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ABSTRACT
This paper describes an implementation of a shell-like spo-
ken language interface that utilizesreferential context(that
is, information about the current state of an interfaced ap-
plication) in order to achieve accurate recognition – even
in user-defined domains with no available domain-specific
training corpora. The interface incorporates a knowledge
of context into its model of syntax, yielding a referential
semantic language model. Interestingly, the referential se-
mantic language model exploits contextdynamically, un-
like other recent systems, by using incremental processing
and the limited stack memory of an HMM-like time series
model.

INTRODUCTION
The development of general-purpose artificial assistants
could have a transformative effect on society from early ed-
ucation to elder care. But to be useful, these assistants will
need to communicate with the people they assist in the mu-
table and idiosyncratic language of day to day life, popu-
lated with proper names of co-workers, objects, and local
events not found in broad corpora. The fundamental lack of
appropriately detailed spoken language training corpora for
interfaces to general-purpose assistants places this applica-
tion beyond the reach of conventional corpus-based speech
recognition strategies, which have been developed for appli-
cations with established linguistic conventions and plentiful
corpora, e.g. dictating formal documents or performing spe-
cific call routing tasks.

But assistants can exploit another source of information for
accurate speech recognition: a model of the world with
which they are expected to assist – a model which, crucially,
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is mostly shared with the user. This is an extremely valuable
source, since hypothesized directives that do not describeen-
tities in this world model are very likely to be incorrect.

The interpretation of hypothesized directives can be expen-
sive, so the challenge in using this information to guide
recognition lies in using it promptly. This paper describes
a framework for incorporating referential semantic informa-
tion from a world model or ontology directly into a proba-
bilistic language model of the sort commonly used in speech
recognition, where it can be probabilistically weighed to-
gether with phonological and syntactic factors as an integral
part of the decoding process. Introducing world model ref-
erents into the decoding search greatly increases this search
space, but by using a single integrated phonological, syntac-
tic, and referential semantic language model, the decoder is
able to incrementally prune this search based on probabili-
ties associated with these combined contexts.

The referential semantic language model described in this
paper is also interesting in that, unlike other recent systems
which interpret grammatical constituents bottom-up, in the
context of sub-constituents in a parser chart [19, 8, 11, 1],
it instead exploits contextdynamically, using incremental
processing and limited stack memory of an HMM-like time
series model. This allows interpretations of constituentsat
the bottom of a phrase structure tree (which would be rela-
tively unconstrained in bottom-up interpretation) to be con-
strained by interpretations of constituents occurring earlier
in the utterance, without overriding (and thereby weakening)
the structure-sharing of the recognition algorithm. The re-
sult is a single unified referential semantic probability model
which achieves significant recognition accuracy gains over
non-semantic alternatives and runs in real time on large do-
mains.

SAMPLE INTERACTION
A sample interaction is shown below, in which a user defines
portions of a student activities ontology, then navigates this
newly-defined ontology to make further edits. The user is
not expected to provide training sentences or generalizations
about the domain. The topology of the ontology that the
user defines, using the referential semantic language model
described in this paper, is enough to reliably constrain the



recognition of navigation directives.1

The interface accepts simple spoken imperative sentences as
directives. Some of these are editor commands for creating
and navigating taxonomic (tree-like) ontologies which reside
in the world model of the interfaced application. This is done
by navigating the interface context to specific locations and
defining identifiers (world model relation labels) for those
locations or the objects found there. For example, the user
may utter:

(1) ‘go to MUSIC, ORCHESTRA’

(2) ‘add new label CELLO’

Here, the word ‘CELLO’ is pronounced naturally, not
spelled out. This user-defined object is understood by
the system as a sequence of phonemes or speech sounds,
e.g. ‘CH EH L OW’, denoted here using ARPABET phone
symbols [9]. Pronunciations of new words may be fre-
quently misrecognized, since the semantic context for these
words has yet to be defined. In such cases, the interface
will echo back an incorrect pronunciation of the word, e.g.
CH EH R OW IH. The user can then navigate this incorrect
pronunciation to edit the appropriate part:2

(3) ‘change phone three to L’

(4) ‘delete phone five’

When the system echoes back the correct pronunciation
CH EH L OW, the user can define the rest of the ontology
incorporating this update into its recognition constraints:

(5) ‘go to CELLO’

(6) ‘add new label FIRST CHAIR’

(7) ‘add HOMEROOM ONE, BEN, to FIRST CHAIR’

RELATED WORK
Spoken language interfaces to agents that recognize imme-
diate go/move commands have been well studied [4]. In
some studies, these commands are augmented with shell-
like scripting capabilities [18]. But most existing spoken

1It is important to note that since the interface is user-configurable,
the navigation commands used here are not hard-wired into the sys-
tem. Lowercase words are therefore not keywords per se, they are
simply words that the system has already been taught. Uppercase
words are user-defined words (also already known by the system)
which exist as relation labels in the agent’s world model ontology.
Phones connected with underscores are newly-defined (unknown)
words, which will be introduced into the world model ontology as
relation labels.
2Users of pure audio interfaces (with no video display) may prefer
to navigate pronunciations which have been divided into syllables
as well as phonemes, e.g. via directives like ‘go to syllable two
and change the beginning to L’ or ‘change syllable two to LOW.’
Unfortunately, syllabification in English depends to some extent
on etymological information (about where a word came from) –
information which will not be available for new words. A user
attempting to define the word ‘sportswear,’ for example, would not
expect it to be decomposed into syllables ‘sport’ and ‘swear.’

language interface architectures rely on off-the-shelf speech
decoding strategies developed for tasks like dictation or
database querying, with mostly fixed vocabularies and plen-
tiful training corpora. The approach described in this pa-
per is novel in that it employes a speech decoding strategy
– namely, a referential semantic language model – designed
especially for the shell interface task, in which vocabularies
are user-defined and training corpora are scarce, but world
model information is readily available.

It is also not uncommon for spoken language interfaces
to employcontext-sensitivelanguage models that are pre-
compiled for particular discourse or environment states, and
swapped out between utterances [14, 6]. But to approach hu-
man levels of recognition accuracy, spoken language inter-
faces will also need to exploit contextcontinuouslyduring
utterance recognition, not just between utterances. For ex-
ample, the probability distribution over the next word in the
utterance ‘go to the music orchestra directory and set . . . ’
will depend crucially on the linguistic and environment con-
text leading up to this point: the meaning of the first part of
this directive ‘go to the music orchestra directory,’ as well
as the objects that will be available once this part of the di-
rective has been carried out. The approach described in this
paper can be described as continuously context-sensitive.

Similar interfaces have been proposed that perform refer-
ential semantics continuously during speech decoding for
the purpose of improving the accuracy of human-robot in-
terfaces [17]. But these lack a linguistically rich semantic
framework permitting complex nested references, and have
not been scaled to abstract environments or concrete en-
vironments larger than a few dozen objects on a tabletop.
Other approaches [8, 1] have sophisticated sensitivity to ref-
erential context, but are not defined to integrate efficiently
into the speech decoding process. The approach described in
this paper is able to exploit arbitrarily large environments,3

both concrete and abstract, including complex conditional
program scripts, in order to improve recognition accuracy
during real-time speech decoding.

BACKGROUND

Referential Semantics
Model Theory
The language model described in this paper defines seman-
tic referents in terms of a world modelM . In model theory
[20, 7], a world model is defined as a tupleM = 〈E ,J·K〉
containing a domain of entity constantsE (e.g. persons or
events in a scheduling application, files in a directory struc-
ture, etc.) and an interpretation functionJ·K to define how
(spoken) expressions can refer to these constants. Here,J·K
is quite versatile, accepting expressionsφ that are equivalent
to logical statements (simple typeTTT), references to entities
(simple typeEEE), or functors (complex type〈α,β〉, e.g. defin-
ing sets) that take an argument of typeα (e.g. an entity) and
produce output of typeβ (e.g. a truth value, true if the en-
tity is in the set). These functor expressionsφ can then be
3As long as there is some notion of local context in the world model
which limits the accessibility of referents, as described in the fol-
lowing section.



e⊤ = e{e′1e′2e′3}

e{e′1e′2}

e{e′1e′3}

e{e′2e′3}

e{e′1}

e{e′2}

e{e′3}

e⊥ = e/0

Figure 1. A subsumption lattice (laid on its side) over the power set of a
domain containing three individuals: e′1, e′2, and e′3. Subsumption rela-
tions are represented as grey arrows from supersets (or super-concepts)
to subsets (or sub-concepts).

applied to other expressionsψ of type α as arguments to
yield expressionsφ(ψ) of typeβ. By nesting functors, com-
plex expressions can be defined, denoting sets or properties
of entities:〈EEE,TTT〉, relations over entity pairs:〈EEE,〈EEE,TTT〉〉, or
higher-order functors over sets:〈〈EEE,TTT〉,〈EEE,TTT〉〉.

Ontological Promiscuity
First order or higher models can be mapped to equivalent
zero order models. This is generally motivated by a de-
sire to allow sets of entities to be described in much the
same way as individual entities [12]. Entities in a zero or-
der modelM can be defined from entities in a higher order
modelM ′ by mapping (orreifying) each setS= {e′1,e

′
2, . . .}

in P (EM ′) (or set of sets inP (P (EM ′)), etc.) as an entity
eS in EM . Zero order functors in the interpretation func-
tion ofM can be defined directly from higher order functors
(over sets) inM ′ by mapping each instance of〈S1,S2〉 in
Jl ′KM ′ : P (EM ′)×P (EM ′) to a corresponding instance of
〈eS1,eS2〉 in JlKM : EM ×EM . Set subsumptionM ′ can then
be defined on entities made from reified sets inM , similar to
‘I SA’ relations over ‘concepts’ in knowledge representation
systems [3]. These subset or subsumption relations can be
represented in a subsumption lattice, as shown in Figure 1.

Language Modeling for Speech Recognition
The referential semantic language model described in this
paper is based on the standard HMM-based language mod-
eling framework commonly used in speech recognition.

HMMs and Language Models
The model described in this paper is a specialization of the
Hidden Markov Model (HMM) framework commonly used
in speech recognition [2, 13]. HMMs are probabilistic se-
quence models, or ‘time series’ models. They characterize
speech as a sequence of hidden statesht (which may con-
sist of speech sounds, words, or other hypothesized syntac-
tic or semantic information), and observed statesot (typi-
cally short, overlapping frames of an audio signal) at cor-
responding time stepst. A most probable sequence of hid-
den stateŝh1..T can then hypothesized given any sequence
of observed stateso1..T , using Bayes’ Law (Equation 2)
and Markovian independence assumptions (Equation 3) to
define the full P(h1..T |o1..T) probability as the product

of a Language Model (LM)prior probability P(h1..T)
def
=

∏t P̂ΘLM (ht |ht−1) and anAcoustical Model (AM)likelihood

probabilityP(o1..T |h1..T)
def
= ∏t P̂ΘAM (ot |ht):

ĥ1..T = argmax
h1..T

P(h1..T |o1..T) (1)

= argmax
h1..T

P(h1..T) ·P(o1..T |h1..T) (2)

def
= argmax

h1..T

T

∏
t=1

P̂ΘLM (ht |ht−1) · P̂ΘAM (ot |ht) (3)

Language Model Components
The hidden variable valuesht at each time stept in an
HMM are then usually divided into super-phoneticst (usu-
ally word), phone-levelpt , and sub-phoneticqt (‘subphone’
or ‘state’) components.

ht = 〈st , pt ,qt〉 (4)

Superphonest components are usually words (or consecu-
tive tuples of words) in most speech recognition systems, but
can also include parsing information such as stacks or histo-
ries of phrase labels [5]. Phone-levelpt components define
sequences of speech sounds (or consecutive tuples of speech
sounds) associated with each word (e.g. ‘CH EH L OW’ for
the word ‘cello’, using theARPABET phone set [10]). Sub-
phoneqt components define sub-states of each phone (e.g.
the stop ‘kcl’ and burst ‘k’ phases of a plosive phone ‘K ’,
using theTIMIT subphone set4), which may vary depending
on the immediately previous subphone.

These components must transition in order: super-phonetic
units (e.g. words) can transition only when phones transi-
tion, and phones can transition only when subphones do.
This behavior can be defined through the introduction of
booleanswitching variablesto indicate whether subphones
(or phones) have transitioned [21, 15], allowing phones (su-
perphones) above them to transition only if true. Language
model probabilities over these factored hidden states can be
defined as a product of superphone, phone, and subphone
transition probabilities and switching variable probabilities,
with the switching variables then marginalized out:

P̂ΘLM (ht |ht−1) = P̂ΘLM (st pt qt |st−1pt−1qt−1) (5)
def
= ∑

f Q f P

P̂ΘSubphone−Switch( f Q
t | pt−1qt−1)

· P̂ΘPhone−Switch( f P
t | f Q

t st−1pt−1)

· P̂ΘSuperphone(st | f P
t st−1)

· P̂ΘPhone(pt | f Q
t f P

t pt−1st)

· P̂ΘSubphone(qt | f Q
t qt−1pt) (6)

Superphones transition only when the phone sequence
(word) below it finishes (switchingf P

t = 1), otherwise they
deterministically propagate forward:

P̂ΘSuperphone(st | f P
t st−1)

def
=

{

if f P
t =1 : P̂ΘSuperphone−Tr(st |st−1)

if f P
t =0 : 1 if st=st−1,0 oth.

(7)
4Essentially, theARPABET with the addition of plosive closure
symbols.



If the superphone above a phone sequence does transition
(switching f P

t = 1), a new phone sequence (word) is gen-
erated from the resulting superphonest using a pronuncia-
tion modelΘPronunciation. If there is no superphone transition,
each phone sequencept−1 deterministically advances to the
next phonenext(pt−1) when the subphone below it finishes
(switching f Q

t = 1), otherwise the phone deterministically
propagates forward unchanged.

P̂ΘPhone(pt | f Q
t f P

t pt−1st)

def
=







if f Q
t =1, f P

t =1 : P̂ΘPronunciation(pt |st)

if f Q
t =1, f P

t =0 : 1 if pt=next(pt−1),0 oth.
if f Q

t =0, f P
t =0 : 1 if pt= pt−1,0 oth.

(8)

The pronunciation modelΘPronunciationis defined in a pro-
nunciation lexicon, which can be edited by the user using
the SLUSH interface, and the subphone modelΘSubphoneis
estimated directly from domain-independent corpora. The
superphone transition modelΘSuperphone−Tr will be defined
in terms of referential semantics in the following section.

A consequence of this hierarchy of transition models is that
the highest-level superphone transition model is only con-
sulted when a word transitions to a different word. This
means that, although the variablet does in fact count time
steps (corresponding to 10ms or so speech frames in this pa-
per), when a word or other syntactic or syntactic configura-
tion s transitions, the variablesst−1 andst at time stepst−1
andt do indeed contain the distinct previous and current val-
ues ofs.

REFERENTIAL SEMANTIC DECODING

Referential Semantic Components
This basic language model is then extended to allow ref-
erential contexts to influence HMM transition probabilities,
and thereby guide decoding. In particular, the super-phone
unitsst of the factored language model described in the pre-
vious section will be expanded to include hypothesized ref-
erentset to concepts or entities in some world model, as well
as words and syntactic componentsct to facilitate parsing:

st = 〈et ,ct〉 (9)

Viewed as a generative process, this model represents lan-
guage at the top level as a random walk through a world
model of referents (entities or sets of entities) connectedby
relations (logic predicates). The model first chooses seman-
tic relation labelslt and referentset , at each time stept, that
are reachable from the semantic referentset−1 at the previous
time step. The model then chooses syntactic categoriesct ,
phone sequencespt , and subphone sequencesqt to verbalize
these relations.

During the course of processing, categories and referents
may need to be stored and retrieved, soct and et will in
fact consist ofstacks(or vectors) of categories and referents,
most of which will simply be propagated forward from time
step to time step. Propagation of category labels inct will

e⊤ = e{f1f2f3}

e{f1f2}

e{f1f3}

e{f2f3}

e{f1}

e{f2}

e{f3}

e⊥ = e/0
READABLE

UNREADABLE

DATAFILE READABLE

DATAFILE

DATA FILE

EXECUTABLE

Figure 2. A subsumption lattice (laid on its side, in gray) over the power
set of a domain containing three files:f1 (a readable executable),f2 (a
readable data file), and f3 (an unreadable data file). ‘Reference paths’
made up of conjunctions of relationsl (directed arcs, in black) traverse
the lattice from left to right toward the empty set, as referents (e{...},
corresponding to sets of files) are incrementally constrained by inter-
section with eachJlKM . (Some arcs are omitted for clarity.)

not vary across environments, and so can be pre-compiled
into a static syntactic model̂PΘSyn(ct |vt lt ct−1). But propa-
gation of referents inet will vary across environments. To
account for this propagation without pre-compiling environ-
ment information into the language model, a coindexation
patternvt is introduced consisting of a vector of pointers to
referents inet−1 for each referent inet .

P̂ΘSuperphone−Tr(st |st−1) = P̂ΘSuperphone−Tr(et ct |et−1ct−1) (10)

def
= ∑

vt ,lt

P̂ΘCoind(vt |ct−1et−1)

· P̂ΘRef(lt et |vt et−1)

· P̂ΘSyn(ct |vt lt ct−1) (11)

This coindexation pattern can then be compiled into the syn-
tactic model instead.

Reference Transitions on a Subsumption Lattice
Relations (e.g. subsumption) among referents correspond-
ing to sets can be navigated as a graph, just like relations
over individuals. Properties (unary relations like READ-
ABLE or DATA FILE) can be represented in the referent tran-
sition model̂PΘRef(lt ,et |vt ,et−1) as labeled edgeslt from su-
persetset−1 to subsetset defined by intersecting the setet−1
with the setJltKM satisfying the propertylt . The world
model can therefore be cast as a subsumption lattice with
the set of all individuals at the tope⊤ (the result of in-
tersecting an empty set of properties) and the empty set
of individuals at the bottome⊥ (resulting from an inter-
section of properties denoting disjoint sets).5 The result
of conjoining a propertyl with a context sete can there-
fore be found by downward traversal of an edge in this
lattice labeledl and departing frome. Thus, the set of
‘user-readable objects(property READABLE) that aredata
files (property DATA FILE)’ would be reachable by travers-
ing a DATA FILE relation from the set of user-readable ob-
jects, or by traversing a READABLE relation from the set
of data files, or by either path DATA FILE◦READABLE or
path READABLE◦DATA FILE from e⊤. The resulting set may
then serve as context for subsequent traversals.

5This lattice need not be an actual data structure. Since the world
model is queried incrementally, the lattice relations may be calcu-
lated as needed.



A general template for intersective adjectives can be ex-
pressed as a noun phrase (NP) expansion using the following
regular expression:

NP(g) → Det
(

Adj(g)
)∗

Noun:l(g)
(

PP(g)
∣

∣ RC(g)
)∗

whereg is a variable over referential contexts (in this case,
sets of individuals that are considered potential referents
while the noun phrase is being interpreted), which is suc-
cessively constrained by the semantics of the adjective and
noun relationl , followed by prepositional phrase (PP) and
relative clause (RC) subconsituents.

Reference Transitions with Relation Arguments
Sequences of properties (unary relations) can be interpreted
as simple nonbranching paths from referent to referent in a
subsumption lattice, but higher-arity relations define more
complex paths that fork and rejoin. For example, the set of
rooms (setg) that ‘contain(relation CONTAIN) objects that
areuser-readable objects(property READABLE)’ would be
reachable only by:

1. pushing the original set of directoriesg onto the referent
stacket , then

2. traversing a CONTAIN relation departingg to obtain the
contents of those directoriesh, then

3. traversing a READABLE relation departingh to constrain
this set to the set of contents that are also user-readable
objects, then

4. traversing the inverse CONTAIN I of relation CONTAIN to
obtain the containers of these user-readable objects, then
constraining the original set of directoriesg by intersec-
tion with this resulting set to yield the directories contain-
ing user-readable objects.

Forking is therefore handled via syntactic recursion: one
path is explored by the recognizer while the other waits on
a stack. A general template for branching reduced relative
clauses (or prepositional phrases) that exhibit this forking
behavior can be expressed as below, using the variablesg
andh defined above:

RC(g) → Verb:l(h,g) NP(h) −:l I (g,h)

where the inverse or transpose relationl I at the last, empty
constituent ‘−’ is intended to apply when the NP expansion
concludes or reduces (when the forked paths are re-joined).
The calculation of semantic transition probabilities forn-ary
relations thus resembles that for properties, except that the
probability term associated with the relationl and the inverse
or transpose relationl I would depend on both referentsg
andh on the stacket .

Training
Phone and subphone models can be trained from corpora of
transcribed utterances from other domains. But if in-domain
corpora are not available, higher-level transition modelswill
have to come from elsewhere.

The reference model defines probabilities over transitions
from referents to referents (fromet−1 to et via relationlt) in a

e{d1d2d3...} e{d1d2d3} e{d2d3}

e{f2f3}

e{d2}

e{f2}

DIRECTORY

CONTAIN C
O

N
T

A
IN

I

READABLE

C
O

N
T

A
IN

I

Figure 3. A reference path forks to specify referents using atwo-place
relation ‘Contain’ in a domain of directories d1,d2,d3. Here, d2 con-
tains f2 and d3 contains f3, and f2 is readable. Again, subsumption is
represented in grey and relations are represented in black.(Portions
of the complete subsumption lattice and relation graph are omitted for
clarity.)

world model graph. Generally these transitions will progress
from vague referents to more specific referents: from large
sets to small sets or individuals, or from root directories to
sub-directories or files in a shell domain. These probabilities
are therefore instantiated as uniform distributions over target
referentset .

If available, this model could be trained on non-speech use
data in a new domain, but even with no use data at all, these
transition are still tightly constrained by the data in the world
model itself. Sub-directories that do not exist cannot be tra-
versed, and properties that do not apply to a vague referent
cannot be used to designate more specific referents.6

Vocabularly (here modeled as phone sequencespt ) and to
some extent syntax (category transitionsct ) can be expected
to vary greatly across domains – particularly in design or
programming applications, which are by definition con-
cerned with creating new objects or new behaviors. One
of the main advantages of the referential semantic language
model described here is that it conditions these diverse sur-
face phenomena on smaller sets of ‘local’ or accessible re-
lations in an underlying world model. Conditioning syntax
and word choice on world model relations can result in a
nearly deterministic model in many cases (assuming each
relation can be described using only a small set of possible
words).

As mentioned above, referents may need to be stored and
retrieved, in order to describe them in terms of other refer-
ents. For example, ‘go to X and set Y to ... and set Z to
...’, where X must be stored and used as context for Z. This
can be handled using an explicit recursive syntax, which can
be represented as complex (vector-valued)ct random vari-
ables, associated with complex (vector-valued) referentset
via complex (vector-valued) coindexation patternsvt . Refer-
ents inet are simply determined by coindexation patterns in
vt , but these coindexation patternsvt and complex categories
ct must come from somewhere.

6It is important to note that this assumes the user and system have
shared knowledge of a world model. This can safely be assumed
in design applications, where the user has created the world model,
but in applications such as database query systems, it may be com-
mon for users to describe objects that do not exist.



If users are permitted to create new syntax patterns, these
vectors must originate in a somewhat intuitive form, similar
to grammar rules. In this implementation, category and coin-
dexation vectors are defined in nestable regular expressions
within a Hierarchic Hidden Markov Model [15], similar to
that used to coordinate superphone, phone, and subphone
transitions in the previous section.

ONTOLOGY NAVIGATION
In the case where a world modelM is zero-order, and re-
lations defined inM are binary over entities, thenM can
be defined as a finite state automaton (FSA), whose states
correspond to entities inE , and whose transition function is
defined by the (ordered, or directed) relations inJ·KM . This
kind of configuration, when combined with the ‘ISA’ rela-
tions defined above, will resemble a hierarchic ontology with
labeled arcs from concepts to subconcepts or instances. As
an ontology, the FSA can be navigated downward, from con-
cept to subconcept, by traversing labeled arcs in the usual
way. It can also be navigated upward, from concept to su-
perconcept, using unlabeled arcs orε-transitions (making the
FSA nondeterministic) in the reverse direction of each arc
in the original downward-navigable deterministic FSA. This
upward- and downward-navigable ontology will be used as
a world model in the spoken language understanding shell
evaluated in the following section.

In a stochastic model, probabilities can be associated withε-
transition functions as well as labeled- (orl -) transition func-
tions so that if any concept and ancestor entities have outgo-
ing arcs with the same label, theseε-transition probabilities
can be combined with those forl -transitions and renormal-
ized to prefer the arcs departing the lower-level concept, but
still include as possible those departing an ancestor concept.
Labels not explicitly defined at a given concept entity (as
outgoing arcs) are implicitly assumed to exist with a ‘sink’
state destinatione⊥, so that interpretation probabilities will
be well defined for all label and entity conditions. The sink
state is then constrained not to be generable by any lexical
rule inΘSyn, and therefore cannot be described in directives.
Labels that are not explicitly defined (whose destination is
the sink state) are therefore referential ‘dead ends.’

As navigation of an ontology proceeds in the context of a
particular entitye, there is a sense in which other entitiese′

at the same level of the ontology as the most recently de-
scribed entitye, or at higher levels of the ontology than the
most recently described entity, are semantically reachable
without restating the ontological context (the path from the
root concepte⊤) shared bye′ ande. Thus, in the context of
an activity like the wide receiver position in the sport foot-
ball, other positions in the same sport, or other sports in the
same school should be accessible without giving an explicit
‘back up’ directive at every level. Using a closure operation
over theε labels used as ontological back-pointers in the pre-
vious section, these sibling, ancestor, and (great-)aunt/uncle
conceptse′ can be connected toe via ε∗l -transitions (Fig-
ure 4b). Theseε∗l -transitions are added to the world model
definition prior to recognition, by composing any number of

S(g) � set:SETTO(h,g) PNpath(g) to PNpath(h)

PNpath(g) � PNup(g) PNsubpath(g)

PNpath(g) � PNup(g)

PNsubpath(g) � PN(g) PNsubpath(g)

PNsubpath(g) � PN(g)

PNup(g) � homeroom:UP-HOMEROOM0(g) zero

PN(g) � bell:BELL(g)

PNup(g) � sports:UP-SPORTS(g)

PN(g) � football:FOOTBALL(g)

PN(g) � captain:CAPTAIN(g)

Table 1. Sample grammar for student activities domain.

FSA ε-transitions, followed by a singlel -transition:

E
′ = { x

ε∗ l
y y | x

ε∗
y z∈ E , z

l
y y∈ E } (12)

wherex
ε∗ l
yy indicates that entityy is accessible from entityx

by relationε∗l ; andx
ε∗
yz indicates thatz is reachable fromx

via any number ofε-transitions (in which casez is an ances-
tor zero or more levels abovex in the ontology).

EVALUATION
To evaluate the contribution to recognition accuracy of ref-
erential semantics over that of syntax and phonology alone,
a baseline (syntax only) and test (baseline plus referential
semantics) recognizer were run on sample ontology manip-
ulation directives in a ‘student activities’ domain.

A Student Activities Database
The student activities ontology organizes extracurricular ac-
tivities under subcategories (e.g. offense⊂ football ⊂
sports), and organizes students into homerooms, in which
context they can be identified by a single (first or last) name.
A fragment of this ontology is shown in Figures 4, where
every student or activity is an entitye in the set of entitiesE ,
and all relations arel -transitions (in the case of 4a) orε∗l -
transitions (in the case of 4b).

A total of 240 entities were created inE : 158 concepts
(groups or positions) and 82 instances (students), each con-
nected via a label (l -transition) to a parent concept. These
l -transitions were then expanded to createε∗l -transitions as
shown in Figure 4b to give a total of 4704 transitions. On av-
erage, each node had a fanout of 18.7 outgoing transitions.

This ontology is manipulated using directives such as:

(8) ‘set homeroom two Bell to sports football captain’

which are incrementally interpreted by traversingl -relations
from superconcept to subconcept (e.g. from ‘sports’ to ‘foot-
ball’ to ‘captain’) or traversingε∗l -transitions between ar-
guments (e.g. from ‘Bell’ to ‘sports’). Recognition there-
fore requires syntax rules to be annotated with lexical se-
mantic relations (no prefix forl -transitions, ‘UP-’ forε∗l -
transitions) and coindicesg,h, ... (which are translated di-
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Figure 4. Upward and downward transitions in a sample student activities world model. Downward transitions (a) or l -transitions define basic sub-
type relations. Upward transitions (b) or ε∗l -transitions relate sibling, ancestor, and (great-great-...-)aunt/uncle concepts, are created from closure
over ε-transitions followed by an l -transition. The entire model is reachable from any given referent via these two kinds of transitions.

rectly to~v parameters) that specify how the denotations of
each constituent are passed to sub-constituents.

A sample set of grammar rules is shown in Table 1. These
are implemented as nested regular expressions in a Hierar-
chic HMM, as described above.

Empirical Results
A corpus of 144 test sentences (no training sentences) was
collected from 7 native English speakers (5 male, 2 female),
who were asked to make specific edits to the student activ-
ities ontology described above. The average length of the
sentences in this collection is 7.17 words, where all words
are assumed to have pronunciations previously defined by
the user.

Baseline and test versions of this system were run using a
RNN acoustical model [16] trained on the TIMIT corpus of
read speech [10]. Results below report concept error rate,
where concepts correspond to relation labels in the world
model.

Results using world model (ontology) information, accord-
ing to reference links specified in a directive grammar (as-
suming no in-domain training sentences are available) show
an overall 17.1% concept error rate, which is comparable to
that reported for other dialogue systems trained on sample
sentences [6, 14]:

subj correct subst delete insert error
0 83.8% 14.1% 2.11% 2.82% 19.0%
1 73.2% 20.3% 6.54% 5.88% 32.7%
2 90.2% 7.84% 1.96% 0.65% 10.5%
3 88.1% 9.27% 2.65% 0.66% 12.6%
4 88.4% 10.3% 1.37% 3.42% 15.1%
5 90.8% 8.45% 0.70% 7.04% 16.2%
6 90.6% 8.63% 0.72% 3.60% 12.9%
all 86.4% 11.3% 2.34% 3.41% 17.1%

The overall sentence error rate was 59.44%. But many sen-
tences had recognition errors in the last word only. Such
errors are relatively easy to correct with additional user in-
put (these words are local to the hypothesized context at the
end of the utterance). The sentence error rate ignoring these
errors in last word was 34.27%.

On the other hand, the results using the directive grammar
alone, ignoring world model information and reference links
in the grammar (and again, assuming no in-domain training
sentences are available) show a much higher concept error
rate of 43.5% (significant top = 1.1×10−19 using pairwise
t-test):

subj correct subst delete insert error
0 57.0% 35.9% 7.04% 12.7% 55.6%
1 49.0% 41.2% 9.80% 13.7% 64.7%
2 71.9% 18.3% 9.80% 6.54% 34.6%
3 69.5% 26.5% 3.97% 9.27% 39.7%
4 67.8% 28.8% 3.42% 13.7% 45.9%
5 79.6% 19.0% 1.41% 7.04% 27.5%
6 75.5% 22.3% 2.16% 10.8% 35.3%
all 67.1% 27.5% 5.46% 10.5% 43.5%

with a sentence error rate of 93.01% (81.12% ignoring er-
rors in the last word). This is because the grammar issyn-
tactically relatively unconstrained, allowing any sequence of
concept labels.

One interesting result of this experiment was that many of
the erroneously hypothesized directives in both the baseline
and test evaluations described edits that would have violated
a ‘domain model’ of this task, had one existed: for exam-
ple, some hypothesized directives would set the one stu-
dent to another. Ordinarily this kind of information might
be gleaned from training sentences. But if no training sen-
tences are available, this information could explicitly bepro-
vided as restrictions on the actions associated with the words



‘set’ and ‘add’. It is difficult to determine how much of this
kind of information can reliably be expected of nontechni-
cal users, so the effect of incorporating this kind of domain
knowledge was not evaluated.

Both test and baseline evaluations ran in real time on an 8-
processor 2.6GHz server, with a beam width of 1000 hy-
potheses per frame.

CONCLUSION
This paper has described an implementation of a shell-like
programming interface that achieves accurate recognition
in user-defined domains with no available domain-specific
training corpora, through the use of a referential semantic
language model. This architecture requires that the agent
make available a world model via a direct API or network
connection, but even through a socket connection the com-
bined phonological, syntactic, and referential semantic de-
coding process ensures the world model is only queried
when necessary, so the interface runs in real time with mod-
est hardware requirements.

This interface, including server and sample client source
code and data files, is free for research purposes. Contact
the authors for more information.
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