCCCCCA

Figure 2: Synchronous tree pairs for \supposed to be able to 
y"

proceed from the bottom up, the attachment of
predicates to arguments is neither destructive
nor underspeci�ed at any stage in the interpre-
tation.

For example, assume the initial tree �:
y has
a predicate variable s1, representing the situa-
tion of something 
ying, and an argument vari-
able x1, representing the thing that is 
ying;
and assume the predicative auxiliary tree �1:be-
able-to has a predicate variable s2, represent-
ing the situation of something being possible,
and an argument variable s3, representing the
thing that is possible. If �1 is now adjoined
into �, the composed structure would have s1
identi�ed with s3 (since the situation of 
ying
is the thing that is possible), and s2 as an over-
all predicate variable, so if another tree later
adjoins into this composed structure rooted on
�, it will predicate over s2 (the situation that

ying is possible) rather than over �'s original
predicate variable s1 (the situation of 
ying by
itself). Note that Joshi and Vijay-Shanker do
not require the predicate and modi�er distinc-
tions, because they can explicitly specify the
fates of any number of predicate variables in
a tree's semantic representation. For simplicity,
we will limit our discussion to only the two pos-
sibilities of predicative and modi�er auxiliaries,

using one predicate variable per tree.
If we represent each such predicate-argument

attachment as an arc in a directed graph, we can
view the predicate-argument attachment struc-
ture of a derivation as a dependency graph, in
much the same way as Candito and Kahane
interpret the original derivation trees (Candito
and Kahane, 1998a). More importantly, we can
see that this de�nition predicts the predicate-
argument dependencies for sentences (1) and (2)
to be isomorphic:

�0:supposed-to

�1:be-able-to

�2:
y

�0:�e-pressuposto-que

�1:�e-capaz-de

�2:voar

even though their derivation trees are not.
This is because the predicative auxiliary for

�e-capaz-de returns its predicate variable to the
host tree for subsequent adjunctions, so the aux-
iliary tree for �e-pressuposto-que can attach it as
one of its arguments, just as if it had adjoined
directly to the auxiliary, as supposed-to does in
English.
It is also important to note that Joshi and

Vijay-Shanker's de�nition of TAG composi-
tional semantics di�ers from that of Shieber



and Schabes (Shieber and Schabes, 1990) using
Synchronous TAG, in that the former preserves
the scope ordering of predicative adjunctions,
which may be permuted in the latter, altering
the meaning of the sentence.3 It is precisely
this scope-preserving property we hope to ex-
ploit in our formulation of a dependency-based
isomorphic synchronous TAG in the next two
sections. However, as Joshi and Vijay-Shanker
suggest, the proper treatment of synchronous
translation to logical form may require a multi-
component Synchronous TAG analysis in order
to handle quanti�ers, which is beyond the scope
of this paper. For this reason, we will focus on
examples in machine translation.

3 Obtaining Source Dependencies

If we assume that this attachment structure
captures a sentence's semantic dependencies,
then in order to preserve semantic dependencies
in synchronous TAG translation, we will need to
obtain this structure from a source derivation
and then construct a target derivation with an
isomorphic structure.
The �rst algorithm we present obtains se-

mantic dependencies for derivations by keep-
ing track of an additional �eld in each chart
item during parsing, corresponding to the pred-
icate variable from Section 2. Other than the
additional �eld, the algorithm remains essen-
tially the same as the parsing algorithm de-
scribed in (Schabes and Shieber, 1994), so it
can be applied as a transducer during recogni-
tion, or as a post-process on a derivation forest
(Vijay-Shanker and Weir, 1993). Once the de-
sired dependencies are obtained, the forest may
be �ltered to select a single most-preferred tree
using statistics or rule-based selectional restric-
tions on those dependencies.4

For calculating dependencies, we de�ne a
function arg(�
) to return the argument posi-
tion associated with a substitution site or foot
node � in elementary tree 
. Let a dependency
be de�ned as a labeled arc h�; l;  i, from predi-
cate � to predicate  with label l.

� For each tree selected by �, set the predi-
cate variable of each anchor item to �.

3See (Joshi and Vijay-Shanker, 1999) for a complete
description.

4See (Schuler, 1998) for a discussion of statistically
�ltering TAG forests using semantic dependencies.

� For each substitution of initial tree � 
with predicate variable ! into 
� at node
address �, emit h�; arg(
; �); !i

� For each modi�er adjunction of auxil-
iary tree � into tree 
� with predicate vari-
able �, emit h ; arg(�; FOOT ); �i and set
the predicate variable of the composed item
to �.

� For each predicative adjunction of aux-
iliary tree � with predicate variable !
into tree 
� with predicate variable �, emit
h ; arg(�; FOOT ); �i and set the predicate
variable of the composed item to !.

� For all other productions, propagate the
predicate variable up along the path from
the main anchor to the root.

Since the number of possible values for the
additional predicate variable �eld is bounded
by n, where n is the number of lexical items
in the input sentence, and none of the produc-
tions combine more than one predicate variable,
the complexity of the dependency transducing
algorithm is O(n7).
This algorithm can be applied to the example

derivation tree in Section 1,

�:
y

�1:be-able-to(VP)

�2:is-supposed-to(VP)

which resembles the stacked derivation tree for
Candito and Kahane's example 5a, \Paul claims
Mary said Peter left."
First, we adjoin �2:is-supposed-to at node VP

of �1:be-able-to, which produces the dependency
his-supposed-to; 0;be-able-toi. Then we adjoin
�1:be-able-to at node VP of �:
y, which pro-
duces the dependency hbe-able-to; 0;
yi. The
resulting dependencies are represented graphi-
cally in the dependency structure below:

�0:supposed-to

�1:be-able-to(0)

�2:
y(0)

This example is relatively straightforward,
simply reversing the direction of adjunction de-
pendencies as described in (Candito and Ka-
hane, 1998a), but this algorithm can transduce



the correct isomorphic dependency structure for
the Portuguese derivation as well, similar to the
distributed derivation tree in Candito and Ka-
hane's example 5b, \Paul claims Mary seems to
adore hot dogs," (Rambow et al., 1995), where
there is no edge corresponding to the depen-
dency between the raising and bridge verbs:

�:voar

�1:�e-capaz-de(VP) �2:�e-pressuposto-que(S)

We begin by adjoining �1:�e-capaz-de at node
VP of �:voar, which produces the dependency
h�e-capaz-de; 0;voari, just as before. Then we ad-
join �2:�e-pressuposto-que at node S of �:voar.
This time, however, we must observe the predi-
cate variable of the chart item for �:voar which
was updated in the previous adjunction, and
now references �e-capaz-de instead of voar. Be-
cause the transduction rule for adjunction uses
the predicate variable of the parent instead of
just the predicate, the dependency produced by
the adjunction of �2 is h�e-pressuposto-que; 0;�e-
capaz-dei, yielding the graph:

�0:�e-pressuposto-que

�1:�e-capaz-de(0)

�2:voar(0)

The derivation examples above only address
the preservation of dependencies through ad-
junction. Let us now attempt to preserve
both substitution and adjunction dependencies
in transducing a sentence based on Candito and
Kahane's example 5c, \That Paul has to stay
surprised Mary," in order to demonstrate how
they interact.5 We begin with the derivation
tree:

�1:surprise

�2:stay(S0)

�3:Paul(NP0) �:have-to(VP)

�4:Mary(NP1)

5We have replaced want to in the original example
with have to in order to highlight the dependency struc-
ture and set aside any translation issues related to PRO
control.

As Candito and Kahane point out, this
derivation tree does not match the dependency
structure of the sentence as described in Mean-
ing Text Theory (Mel'cuk, 1988), because there
is no edge in the derivation corresponding to
the dependency between surprise and have-to

(the necessity of Paul's staying is what surprises
Mary, not his staying in itself). Using the above
algorithm, however, we can still produce the de-
sired dependency structure:

�1:surprise

�2:have-to(0)

�3:stay(0)

�4:Paul(0)

�5:Mary(1)

by adjoining �:have-to at node VP of �2:stay
to produce a composed item with have-to as
its predicate variable, as well as the depen-
dency hhave-to; 0;stayi. When �2:stay substi-
tutes at node S0 of �1:surprise, the resulting
dependency also uses the predicate variable of
the argument, yielding hsurprise; 0;have-toi.

4 Obtaining Target Derivations

Once a source derivation is selected from the
parse forest, the predicate-argument dependen-
cies can be read o� from the items in the forest
that constitute the selected derivation. The re-
sulting dependency graph can then be mapped
to a forest of target derivations, where each
predicate node in the source dependency graph
is linked to a set of possible elementary trees in
the target grammar, each of which is instanti-
ated with substitution or adjunction edges lead-
ing to other linked sets in the forest. The el-
ementary trees in the target forest are deter-
mined by the predicate pairs in the transfer lex-
icon, and by the elementary trees that can re-
alize the translated targets. The substitution
and adjunction edges in the target forest are
determined by the argument links in the trans-
fer lexicon, and by the substitution and adjunc-
tion con�gurations that can realize the trans-
lated targets' dependencies.
Mapping dependencies into substitutions is

relatively straightforward, but we have seen in
Section 2 that di�erent adjunction con�gura-
tions (such as the raising and bridge verb ad-



junctions in sentences (1) and (2)) can corre-
spond to the same dependency graph, so we
should expect that some dependencies in our
target graph may correspond to more than one
adjunction con�guration in the target deriva-
tion tree. Since a dependency may be realized
by adjunctions at up to n di�erent sites, an un-
constrained algorithm would require exponen-
tial time to �nd a target derivation in the worst
case. In order to reduce this complexity, we
present a dynamic programming algorithm for
constructing a target derivation forest in time
proportional to O(n4) which relies on a restric-
tion that the target derivations must preserve
the relative scope ordering of the predicates in
the source dependency graph.

This restriction carries the linguistic implica-
tion that the scope ordering of adjuncts is part
of the meaning of a sentence and should not
be re-arranged in translation. Since we exploit
a notion of locality similar to that of Isomor-
phic Synchronous TAG, we should not expect
the generative power of our de�nition to exceed
the generative power of TAG, as well.

First, we de�ne an ordering of predicates on
the source dependency graph corresponding to a
depth-�rst traversal of the graph, originating at
the predicate variable of the root of the source
derivation, and visiting arguments and modi-
�ers in order from lowest to highest scope. In
other words, arguments and modi�ers will be
ordered from the bottom up on the elementary
tree structure of the parent, such that the foot
node argument of an elementary tree has the
lowest scope among the arguments, and the �rst
adjunct on the main (trunk) anchor has the low-
est scope among the modi�ers.

Arguments, which can safely be permuted
in translation because their number is �nitely
bounded, are traversed entirely before the par-
ent; and modi�ers, which should not be per-
muted because they may be arbitrarily numer-
ous, are traversed entirely after the parent.
This enumeration will roughly correspond to
the scoping order for the adjuncts in the source
derivation, while preventing substituted trees
from interrupting possible scoping con�gura-
tions. We can now identify all the descendants
of any elementary tree in a derivation because
they will form a consecutive series in the enu-
meration described above. It therefore provides

a convenient way to generate a target derivation
forest that preserves the scoping information in
the source, by `parsing' the scope-ordered string
of elementary trees, using indices on this enu-
meration instead of on a string yield.

It is important to note that in de�ning this
algorithm, we assume that all trees associated
with a particular predicate will use the same
argument structure as that predicate.6 We also
assume that the set of trees associated with a
particular predicate may be �ltered by transfer-
ring information such as mood and voice from
source to target predicates.

Apart from the di�erent use of indices, the
algorithm we describe is exactly the reverse of
the transducer described in Section 3, taking
a dependency graph D and producing a TAG
derivation forest containing exactly the set of
derivation trees for which those dependencies
hold. Here, as in a parsing algorithm, we de�ne
forest items as tuples of h
�; �;?; i; j; �i where
�, �, and 
 are elementary trees with node �, �
and  are predicates, � and ! be predicate vari-
ables, and > and ? are delimiters for opening
and closing adjunction, but now let i, j, and k
refer to the indices on the scoping enumeration
described above, instead of on an input string.
In order to reconcile scoping ranges for substi-
tution, we must also de�ne a function first(�)
to return the leftmost (lowest) edge of the �'s
range in the scope enumeration, and last(�) to
return the rightmost (highest) edge of the �'s
range in the scope enumeration.

� For each tree 
 mapped from predicate �
at scope i, introduce h
�; f irst(�); i+1; �i.

� If h�; arg(
; �); !i 2 D,
try substitution of � into 
:

h� ; ROOT;>; f irst(!); last(!); !i
h
�; �;?;�;�;�i

6Although this does not hold for certain relative
clause elementary trees with wh-extractions as substi-
tutions sites (since the wh-site is an argument of the
main verb of the clause instead of the foot node), Can-
dito and Kahane (Candito and Kahane, 1998b) suggest
an alternative analysis which can be extended to TAG
by adjoining the relative clause into its wh-word as a
predicative adjunct, and adjoining the wh-word into the
parent noun phrase as a modi�er, so the noun phrase is
treated as an argument of the wh-word rather than of
the relative clause.



� If h ; arg(�; FOOT ); �i 2 D,
try modi�er adjunction of � into 
:

h
�; �;?; i; j; �i h� ; ROOT;>; j; k; !i
h
�; �;?; i; k; �i

� If h ; arg(�; FOOT ); �i 2 D,
try predicative adjunction of � into 
:

h
�; �;?; i; j; �i h� ; ROOT;>; j; k; !i
h
�; �;>; i; k; !i

� Apply productions for nonterminal projec-
tion as in the transducer algorithm, prop-
agating index ranges and predicative vari-
ables up along the path from the main an-
chor to the root.

Since none of the productions combine more
than three indices and one predicate variable,
and since the indices and predicate variable may
have no more than n distinct values, the algo-
rithm runs in O(n4) time. Note that one of
the indices may be redundant with the predi-
cate variable, so a more e�cient implementation
might be possible in O(n3).
We can demonstrate this algorithm by trans-

lating the English dependency graph from Sec-
tion 1 into a derivation tree for Portuguese.
First, we enumerate the predicates with their
relative scoping positions:

[3] �0:is-supposed-to

[2] �1:be-able-to

[1] �2:
y

Then we construct a derivation forest based
on the translated elementary trees �:voar, �1:�e-
capaz-de, and �2:�e-pressuposto-que. Beginning
at the bottom, we assign to these constituents
the relative scoping ranges of 1-2, 2-3, and 3-$,
respectively, where $ is a terminal symbol.

h�voar ; 1; 2; ::i h�capaz ; 2; 3; ::i h�press; 3; $; ::i

Since there is a dependency from be-able-to to

y, we can adjoin �1:�e-capaz-de to �:voar such
that it covers the range of scopes from 1 to 3
(from voar to �e-capaz-de), so we add this possi-
bility to the forest.

h�voar ; 1; 2; ::i h�capaz ; 2; 3; ::i h�press; 3; $; ::i
h�voar; 1; 3; capazi

There is also a dependency from is-supposed-

to to be-able-to allowing us to adjoin �2:�e-
pressuposto-que to �1:�e-capaz-de to make it
cover the range from 2 to $, but there would
be no S node to host its adjunction, so this pos-
sibility can not be added to the forest. We can,
however, adjoin �2:�e-pressuposto-que to the in-
stance of �:voar extending to �1:�e-capaz-de that
covers the range from 1 to 3, resulting in a com-
plete analysis of the entire scope from 1 to $,
(from �:voar to �2:pressuposto) rooted on voar:

h�voar ; 1; 2; ::i h�capaz ; 2; 3; ::i h�press; 3; $; ::i
h�voar; 1; 3; capazi

h�voar ; 1; $; pressi

which matches the distributed derivation tree
where both auxiliary trees adjoin to voar.

[1-$]�:voar

[2-3]�1:�e-capaz-de(VP) [3-$]�2:�e-pressup.-que(S)

Let us compare this to a translation using the
same dependency structure, but di�erent words:

[3] �0:is-going-to

[2] �1:be-able-to

[1] �2:
y

Once again we select trees in the target lan-
guage, and enumerate them with scoping ranges
in a pre-order traversal, but this time the con-
struction at scope position 3 must be translated
as a raising verb (vai) instead of as a bridge con-
struction (�e-pressuposto-que):

h�voar; 1; 2; ::i h�capaz ; 2; 3; ::i h�vai; 3; $; ::i

Although we can still adjoin �1:ser-capaz-de at
the VP node of �:voar, we will have nowhere
to adjoin �2:vai, since the VP node of �:voar
is now occupied, and only one predicative tree
may adjoin at any node.7

h�voar; 1; 2; ::i h�capaz; 2; 3; ::i h�vai; 3; $; ::i
h�voar; 1; 3; capazi

7See (Schabes and Shieber, 1994) for the motivations
of this restriction.



Fortunately, we can also realize the depen-
dency between vai and ser-capaz-de by adjoin-
ing �2:vai at the VP.

h�voar; 1; 2; ::i h�capaz ; 2; 3; ::i h�vai; 3; $; ::i
h�capaz; 2; $; vaii

The new instance spanning from 2 to $ (from
�1:capaz to �2:vai) can then be adjoined at the
VP node of voar, to complete the derivation.

h�voar; 1; 2; ::i h�capaz ; 2; 3; ::i h�vai; 3; $; ::i
h�capaz; 2; $; vaii

h�voar; 1; $; vaii

This corresponds to the stacked derivation,
with �2:vai adjoined to �1:ser-capaz-de and
�1:ser-capaz-de adjoined to �:voar:

[1-$] �:voar

[2-$] �1:ser-capaz-de(VP)

[3-$] �2:vai(VP)

5 Conclusion

We have presented two algorithms { one for in-
terpreting a derivation forest as a semantic de-
pendency graph, and the other for realizing a
semantic dependency graph as a derivation for-
est { that make use of semantic dependencies as
adapted from the notion of predicate-argument
attachment in (Joshi and Vijay-Shanker, 1999),
and we have described how these algorithms can
be run together in a synchronous TAG trans-
lation system, in O(n7) time, using transfer
rules predicated on isomorphic or locally non-
isomorphic dependency graphs rather than iso-
morphic or locally non-isomorphic derivation
trees. We have also demonstrated how such
a system would be necessary in translating a
real-world example that is isomorphic on de-
pendency graphs but globally non-isomorphic
on derivation trees. This system is currently
being implemented as part of the Xtag project
at the University of Pennsylvania, and as nat-
ural language interface in the Human Modeling
and Simulation project, also at Penn.

References

Anne Abeill�e, Yves Schabes, and Aravind K. Joshi.
1990. Using lexicalized tree adjoining grammars
for machine translation. In Proceedings of the

13th International Conference on Computational
Linguistics (COLING '90), Helsinki, Finland, Au-
gust.

Marie-Helene Candito and Sylvain Kahane. 1998a.
Can the TAG derivation tree represent a semantic
graph? In Proceedings of the TAG+4 Workshop,
University of Pennsylvania, August.

Marie-Helene Candito and Sylvain Kahane. 1998b.
De�ning DTG derivations to get semantic graphs.
In Proceedings of the TAG+4 Workshop, Univer-
sity of Pennsylvania, August.

Aravind Joshi and K. Vijay-Shanker. 1999. Com-
positional Semantics with Lexicalized Tree-
Adjoining Grammar (LTAG): How Much Under-
speci�cation is Necessary? In Proceedings of the
2nd International Workshop on Computational
Semantics.

Aravind K. Joshi. 1985. How much context sensitiv-
ity is necessary for characterizing structural de-
scriptions: Tree adjoining grammars. In L. Kart-
tunen D. Dowty and A. Zwicky, editors, Natural
language parsing: Psychological, computational
and theoretical perspectives, pages 206{250. Cam-
bridge University Press, Cambridge, U.K.

Anthony S. Kroch. 1989. Asymmetries in long dis-
tance extraction in a TAG grammar. In M. Baltin
and A. Kroch, editors, Alternative Conceptions
of Phrase Structure, pages 66{98. University of
Chicago Press.

Igor Mel'cuk. 1988. Dependency syntax: theory and
practice . State University of NY Press, Albany.

Owen Rambow and Giorgio Satta. 1996. Syn-
chronous Models of Language. In Proceedings of
the 34th Annual Meeting of the Association for
Computational Linguistics (ACL '96).

Owen Rambow, David Weir, and K. Vijay-Shanker.
1995. D-tree grammars. In Proceedings of the
33rd Annual Meeting of the Association for Com-
putational Linguistics (ACL '95).

Yves Schabes and Stuart M. Shieber. 1994. An al-
ternative conception of tree-adjoining derivation.
Computational Linguistics, 20(1):91{124.

William Schuler. 1998. Expoiting semantic depen-
dencies in parsing. Proceedings of the TAG+4
Workshop.

Stuart M. Shieber and Yves Schabes. 1990. Syn-
chronous tree adjoining grammars. In Proceedings
of the 13th International Conference on Compu-
tational Linguistics (COLING '90), Helsinki, Fin-
land, August.

Stuart M. Shieber. 1994. Restricting the weak-
generative capability of synchronous tree adjoin-
ing grammars. Computational Intelligence, 10(4).

K. Vijay-Shanker and D.J. Weir. 1993. The use of
shared forests in tree adjoining grammar parsing.
In Proceedings of EACL '93, pages 384{393.


