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ABSTRACT is mostly shared with the user. This is an extremely valuable

This paper describes an implementation of a shell-like spo- source, since hypothesized directives that do not desernibe
ken language interface that utilizesferential contex{that tities in this world model are very likely to be incorrect.

is, information about the current state of an interfaced ap-

plication) in order to achieve accurate recognition — even The interpretation of hypothesized directives can be expen
in user-defined domains with no available domain-specific sive, so the challenge in using this information to guide
training corpora. The interface incorporates a knowledge recognition lies in using it promptly. This paper describes
of context into its model of syntax, yielding a referential a framework for incorporating referential semantic infarm
semantic language model. Interestingly, the referenéial s tion from a world model or ontology directly into a proba-
mantic language model exploits conteknamically un- bilistic language model of the sort commonly used in speech
like other recent systems, by using incremental processingrecognition, where it can be probabilistically weighed to-
and the limited stack memory of an HMM-like time series gether with phonological and syntactic factors as an iaegr
model. part of the decoding process. Introducing world model ref-
erents into the decoding search greatly increases thistsear
space, but by using a single integrated phonological, synta
tic, and referential semantic language model, the decader i
able to incrementally prune this search based on probabili-
ties associated with these combined contexts.

INTRODUCTION

The development of general-purpose artificial assistants
could have a transformative effect on society from early ed-
ucation to elder care. But to be useful, these assistants wil
need to communicate with the people they assist in the mu-
table and idiosyncratic language of day to day life, popu-
lated with proper names of co-workers, objects, and local
events not found in broad corpora. The fundamental lack of
appropriately detailed spoken language training corpora f
interfaces to general-purpose assistants places thigappl
tion beyond the reach of conventional corpus-based speec
recognition strategies, which have been developed foi-appl
cations with established linguistic conventions and pllent
corpora, e.g. dictating formal documents or performing spe
cific call routing tasks.

The referential semantic language model described in this
paper is also interesting in that, unlike other recent sgste
which interpret grammatical constituents bottom-up, ia th
context of sub-constituents in a parser chart [19, 8, 11, 1],
it instead exploits contextlynamically using incremental
rocessing and limited stack memory of an HMM-like time
eries model. This allows interpretations of constituents
the bottom of a phrase structure tree (which would be rela-
tively unconstrained in bottom-up interpretation) to be-co
strained by interpretations of constituents occurrindiexar
in the utterance, without overriding (and thereby weakghin
the structure-sharing of the recognition algorithm. The re
sultis a single unified referential semantic probabilitydalb
which achieves significant recognition accuracy gains over
non-semantic alternatives and runs in real time on large do-
*The authors would like to thank the anonymous reviewers for their Mains.
input. This research was supported by National Science Foundation

CAREER/PECASE award 0447685. The views expressed are not
necessarily endorsed by the sponsors.

But assistants can exploit another source of information fo
accurate speech recognition: a model of the world with
which they are expected to assist —a model which, crucially,
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recognition of navigation directivés. language interface architectures rely on off-the-shedesp
decoding strategies developed for tasks like dictation or
The interface accepts simple spoken imperative sentesces adatabase querying, with mostly fixed vocabularies and plen-
directives. Some of these are editor commands for creatingtiful training corpora. The approach described in this pa-
and navigating taxonomic (tree-like) ontologies whichides  per is novel in that it employes a speech decoding strategy
in the world model of the interfaced application. Thisisdon — namely, a referential semantic language model — designed
by navigating the interface context to specific locationd an especially for the shell interface task, in which vocahiekar
defining identifiers (world model relation labels) for those are user-defined and training corpora are scarce, but world
locations or the objects found there. For example, the usermodel information is readily available.
may utter:
It is also not uncommon for spoken language interfaces

(1) ‘go to MUSIC, ORCHESTRA to employ context-sensitivéanguage models that are pre-
compiled for particular discourse or environment stated, a
(2) ‘add new label CELLO’ swapped out between utterances [14, 6]. But to approach hu-

man levels of recognition accuracy, spoken language inter-
Here, the word ‘CELLO’ is pronounced naturally, not faces will also need to exploit contegbntinuouslyduring
spelled out. This user-defined object is understood by utterance recognition, not just between utterances. For ex
the system as a sequence of phonemes or speech soundample, the probability distribution over the next word ieth
e.g. ‘CHEH_L_OW’, denoted here using ARPABET phone uytterance ‘go to the music orchestra directory and set ...’
symbols [9]. Pronunciations of new words may be fre- will depend crucially on the linguistic and environment eon
quently misrecognized, since the semantic context forethes text leading up to this point: the meaning of the first part of
words has yet to be defined. In such cases, the interfacethis directive ‘go to the music orchestra directory, aslwel
will echo back an incorrect pronunciation of the word, e.g. as the objects that will be available once this part of the di-
CH_EH_R_.OW_IH. The user can then navigate this incorrect rective has been carried out. The approach described in this

pronunciation to edit the appropriate part: paper can be described as continuously context-sensitive.

(3) ‘change phone three to L’ Similar interfaces have been proposed that perform refer-
‘ o ential semantics continuously during speech decoding for

(4) ‘delete phone five the purpose of improving the accuracy of human-robot in-

~ terfaces [17]. But these lack a linguistically rich semanti
When the system echoes back the correct pronunciationframework permitting complex nested references, and have
CH_EH_L_OW, the user can define the rest of the ontology not been scaled to abstract environments or concrete en-

incorporating this update into its recognition constrstint vironments larger than a few dozen objects on a tabletop.
. , Other approaches [8, 1] have sophisticated sensitivitgfto r
(5) ‘goto CELLO erential context, but are not defined to integrate efficjentl
) , into the speech decoding process. The approach described in
(6) ‘add new label FIRST CHAIR this paper is able to exploit arbitrarily large environnsht

both concrete and abstract, including complex conditional
program scripts, in order to improve recognition accuracy
during real-time speech decoding.

(7) ‘add HOMEROOM ONE, BEN, to FIRST CHAIR’

RELATED WORK
Spoken language interfaces to agents that recognize immeBACKGROUND

diate go/mpve commands have been well studied .[4]. IN Referential Semantics
some studies, these commands are augmented with shell-

. P - - Model Theory
like scripting capabilities [18]. But most existing spoken . o .
pting cap [18] g sp The language model described in this paper defines seman-

1t is important to note that since the interface is user-configurable, tic referents in terms of a world modet . In model theory

the navigation commands used here are not hard-wired into the sys{20, 7], a world model is defined as a tuplé = (z,[])
tem. Lowercase words are therefore not keywords per se, they are.qntaining a domain of entity constants (e ersons or
simply words that the system has already been taught. Uppercaseevents in% scheduling a Iicyation files i$1 éigdirr)ector Gstru
words are user-defined words (also already known by the system) Ing application, files ctory
which exist as relation labels in the agent’s world model ontology. ture, etc.) and an interpretation functi¢f to define how
Phones connected with underscores are newly-defined (unknown)(spoken) expressions can refer to these constants. Here,
words, which will be introduced into the world model ontology as g quite versatile, accepting expressigrtsat are equivalent
relation labels. to logical statements (simple tyg, references to entities

2Users of pure audio interfaces (with no video display) may prefer ,_. .
to navigate pronunciations which have been divided into syllables (SIMPI€ typeE), or functors (complex typa, B), e.g. defin-

as well as phonemes, e.g. via directives like ‘go to syllable two iNg sets) that take an argument of typge.g. an entity) and

and change the beginning to L' or ‘change syllable two to LOW. produce output of typ@ (e.g. a truth value, true if the en-
Unfortunately, syllabification in English depends to some extent tity is in the set). These functor expressiapsan then be

on etymological information (about where a word came from) —
information which will not be available for new words. A user S3Aslong as there is some notion of local context in the world model
attempting to define the word ‘sportswear,’ for example, would not which limits the accessibility of referents, as described in the fol-
expect it to be decomposed into syllables ‘sport’ and ‘swear. lowing section.
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Figure 1. A subsumption lattice (laid on its side) over the pwer set of a
domain containing three individuals: €, €, and €. Subsumption rela-
tions are represented as grey arrows from supersets (or supeoncepts)
to subsets (or sub-concepts).

applied to other expressions of type a as arguments to
yield expressiong() of type . By nesting functors, com-

probability P(0y. 1 | hy. 1) ' Poy, (0| h0):

hy 1= al'hgma)P(hl..T |0o1.T) (1)
1.T
= arr?max?(hl_;) -P(or1|hL1) (2)
1. T
def LA 5
Fargma ] Pou, (4 h-1) Pou @ 1N) @)
ht t=

Language Model Components

The hidden variable valuels; at each time step in an
HMM are then usually divided into super-phonegiousu-
ally word), phone-levepy, and sub-phonetig; (‘subphone’
or ‘state’) components.

plex expressions can be defined, denoting sets or properties

of entities: (E,T), relations over entity pairsEg, (E,T)), or
higher-order functors over setSg, T), (E, T)).

Ontological Promiscuity

First order or higher models can be mapped to equivalent
zero order models. This is generally motivated by a de-
sire to allow sets of entities to be described in much the
same way as individual entities [12]. Entities in a zero or-
der modely can be defined from entities in a higher order
modelas ' by mapping (oreifying) each seS= {€,€,,...}

in 2(Z,,) (or set of sets ire (2 (£,,/)), etc.) as an entity

es in £,,. Zero order functors in the interpretation func-
tion of  can be defined directly from higher order functors
(over sets) i’ by mapping each instance ¢%,,S) in
Mo : 2(Eq) x P(E,) to a corresponding instance of
(€s,,€s,) IN 1], : £, X E,, . Set subsumptions ' can then

be defined on entities made from reified seta/nsimilar to

‘I A’ relations over ‘concepts’ in knowledge representation
systems [3]. These subset or subsumption relations can b
represented in a subsumption lattice, as shown in Figure 1.

Language Modeling for Speech Recognition
The referential semantic language model described in this

eling framework commonly used in speech recognition.

HMMs and Language Models

The model described in this paper is a specialization of the
Hidden Markov Model (HMM) framework commonly used

in speech recognition [2, 13]. HMMs are probabilistic se-
guence models, or ‘time series’ models. They characterize
speech as a sequence of hidden sthtdsvhich may con-

Superphones components are usually words (or consecu-
tive tuples of words) in most speech recognition systents, bu
can also include parsing information such as stacks or-histo
ries of phrase labels [5]. Phone-leyglcomponents define
sequences of speech sounds (or consecutive tuples of speech
sounds) associated with each word (e@d 'EH L ow’ for

the word ‘cello’, using theaARPABET phone set [10]). Sub-
phoneqg: components define sub-states of each phone (e.g.
the stop ‘kcl’ and burst ‘k’ phases of a plosive phome, *
using theTIMIT subphone sé&}, which may vary depending

on the immediately previous subphone.

These components must transition in order: super-phonetic
units (e.g. words) can transition only when phones transi-
tion, and phones can transition only when subphones do.
This behavior can be defined through the introduction of
booleanswitching variablego indicate whether subphones
(or phones) have transitioned [21, 15], allowing phones (su
erphones) above them to transition only if true. Language
model probabilities over these factored hidden states ean b
defined as a product of superphone, phone, and subphone
transition probabilities and switching variable probéieit,

with the switching variables then marginalized out:
paper is based on the standard HMM-based language mod-

|S@LM (h'[ | htfl) =

def

Poyy (5 P k| S-1Pr-10-1) (5)
Z POSubphoneSwnch(ft | Pt-1Gt-1)
P pnone-suien 1| fOS1Pt-1)
’ PeSuperphonéa | ft S1)
’ ll:\)ePhOne( P | 2 fFpas)

: I/:\)eSubphone(qt | fthI—lp[) (6)

sist of speech sounds, words, or other hypothesized syntac-

tic or semantic information), and observed statestypi-
cally short, overlapping frames of an audio signal) at cor-
responding time stegs A most probable sequence of hid-
den stated; 1 can then hypothesized given any sequence
of observed states; 1, using Bayes' Law (Equation 2)
and Markovian independence assumptions (Equation 3) to
define the fullP(hy |01 1) probability as the product

of a Language Model (LM)prior probability P(hy 1) def
M %LM (ht |h—1) and anAcoustical Model (AM)ikelihood

Superphones transition only when the phone sequence
(word) below it finishes (switchind” = 1), otherwise they
deterministically propagate forward:
A def [if fP=1:P (st]s-1)
P f t eSuperphoneTr
eSuperphontgst| t S— 1) {If fP 0:1ifs=5_ 1,00th
)

4Essentially, theaARPABET with the addition of plosive closure

symbols.



If the superphone above a phone sequence does transition
(switching fP = 1), a new phone sequence (word) is gen-
erated from the resulting superphogeausing a pronuncia-

tion model®pronunciation If there is no superphone transition,
each phone sequenge ; deterministically advances to the
next phonenex{ p;_1) when the subphone below it finishes

(switching ftQ = 1), otherwise the phone deterministically
propagates forward unchanged.

Figure 2. A subsumption lattice (laid on its side, in gray) oer the power

Pephone( Pt | ftQ ftp ptflst) set of a domain containing three files:f; (a readable executable)f, (a
£ cQ P 4.8 readable data file), andfz (an unreadable data file). ‘Reference paths’
def if ft =1, ft =1: Pepronunciaﬁor(pt |5t) made up of conjunction_s of relationdl (directed arcs, in black) traverse
=< if ftQ: 1, ftP:O 1if pt:nex( ptfl), O oth. (8) the lattice from left to right toward the empty set, as referents (e;_,,
e cQ_ P m.nd e corresponding to sets of files) are incrementally constraied by inter-
it fi==0, ft =0: 1if pr=pt1,0 oth. section with each[l],, . (Some arcs are omitted for clarity.)

The pronunciation modaDeronunciationis defined in a pro- not vary across environments, and so can be pre-compiled

nunciation lexicon, which can be edited by the user using . ) ) A

the SLUSH interface, and the subphone mo@upphoneiS into a static syntactic modéleg,,(c |\ lic-1). But propa-

estimated directly from domain-independent corpora. The gation of referents im will vary across environments. To

superphone transition mod@lsyperphoneTr Will be defined account for this propagation without pre-compiling eniro

in terms of referential semantics in the following section. ment information into the language model, a coindexation
patternv; is introduced consisting of a vector of pointers to

A consequence of this hierarchy of transition models is that referents ire_; for each referent imy.

the highest-level superphone transition model is only con- B

sulted when a word transitions to a different word. This " Osuernonetr(8t/%-1) = Posiperpnoner: (@ Ct[&-1G1)  (10)

means that, although the varialtleloes in fact count time e po. (| cres)
steps (corresponding to 10ms or so speech frames in this pa- G e
per), when a word or other syntactic or syntactic configura- ‘Pope(lter [Vt &1)

tion s transitions, the variabl ands at time steps—1 5

andt do indeed contain the d??ﬁ%lct przvious and CSrrent val- ' PGSV“(Q [Vl &) (11)

ues ofs. This coindexation pattern can then be compiled into the syn-
tactic model instead.

REFERENTIAL SEMANTIC DECODING

Referential Semantic Components Reference Transitions on a Subsumption Lattice

This basic language model is then extended to allow ref- Relations (e.g. subsumption) among referents correspond-
erential contexts to influence HMM transition probabilitie NG to sets can be navigated as a graph, just like relations
and thereby guide decoding. In particular, the super-phoneOVver individuals. Properties (unary relations likee4b-
unitsg of the factored language model described in the pre- ABLE or DATAFILE) can be represented in the referent tran-
vious section will be expanded to include hypothesized ref- sition modelPg,, (I, & | %, & 1) as labeled edgdsfrom su-
erentsa to concepts or entities in some world model, as well persets ; to subset® defined by intersecting the sat

as words and syntactic componeatso facilitate parsing: with the set[li],, satisfying the property;. The world
model can therefore be cast as a subsumption lattice with
s =(a,a) 9) the set of all individuals at the topr (the result of in-

tersecting an empty set of properties) and the empty set

Viewed as a generative process, this model represents lan®f individuals at the bottorre, (resulting from an inter-
guage at the top level as a random walk through a world S€ction of properties denoting disjoint sets)The result
model of referents (entities or sets of entities) connebjed ~ Of conjoining a property with a context see can there-
relations (logic predicates). The model first chooses seman foré be found by downward traversal of an edge in this
tic relation labeld; and referents, at each time step that lattice labeledl and departing frone. Thus, the set of
are reachable from the semantic referentsat the previous ~ User-readable objectproperty READABLE) that aredata
time step. The model then chooses syntactic categories 165 (Property DATAFILE)” would be reachable by travers-

phone sequences, and subphone sequenagso verbalize N @ DATAFILE relation from the set of user-readable ob-
these relations. jects, or by traversing a BADABLE relation from the set

of data files, or by either path AAFILEocREADABLE or
During the course of processing, categories and referentsPath READABLEoDATAFILE fromer. The resulting set may
may need to be stored and retrieved,cs@mnd e will in then serve as context for subsequent traversals.
fact consist obtackg(or vectors) of categories and referents, 5This lattice need not be an actual data structure. Since the world

most of which will simply be propagated forward from time  model is queried incrementally, the lattice relations may be calcu-
step to time step. Propagation of category labels; iwill lated as needed.




A general template for intersective adjectives can be eXe(q,d,d,...} DirecTorY €{d;d,ds} €(d,d;) €(d,)}
pressed as a noun phrase (NP) expansion using the following
regular expression:

NP(g) — Det ( Adj(g) )" Nouni(g) (PRg) | RC(g))" X
N

whereg is a variable over referential contexts (in this case, 2
sets of individuals that_are pon;idered potentia] re_fesrent €(1)fs} READABLE Elf,)
while the noun phrase is being interpreted), which is suc-
cessively constrained by the semantics of the adjective and _ _
noun relationl, followed by prepositional phrase (PP) and Figure 3. A reference path forks to specify referents using awo-place

. . relation ‘Contain’ in a domain of directories di,d»,d3. Here, d> con-
relative clause (RC) subconsituents. tains f, and d3 contains f3, and f; is readable. Again, subsumption is
represented in grey and relations are represented in black(Portions
Reference Transitions with Relation Arguments of the complete subsumption lattice and relation graph are mitted for
Sequences of properties (unary relations) can be integbret clarity.)
as simple nonbranching paths from referent to referent in a
subsumption lattice, but higher-arity relations define enor
complex paths that fork and rejoin. For example, the set of world model graph. Generally these transitions will pregre
rooms (seg) that ‘contain(relation GONTAIN) objects that from vague referents to more specific referents: from large
areuser-readable object@property READABLE)’ would be sets to small sets or individuals, or from root directories t
reachable only by: sub-directories or files in a shell domain. These probadslit

are therefore instantiated as uniform distributions casyet
1. pushing the original set of directorigonto the referent  referentsa.
stacke, then

@
CoNTAIN!
N
CoNTAIN!

. . . . If available, this model could be trained on non-speech use
2. traversing a ONTAIN relation departing to obtain the 5t in a new domain, but even with no use data at all, these
contents of those directoriésthen transition are still tightly constrained by the data in tharhat
3. traversing a RADABLE relation departind to constrain model itself. Sub-directories that do not exist cannot be tr

this set to the set of contents that are also user-readableversed, and properties that do not apply to a vague referent

objects, then cannot be used to designate more specific refefents.

4. traversing the inverse@TAIN' of relation GONTAIN to Vocabularly (here modeled as phone sequemgksind to
obtain the containers of these user-readable objects, thersgme extent syntax (category transiti@scan be expected
constraining the orlgmal set <_)f dlrectOFIQSby ntersec- o vary greatly across domains — particularly in design or
tion with this resulting set to yield the directories contai programming_applications, which are by definition con-
ing user-readable objects. cerned with creating new objects or new behaviors. One

L . _ . of the main advantages of the referential semantic language
Forking is therefore handled via syntactic recursion: one mode| described here is that it conditions these diverse sur
path is explored by the recognizer while the other waits on 506 phenomena on smaller sets of ‘local’ or accessible re-
a stack. A general template for branching reduced relative |5tjons in an underlying world model. Conditioning syntax
clauses (or prepositional phrases) that exhibit this f@ki 504 word choice on world model relations can result in a
behavior can be expressed as below, using the varigbles nearly deterministic model in many cases (assuming each
andh defined above: relation can be described using only a small set of possible

RC(g) — Verbi (h,g) NP(h) —:1'(g,h) words).

where the inverse or transpose relatiomt the last, empty s mentioned above, referents may need to be stored and
constituent — is intended to apply when the NP expansion etrieved, in order to describe them in terms of other refer-
concludes or reduces (when the forked paths are re-joined).ants. For example, ‘go to X and set Y to ... and set Z to
The calculation of semantic transition probabilities fieary .’ where X must b’e stored and used as context for Z. This
relations thus resembles that for properties, except @t t  can pe handled using an explicit recursive syntax, which can
probability term associated with the relatioand the inverse o represented as complex (vector-valugdiandom vari-

or transpose relatioll would depend on both referens  gpjes, associated with complex (vector-valued) referants

andh on the stacle. via complex (vector-valued) coindexation pattevpsRefer-
o ents ing are simply determined by coindexation patterns in
Training Vt, but these coindexation pattemasand complex categories

Phone and subphone models can be trained from corpora o&t must come from somewhere.

transcribed utterances from other domains. But if in-domai

corpora are not available, higher-level transition mogélis o _

have to come from elsewhere. It is important to note that this assumes the user and system have

shared knowledge of a world model. This can safely be assumed

) - . in design applications, where the user has created the world model,

The reference model defines probablll_nes over transitions pyt in applications such as database query systems, it may be com-
from referents to referents (froep 1 to g viarelationl;) in a mon for users to describe objects that do not exist.




If users are permitted to create new syntax patterns, these S(g

vectors must originate in a somewhat intuitive form, simila
to grammar rules. In this implementation, category and-coin

dexation vectors are defined in nestable regular expression

within a Hierarchic Hidden Markov Model [15], similar to

— set:ET1To(h,g) PNpatig) to PNpatith)
PNpatlg) — PNup(g) PNsubpatlg)
PNpathg) — PNup(g)

PNsubpatlg) — PN(g) PNsubpattg)

that used to coordinate superphone, phone, and subphone PNsubpatty) — PN(g)

transitions in the previous section.

ONTOLOGY NAVIGATION
In the case where a world modef is zero-order, and re-
lations defined i are binary over entities, them can

PN(g) — bell:BELL(g)
PNup(g — sports:UP-80RTHQ)
PN(g) — football:FOOTBALL(Q)

)
)
)
)
)
PNu;ig) — homeroom:UP-l&MEROOMO(Q) zero
)
)
)
PN(g) — captain: &@PTAIN(Q)

be defined as a finite state automaton (FSA), whose states

correspond to entities i\, and whose transition function is
defined by the (ordered, or directed) relationgfr, . This
kind of configuration, when combined with thesA’ rela-
tions defined above, will resemble a hierarchic ontologywit

labeled arcs from concepts to subconcepts or instances. As
an ontology, the FSA can be navigated downward, from con-
cept to subconcept, by traversing labeled arcs in the usual
way. It can also be navigated upward, from concept to su-

perconcept, using unlabeled arcgdransitions (making the

FSA nondeterministic) in the reverse direction of each arc

in the original downward-navigable deterministic FSA. §hi

upward- and downward-navigable ontology will be used as

Table 1. Sample grammar for student activities domain.

FSAe-transitions, followed by a singletransition:

(12)

Whereme |nd|cates that entity is accessible from entity
by relatione*|; andx~z indicates that is reachable fronx
via any number of-transitions (in which caseis an ances-
tor zero or more levels aboven the ontology).

, € ek |
' ={x~y | X~z€eE,znyecE }

a world model in the spoken language understanding shell EVALUATION

evaluated in the following section.

In a stochastic model, probabilities can be associatedswith
transition functions as well as labeled- (értransition func-

To evaluate the contribution to recognition accuracy of ref

erential semantics over that of syntax and phonology alone,
a baseline (syntax only) and test (baseline plus refelentia
semantics) recognizer were run on sample ontology manip-

tions so that if any concept and ancestor entities have eutgo ulation directives in a ‘student activities’ domain.

ing arcs with the same label, thes¢ransition probabilities
can be combined with those fottransitions and renormal-
ized to prefer the arcs departing the lower-level concent, b
still include as possible those departing an ancestor gance
Labels not explicitly defined at a given concept entity (as
outgoing arcs) are implicitly assumed to exist with a ‘sink’
state destinatioer, , so that interpretation probabilities will
be well defined for all label and entity conditions. The sink

A Student Activities Database

The student activities ontology organizes extracurricata
tivities under subcategories (e.g. offensefootball C
sports), and organizes students into homerooms, in which
context they can be identified by a single (first or last) name.
A fragment of this ontology is shown in Figures 4, where
every student or activity is an entigjin the set of entitieg,

state is then constrained not to be generable by any lexicaland all relations aré-transitions (in the case of 4a) etl-

rule in Osyn, and therefore cannot be described in directives.
Labels that are not explicitly defined (whose destination is

the sink state) are therefore referential ‘dead ends.’

transitions (in the case of 4b).

A total of 240 entities were created in: 158 concepts
(groups or positions) and 82 instances (students), each con

As navigation of an ontology proceeds in the context of a nected via a labell {transition) to a parent concept. These

particular entitye, there is a sense in which other entitiés

I-transitions were then expanded to cregfetransitions as

at the same level of the ontology as the most recently de-shown in Figure 4b to give a total of 4704 transitions. On av-

scribed entitye, or at higher levels of the ontology than the
most recently described entity, are semantically reaehabl
without restating the ontological context (the path frora th
root conceper) shared bye ande. Thus, in the context of
an activity like the wide receiver position in the sport foot
ball, other positions in the same sport, or other sportsen th

erage, each node had a fanout of 18.7 outgoing transitions.
This ontology is manipulated using directives such as:

(8) ‘set homeroom two Bell to sports football captain’

same school should be accessible without giving an explicit which are incrementally interpreted by traversiaglations

‘back up’ directive at every level. Using a closure openatio

over thee labels used as ontological back-pointers in the pre-

vious section, these sibling, ancestor, and (great-)anclg
conceptse’ can be connected te via £*|-transitions (Fig-
ure 4b). These*I-transitions are added to the world model
definition prior to recognition, by composing any humber of

from superconcept to subconcept (e.g. from ‘sports’ totfoo
ball’ to ‘captain’) or traversinge*l-transitions between ar-
guments (e.g. from ‘Bell’ to ‘sports’). Recognition there-
fore requires syntax rules to be annotated with lexical se-
mantic relations (no prefix for-transitions, ‘UP-" fore*|-
transitions) and coindiceg, h, ... (which are translated di-



€track

€quarterback

Figure 4. Upward and downward transitions in a sample studenactivities world model. Downward transitions (a) or |-transitions define basic sub-
type relations. Upward transitions (b) or €*|-transitions relate sibling, ancestor, and (great-great-.-)aunt/uncle concepts, are created from closure
over e-transitions followed by anl-transition. The entire model is reachable from any given réerent via these two kinds of transitions.

rectly tov parameters) that specify how the denotations of The overall sentence error rate was 59.44%. But many sen-
each constituent are passed to sub-constituents.

tences had recognition errors in the last word only. Such
errors are relatively easy to correct with additional user i

A sample set of grammar rules is shown in Table 1. These put (these words are local to the hypothesized context at the
are implemented as nested regular expressions in a Hierarend of the utterance). The sentence error rate ignoring@thes
chic HMM, as described above.

Empirical Results

A corpus of 144 test sentences (no training sentences) wa
collected from 7 native English speakers (5 male, 2 female),
who were asked to make specific edits to the student activ-
ities ontology described above. The average length of the
sentences in this collection is 7.17 words, where all words
are assumed to have pronunciations previously defined by

the user.

Baseline and test versions of this system were run using a
RNN acoustical model [16] trained on the TIMIT corpus of

read speech [10]. Results below report concept error rate,
where concepts correspond to relation labels in the world

model.

Results using world model (ontology) information, accord-
ing to reference links specified in a directive grammar (as-

errors in last word was 34.27%.

On the other hand, the results using the directive grammar
alone, ignoring world model information and reference ink

In the grammar (and again, assuming no in-domain training

sentences are available) show a much higher concept error

rate of 43.5% (significant tp = 1.1 x 10~1° using pairwise

t-test):

subj || correct| subst | delete| insert || error
0 57.0% | 35.9% | 7.04% | 12.7% | 55.6%
49.0% | 41.2% | 9.80% | 13.7%| 64.7%
71.9% | 18.3% | 9.80% | 6.54% || 34.6%
69.5% | 26.5% | 3.97% | 9.27% || 39.7%
67.8% | 28.8% | 3.42%| 13.7% || 45.9%
79.6% | 19.0% | 1.41% | 7.04% | 27.5%
75.5% | 22.3% | 2.16% | 10.8% || 35.3%

[ 67.1% | 27.5% 5.46% | 10.5% || 43.5%

O U1 K| W N -

Q)

suming no in-domain training sentences are available) showwith a sentence error rate of 93.01% (81.12% ignoring er-
an overall 17.1% concept error rate, which is comparable to rors in the last word). This is because the grammayis
that reported for other dialogue systems trained on sampletacticallyrelatively unconstrained, allowing any sequence of

sentences [6, 14]:

subj || correct| subst | delete| insert || error

0

83.8%

14.1%

2.11%

2.82%

19.0%

73.2%

20.3%

6.54%

5.88%

32.7%

90.2%

7.84%

1.96%

0.65%

10.5%

88.1%

9.27%

2.65%

0.66%

12.6%

88.4%

10.3%

1.37%

3.42%

15.1%

90.8%

8.45%

0.70%

7.04%

16.2%

O U1 B W[N]

90.6%

8.63%

0.72%

3.60%

12.9%

QL

[ 86.4% | 11.3%] 2.34% 3.41%] 17.1%

concept labels.

One interesting result of this experiment was that many of
the erroneously hypothesized directives in both the baseli
and test evaluations described edits that would have eidlat

a ‘domain model’ of this task, had one existed: for exam-
ple, some hypothesized directives would set the one stu-
dent to another. Ordinarily this kind of information might
be gleaned from training sentences. But if no training sen-
tences are available, this information could explicitlyde-
vided as restrictions on the actions associated with thelsvor



‘set’ and ‘add’. It is difficult to determine how much of this research database: Specifications and status. In
kind of information can reliably be expected of nontechni- Proceedings of DARPA Workshop on Speech
cal users, so the effect of incorporating this kind of domain Recognitionpages 93-99, Feb. 1986.

knowledge was not evaluated. . .
10. W. M. Fisher, V. Zue, J. Bernstein, and D. S. Pallet. An

Both test and baseline evaluations ran in real time on an 8-  @coustic-phonetic dat.a basleurnal of the Acoustical
processor 2.6GHz server, with a beam width of 1000 hy- Society of Americe81:592-S93, 1987.

potheses per frame. 11. P. Gorniak and D. Roy. Grounded semantic
composition for visual scenedournal of Artificial
CONCLUSION Intelligence Researgl21:429-470, 2004,

This paper has described an implementation of a shell-like ) o
programming interface that achieves accurate recognition12. J. R. Hobbs. Ontological promiscuity. Btoc. ACL,
in user-defined domains with no available domain-specific ~ Pages 61-69, 1985.

training corpora, through the use of a referential semantic F. Jelinek, L. R. Bahl, and R. L. Mercer. Design of a
language model. This architecture requires that the agent™ ™ o jistic statistical decoder for the recognition of
make available a world model via a direct API or network continuous speechEEE Transactions on Information
connection, but even through a socket connection the com- )

. . A : . Theory 21:250-256, 1975.
bined phonological, syntactic, and referential semangic d
coding process ensures the world model is only queried 14. O. Lemon and A. Grunstein. Multithreaded context for

when necessary, so the interface runs in real time with mod- robust conversational interfaces: Context-sensitive

est hardware requirements. speech recognition and interpretation of corrective
fragmentsACM Transactions on Computer-Human

This interface, including server and sample client source Interaction 11(3):241-267, 2004.

code and data files, is free for research purposes. Contact

the authors for more information. 15. K. P. Murphy and M. A. Paskin. Linear time inference
in hierarchical HMMs. InProc. NIPS pages 833-840,
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