
Toward a Psycholinguistically-Motivated Model of Language Processing∗

William Schuler

University of Minnesota

schuler@cs.umn.edu

Samir AbdelRahman

Cairo University

s.abdelrahman@fci-cu.edu.eg

Tim Miller

University of Minnesota

tmill@cs.umn.edu

Lane Schwartz

University of Minnesota

lschwar@cs.umn.edu

Abstract

Psycholinguistic studies suggest a model

of human language processing that 1) per-

forms incremental interpretation of spoken

utterances or written text, 2) preserves am-

biguity by maintaining competing analy-

ses in parallel, and 3) operates within a

severely constrained short-term memory

store — possibly constrained to as few

as four distinct elements. This paper de-

scribes a relatively simple model of lan-

guage as a factored statistical time-series

process that meets all three of the above

desiderata; and presents corpus evidence

that this model is sufficient to parse nat-

urally occurring sentences using human-

like bounds on memory.

1 Introduction

Psycholinguistic studies suggest a model of human

language processing with three important proper-

ties. First, eye-tracking studies (Tanenhaus et al.,

1995; Brown-Schmidt et al., 2002) suggest that

humans analyze sentences incrementally, assem-

bling and interpreting referential expressions even

while they are still being pronounced. Second, hu-

mans appear to maintain competing analyses in

parallel, with eye gaze showing significant atten-

tion to competitors (referents of words with sim-

ilar prefixes to the correct word), even relatively

long after the end of the word has been encoun-

tered, when attention to other distractor referents

has fallen off (Dahan and Gaskell, 2007). Pre-

serving ambiguity in a parallel, non-deterministic

search like this may account for human robust-

∗The authors would like to thank the anonymous review-
ers for their input. This research was supported by National
Science Foundation CAREER/PECASE award 0447685. The
views expressed are not necessarily endorsed by the sponsors.

ness to missing, unknown, mispronounced, or mis-

spelled words. Finally, studies of short-term mem-

ory capacity suggest human language processing

operates within a severely constrained short-term

memory store — possibly restricted to as few

as four distinct elements (Miller, 1956; Cowan,

2001).

The first two observations may be taken to

endorse existing probabilistic beam-search mod-

els which maintain multiple competing analyses,

pruned by contextual preferences and dead ends

(e.g. Roark, 2001). But the last observation on

memory bounds imposes a restriction that until

now has not been evaluated in a corpus study. Can

a simple, useful human-like processing model be

defined using these constraints? This paper de-

scribes a relatively simple model of language as a

factored statistical time-series process that meets

all three of the above desiderata; and presents

corpus evidence that this model is sufficient to

parse naturally occurring sentences using human-

like bounds on memory.

The remainder of this paper is organized as fol-

lows: Section 2 describes some current approaches

to incremental parsing; Section 3 describes a sta-

tistical framework for parsing using a bounded

stack of explicit constituents; Section 4 describes

an experiment to estimate the level of coverage

of the Penn Treebank corpus that can be achieved

with various stack memory limits, using a set of

reversible tree transforms, and gives accuracy re-

sults of a bounded-memory model trained on this

corpus.

2 Background

Much work on cognitive modeling in psycholin-

guistics is centered on modeling the concepts to

which utterances refer. Coarsely, these concepts

may correspond to activation patterns among neu-

rons in specific regions of the brain. In some the-

ories, a short-term memory store of several unre-

lated concepts may be retained by organizing the

activation of these concepts into compatible pat-

terns, only a few of which can be reliably main-

tained (Smolensky and Legendre, 2006). Activa-

tion is then theorized to spread through and among

these groups of concepts in proportion to some

learned probability that the concepts will be rel-

evant (Anderson and Reder, 1999), with the most

active concepts corresponding to the most likely

linguistic analyses. Competition between rival ac-

tivated groups of concepts (corresponding to in-

complete linguistic analyses) has even been linked

to reading delays (Hale, 2003).

This competition among mutually-exclusive

variously-activated short term memory stores of

concepts, essentially a weighted disjunction over

conjunctions of concepts, can be modeled in lan-

guage understanding as simple Viterbi decoding of

a factored HMM-like time-series model (Schuler

et al., in press). In this model, concepts (corre-

sponding to vectors of individuals in a first-order

world model) are introduced and composed (via

set operations like intersection) in each hypothe-

sized short-term memory store, using the elements

of the memory store as a stack. These vectors

of individuals can be considered a special case of

vectors of concept elements proposed by Smolen-

sky, with set intersection a special case of tensor

product in the composition model. Referents in

this kind of incremental model can be constrained

by — but still distinguished from — higher-level

referents while they are still being recognized.

It is often assumed that this semantic con-

cept composition proceeds isomorphically with

the composition of syntactic constituents (Frege,

1892). This parallel semantic and syntactic com-

position is considered likely to be performed in

short-term memory because it has many of the

characteristics of short-term memory processes,

including nesting limits (Miller and Chomsky,

1963) and susceptibility to degradation due to in-

terruption. Ericsson and Kintch (1995) propose a

theory of long-term working memory that extends

short-term memory, but only for inter-sentential

references, which do seem to be retained across

interruptions in reading. But while the relation-

ship between competing probability distributions

in such a model and experimental reading times

has been evaluated (e.g. by Hale), the relationship

between the syntactic demands on a short-term

memory store and observations of human short-

term memory limits is still largely untested. Sev-

eral models have been proposed to perform syn-

tactic analysis using a bounded memory store.

For example, Marcus (1980) proposed a deter-

ministic parser with an explicit four-element work-

ing memory store in order to model human parsing

limitations. But this model only stores complete

constituents (whereas the model proposed in this

paper stores incompletely recognized constituents,

in keeping with the Tanenhaus et al. findings). As

a result, the Marcus model relies on a suite of spe-

cialized memory operations to compose complete

constituents out of complete constituents, which

are not independently cognitively motivated.

Cascaded finite-state automata, as in FASTUS

(Hobbs et al., 1996), also make use of a bounded

stack, but stack levels in such systems are typically

dedicated to particular syntactic operations: e.g. a

word group level, a phrasal level, and a clausal

level. As a result, some amount of constituent

structure may overflow its dedicated level, and be

sacrificed (for example, prepositional phrase at-

tachment may be left underspecified).

Finite-state equivalent parsers (and thus,

bounded-stack parsers) have asymptotically linear

run time. Other parsers (Sagae and Lavie, 2005)

have achieved linear runtime complexity with

unbounded stacks in incremental parsing by

using a greedy strategy, pursuing locally most

probable shift or reduce operations, conditioned

on multiple surrounding words. But without an

explicit bounded stack it is difficult to connect

these models to concepts in a psycholinguistic

model.

Abney and Johnson (1991) explore left-corner

parsing as a memory model, but again only in

terms of (complete) syntactic constituents. The

approach explored here is similar, but the trans-

form is reversed to allow the recognizer to store

recognized structure rather than structures being

sought, and the transform is somewhat simpli-

fied to allow more structure to be introduced into

syntactic constituents, primarily motivated by a

need to keep track of disconnected semantic con-

cepts rather than syntactic categories. Without this

link to disconnected semantic concepts, the syntax

model would be susceptible to criticism that the

separate memory levels could be simply chunked

together through repeated use (Miller, 1956).

Roark’s (2001) top-down parser generates trees

incrementally in a transformed representation re-

lated to that used in this paper, but requires dis-

tributions to be maintained over entire trees rather

than stack configurations. This increases the beam

width necessary to avoid parse failure. Moreover,

although the system is conducting a beam search,

the objects in this beam are growing, so the recog-

nition complexity is not linear, and the connection

to a bounded short-term memory store of uncon-

nected concepts becomes somewhat complicated.

The model described in this paper is arguably

simpler than many of the models described above

in that it has no constituent-specific mechanisms,

yet it is able to recognize the rich syntactic struc-

tures found in the Penn Treebank, and is still

compatible with the psycholinguistic notion of a

bounded short-term memory store of conceptual

referents.

3 Bounded-Memory Parsing with a Time

Series Model

This section describes a basic statistical frame-

work— a factored time-series model — for recog-

nizing hierarchic structures using a bounded store

of memory elements, each with a finite number of

states, at each time step. Unlike simple FSA com-

pilation, this model maintains an explicit represen-

tation of active, incomplete phrase structure con-

stituents on a bounded stack, so it can be readily

extended with additional variables that depend on

syntax (e.g. to track hypothesized entities or rela-

tions). These incomplete constituents are related

to ordinary phrase structure annotations through

a series of bidirectional tree transforms. These

transforms:

1. binarize phrase structure trees into linguisti-

cally motivated head-modifier branches (de-

scribed in Section 3.1);

2. transform right-branching sequences to left-

branching sequences (described in Sec-

tion 3.2); and

3. align transformed trees to an array of random

variable values at each depth and time step of

a probabilistic time-series model (described

in Section 3.3).

Following these transforms, a model can be trained

from example trees, then run as a parser on unseen

sentences. The transforms can then be reversed to

evaluate the output of the parser. This representa-

tion will ultimately be used to evaluate the cover-

age of a bounded-memory model on a large corpus

of tree-annotated sentences, and to evaluate the ac-

curacy of a basic (unsmoothed, unlexicalized) im-

plementation of this model in Section 4.

It is important to note that these transformations

are not postulated to be part of the human recog-

nition process. In this model, sentences can be

recognized and interpreted entirely in right-corner

form. The transforms only serve to connect this

process to familiar representations of phrase struc-

ture.

3.1 Binary branching structure

This paper will attempt to draw conclusions about

the syntactic complexity of natural language, in

terms of stack memory requirements in incremen-

tal (left-to-right) recognition. These requirements

will be minimized by recognizing trees in a right-

corner form, which accounts partially recognized

phrases and clauses as incomplete constituents,

lacking one instance of another constituent yet to

come.

In particular, this study will use the trees in the

Penn Treebank Wall Street Journal (WSJ) corpus

(Marcus et al., 1994) as a data set. In order to

obtain a linguistically plausible right-corner trans-

form representation of incomplete constituents,

the corpus is subjected to another, pre-process

transform to introduce binary-branching nonter-

minal projections, and fold empty categories into

nonterminal symbols in a manner similar to that

proposed by Johnson (1998b) and Klein and Man-

ning (2003). This binarization is done in such a

way as to preserve linguistic intuitions of head pro-

jection, so that the depth requirements of right-

corner transformed trees will be reasonable ap-

proximations to the working memory require-

ments of a human reader or listener.

3.2 Right-Corner Transform

Phrase structure trees are recognized in this frame-

work in a right-corner form that can be mapped to

and from ordinary phrase structure via reversible

transform rules, similar to those described by

Johnson (1998a). This transformed grammar con-

strains memory usage in left-to-right traversal to a

bound consistent with the psycholinguistic results

described above.

This right-corner transform is simply the left-

right dual of a left-corner transform (Johnson,

1998a). It transforms all right branching se-

quences in a phrase structure tree into left branch-

ing sequences of symbols of the form A1/A2,

denoting an incomplete instance of category A1

lacking an instance of category A2 to the right.

These incomplete constituent categories have the

same form and much of the same meaning as non-

constituent categories in a Combinatorial Catego-

rial Grammar (Steedman, 2000).

Rewrite rules for the right-corner transform are

shown below, first to flatten out right-branching

structure:1

A1

α1 A2

α2 A3

a3

⇒

A1

A1/A2

α1

A2/A3

α2

A3

a3

A1

α1 A2

A2/A3

α2

. . .
⇒

A1

A1/A2

α1

A2/A3

α2

. . .

then to replace it with left-branching structure:

1The tree transforms presented in this paper will be de-
fined in terms of destructive rewrite rules applied iteratively
to each constituent of a source tree, from leaves to root, and
from left to right among siblings, to derive a target tree. These
rewrites are ordered; when multiple rewrite rules apply to the
same constituent, the later rewrites are applied to the results
of the earlier ones. For example, the rewrite:

A0

. . . A1

α2 α3

. . . ⇒

A0

. . . α2 α3 . . .

could be used to iteratively eliminate all binary-branching
nonterminal nodes in a tree, except the root. In the notation
used in this paper, Roman uppercase letters (Ai) are variables
matching constituent labels, Roman lowercase letters (ai) are
variables matching terminal symbols, Greek lowercase letters
(αi) are variables matching entire subtree structure, Roman
letters followed by colons, followed by Greek letters (Ai:αi)
are variables matching the label and structure, respectively, of
the same subtree, and ellipses (. . .) are taken to match zero
or more subtree structures, preserving the order of ellipses in
cases where there are more than one (as in the rewrite shown
above).

A1

A1/A2:α1 A2/A3

α2

α3 . . . ⇒

A1

A1/A3

A1/A2:α1 α2

α3 . . .

Here, the first two rewrite rules are applied iter-

atively (bottom-up on the tree) to flatten all right

branching structure, using incomplete constituents

to record the original nonterminal ordering. The

third rule is then applied to generate left-branching

structure, preserving this ordering. Note that the

last rewrite above leaves a unary branch at the left-

most child of each flattened node. This preserves

the nodes at which the original tree was not right-

branching, so the original tree can be reconstructed

when the right-corner transform concatenates mul-

tiple right-branching sequences into a single left-

branching sequence.

An example of a right-corner transformed tree

is shown in Figure 1(b). An important property of

this transform is that it is reversible. Rewrite rules

for reversing a right-corner transform are simply

the converse of those shown above. The correct-

ness of this can be demonstrated by dividing a

tree into maximal sequences of right branches (that

is, maximal sequences of adjacent right children).

The first two ‘flattening’ rewrites of the right-

corner transform, applied to any such sequence,

will replace the right-branching nonterminal nodes

with a flat sequence of nodes labeled with slash

categories, which preserves the order of the non-

terminal category symbols in the original nodes.

Reversing this rewrite will therefore generate the

original sequence of nonterminal nodes. The final

rewrite similarly preserves the order of these non-

terminal symbols while grouping them from the

left to the right, so reversing this rewrite will re-

produce the original version of the flattened tree.

3.3 Hierarchic Hidden Markov Models

Right-corner transformed phrase structure trees

can then be mapped to random variable positions

in a Hierarchic Hidden Markov Model (Murphy

and Paskin, 2001), essentially a Hidden Markov

Model (HMM) factored into some fixed number

of stack levels at each time step.

HMMs characterize speech or text as a sequence

of hidden states qt (in this case, stacked-up syn-

tactic categories) and observed states ot (in this

case, words) at corresponding time steps t. A
most likely sequence of hidden states q̂1..T can

a) binarized phrase structure tree:

S

NP

NP

JJ

strong

NN

demand

PP

IN

for

NP

NPpos

NNP

NNP

new

NNP

NNP

york

NNP

city

POS

’s

NNS

JJ

general

NNS

NN

obligation

NNS

bonds

VP

VBN

VBN

propped

PRT

up

NP

DT

the

NN

JJ

municipal

NN

market

b) result of right-corner transform:

S

S/NN

S/NN

S/NP

S/VP

NP

NP/NNS

NP/NNS

NP/NNS

NP/NP

NP/PP

NP

NP/NN

JJ

strong

NN

demand

IN

for

NPpos

NPpos/POS

NNP

NNP/NNP

NNP/NNP

NNP

new

NNP

york

NNP

city

POS

’s

JJ

general

NN

obligation

NNS

bonds

VBN

VBN/PRT

VBN

propped

PRT

up

DT

the

JJ

municipal

NN

market

Figure 1: Trees resulting from a) a binarization of a sample phrase structure tree for the sentence Strong

demand for New York City’s general obligations bonds propped up the municipal market, and b) a right-

corner transform of this binarized tree.

then be hypothesized given any sequence of ob-

served states o1..T , using Bayes’ Law (Equation 2)

and Markov independence assumptions (Equa-

tion 3) to define a full P(q1..T | o1..T) probabil-
ity as the product of a Transition Model (ΘA)

prior probability P(q1..T)
def
=

∏

t PΘA
(qt | qt-1) and

an Observation Model (ΘB) likelihood probability

P(o1..T | q1..T)
def
=

∏

t PΘB
(ot | qt):

q̂1..T = argmax
q1..T

P(q1..T | o1..T) (1)

= argmax
q1..T

P(q1..T)·P(o1..T | q1..T) (2)

def
= argmax

q1..T

T
∏

t=1

PΘA
(qt | qt-1)·PΘB

(ot | qt) (3)

Transition probabilities PΘA
(qt | qt-1) over com-

plex hidden states qt can be modeled using syn-

chronized levels of stacked-up component HMMs

in a Hierarchic Hidden Markov Model (HHMM)

(Murphy and Paskin, 2001). HHMM transition

probabilities are calculated in two phases: a re-

duce phase (resulting in an intermediate, marginal-

ized state ft), in which component HMMsmay ter-

minate; and a shift phase (resulting in a modeled

state qt), in which unterminated HMMs transition,

and terminated HMMs are re-initialized from their

parent HMMs. Variables over intermediate ft and

modeled qt states are factored into sequences of

depth-specific variables – one for each ofD levels
in the HMM hierarchy:

ft = 〈f1
t . . . fD

t 〉 (4)

qt = 〈q1
t . . . qD

t 〉 (5)

Transition probabilities are then calculated as a

product of transition probabilities at each level, us-

d=1

d=2

d=3

word

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15

strong

dem
and

for

new

york

city

’s

general

obligations

bonds

propped

up the

m
unicipal

m
arket

− − − − − − − − − − − − − − −

− − − −

N
N
P
/N
N
P

N
N
P
/N
N
P

N
P
pos/P
O
S

− − − −

V
B
N
/P
R
T

− − −

−

N
P
/N
N

N
P
/P
P

N
P
/N
P

N
P
/N
P

N
P
/N
P

N
P
/N
P

N
P
/N
N
S

N
P
/N
N
S

N
P
/N
N
S

S
/V
P

S
/V
P

S
/N
P

S
/N
N

S
/N
N

Figure 2: Sample tree from Figure 1 mapped to qd
t variable positions of an HHMM at each stack depth

d (vertical) and time step t (horizontal). This tree uses only two levels of stack memory. Values for
final-state variables fd

t are not shown. Note that some nonterminal labels have been omitted; labels for

these nodes can be reconstructed from their children.

ing level-specific reduce ΘR and shift ΘS models:

PΘA
(qt|qt-1) =

∑

ft

P(ft|qt-1)·P(qt|ft qt-1) (6)

def
=

∑

f1..D
t

D
∏

d=1

PΘR
(fd

t |f
d+1
t qd

t-1q
d-1
t-1)·

PΘS
(qd

t |f
d+1
t fd

t qd
t-1q

d-1
t) (7)

with fD+1
t and q0

t defined as constants. In Viterbi

decoding, the sums are replaced with argmax oper-

ators. This decoding process preserves ambiguity

by maintaining competing analyses of the entire

memory store. A graphical representation of an

HHMM with three levels is shown in Figure 3.

Shift and reduce probabilities can then be de-

fined in terms of finitely recursive Finite State Au-

tomata (FSAs) with probability distributions over

transition, recursive expansion, and final-state sta-

tus of states at each hierarchy level. In simple HH-

MMs, each intermediate variable is a boolean vari-

able over final-state status fd
t ∈ {0,1} and each

modeled state variable is a syntactic, lexical, or

phonetic state qd
t . The intermediate variable fd

t is

true or false (equal to 1 or 0 respectively) accord-

ing to ΘF-Reduce if there is a transition at the level
immediately below d, and false (equal to 0) with

probability 1 otherwise:2

PΘR
(fd

t | fd+1
t qd

t-1q
d-1
t-1)

def
=

{

if fd+1
t =0 : [fd

t =0]
if fd+1

t =1 : PΘF-Reduce
(fd

t | qd
t-1, q

d-1
t-1)

(8)

where fD+1
t = 1 and q0

t = ROOT.

2Here [·] is an indicator function: [φ] = 1 if φ is true, 0
otherwise.

Shift probabilities over the modeled variable qd
t

at each level are defined using level-specific tran-

sition ΘQ-Trans and expansion ΘQ-Expand models:

PΘS
(qd

t | f
d+1
t fd

t qd
t-1q

d-1
t)

def
=







if fd+1
t =0, fd

t =0 : [qd
t = qd

t-1]
if fd+1

t =1, fd
t =0 : PΘQ-Trans

(qd
t | q

d
t-1q

d-1
t)

if fd+1
t =1, fd

t =1 : PΘQ-Expand
(qd

t | q
d-1
t)

(9)

where fD+1
t = 1 and q0

t = ROOT. This model

is conditioned on final-state switching variables

at and immediately below the current FSA level.

If there is no final state immediately below the

current level (the first case above), it determin-

istically copies the current FSA state forward to

the next time step. If there is a final state imme-

diately below the current level (the second case

above), it transitions the FSA state at the current

level, according to the distribution ΘQ-Trans. And
if the state at the current level is final (the third

case above), it re-initializes this state given the

state at the level above, according to the distribu-

tion ΘQ-Expand. The overall effect is that higher-
level FSAs are allowed to transition only when

lower-level FSAs terminate. An HHMM therefore

behaves like a probabilistic implementation of a

pushdown automaton (or shift–reduce parser) with

a finite stack, where the maximum stack depth is

equal to the number of levels in the HHMM hier-

archy.

Figure 2 shows the transformed tree from Fig-

ure 1 aligned to HHMM depth levels and time

steps. Because it uses a bounded stack, recogni-

tion in this model is asymptotically linear (Murphy

and Paskin, 2001).

. . .

. . .

. . .

. . .

f3
t−1

f2
t−1

f1
t−1

q1
t−1

q2
t−1

q3
t−1

ot−1

f3
t

f2
t

f1
t

q1
t

q2
t

q3
t

ot

Figure 3: Graphical representation of a Hierarchic

Hidden Markov Model. Circles denote random

variables, and edges denote conditional dependen-

cies. Shaded circles are observations.

This model recognizes right-corner transformed

trees constrained to a stack depth corresponding to

observed human short term memory limits. This

is an attractive model of human language process-

ing because the incomplete syntactic constituents

it stores at each stack depth can be directly associ-

ated with (incomplete) semantic referents, e.g. by

adding random variables over environment or dis-

course referents at each depth and time step. If

these referents are calculated incrementally, recog-

nition decisions can be informed by the values of

these variables in an interactive model of language,

following Tanenhaus et al. (1995). The corpus re-

sults described in the next section suggest that a

large majority of naturally occurring sentences can

be recognized using only three or four stack mem-

ory elements via this transform.

4 Empirical Results

In order to evaluate the coverage of this bounded-

memory model, Sections 2–21 of the Penn Tree-

bank WSJ corpus were transformed and mapped

to HHMM variables as described in Section 3.3. In

order to counter possible undesirable effects of an

arbitrary branching analysis of punctuation, punc-

tuation was removed. Coverage results on this cor-

pus are shown in Table 1.

Experiments training on transformed trees from

Sections 2–21 of the WSJ Treebank, evaluating

reversed-transformed output sequences from Sec-

tion 22 (development set) and Section 23 (test set),

show an accuracy (F score) of 82.1% and 80.1%

respectively.3 Although they are lower than those

3Using unsmoothed relative frequency estimates from the

HHMM depth limit sentences coverage

no memory 127 0.32%

1 memory element 3,496 8.78%

2 memory elements 25,909 65.05%

3 memory elements 38,902 97.67%

4 memory elements 39,816 99.96%

5 memory elements 39,832 100.00%

TOTAL 39,832 100.00%

Table 1: Percent coverage of right-corner trans-

formed treebank sections 2–21 with punctuation

omitted, using HHMMs with depth limits D from
zero to five.

for state-of-the-art parsers, these results suggest

that the bounded-memory parser described here

is doing a reasonably good job of modeling syn-

tactic dependencies, and therefore may have some

promise as a psycholinguistic model.

Although recognition in this system is linear, it

essentially works top-down, so it has larger run-

time constants than a bottom-up CKY-style parser.

The experimental system described above runs at

a rate of about 1 sentence per second on a 64-

bit 2.6GHz dual core desktop with a beam width

of 2000. In comparison, the Klein and Manning

(2003) CKY-style parser runs at about 5 sentences

per second on the same machine. On sentences

longer than 40 words, the HHMM and CKY-style

parsers are roughly equivalent, parsing at the rate

of .21 sentences per second, versus .24 for the

Klein and Manning CKY.

But since it is linear, the HHMM parser can be

directly integrated with end-of-sentence detection

(e.g. deciding whether ‘.’ is a sentence delimiter

based on whether the words preceding it can be

reduced as a sentence), or with n-gram language

models (if words are observations, this is simply

an autoregressive HMM topology). The use of

an explicit constituent structure in a time series

model also allows integration with models of dy-

namic phenomena such as semantics and corefer-

ence which may depend on constituency. Finally,

as a linear model, it can be directly applied to

speech recognition (essentially replacing the hid-

den layer of a conventional word-based HMM lan-

guage model).

training set, a depth limit of D = 3, beam with of 2000, and
no lexicalization.

5 Conclusion

This paper has described a basic incremental pars-

ing model that achieves worst-case linear time

complexity by enforcing fixed limits on a stack

of explicit (albeit incomplete) constituents. Ini-

tial results show a use of only three to four levels

of stack memory within this framework provides

nearly complete coverage of the large Penn Tree-

bank corpus.

References

Abney, Steven P. and Mark Johnson. 1991. Memory
requirements and local ambiguities of parsing strate-
gies. J. Psycholinguistic Research, 20(3):233–250.

Anderson, J.R. and L.M. Reder. 1999. The fan effect:
New results and new theories. Journal of Experi-
mental Psychology: General, 128(2):186–197.

Brown-Schmidt, Sarah, Ellen Campana, and
Michael K. Tanenhaus. 2002. Reference res-
olution in the wild: Online circumscription of
referential domains in a natural interactive problem-
solving task. In Proceedings of the 24th Annual
Meeting of the Cognitive Science Society, pages
148–153, Fairfax, VA, August.

Cowan, Nelson. 2001. The magical number 4 in short-
term memory: A reconsideration of mental storage
capacity. Behavioral and Brain Sciences, 24:87–
185.

Dahan, Delphine and M. Gareth Gaskell. 2007. The
temporal dynamics of ambiguity resolution: Evi-
dence from spoken-word recognition. Journal of
Memory and Language, 57(4):483–501.

Ericsson, K. Anders and Walter Kintsch. 1995.
Long-term working memory. Psychological Review,
102:211–245.

Frege, Gottlob. 1892. Uber sinn und bedeutung.
Zeitschrift fur Philosophie und Philosophischekritik,
100:25–50.

Hale, John. 2003. Grammar, Uncertainty and Sen-
tence Processing. Ph.D. thesis, Cognitive Science,
The Johns Hopkins University.

Hobbs, Jerry R., Douglas E. Appelt, John Bear,
David Israel, Megumi Kameyama, Mark Stickel, and
Mabry Tyson. 1996. Fastus: A cascaded finite-state
transducer for extracting information from natural-
language text. In Finite State Devices for Natural
Language Processing, pages 383–406. MIT Press,
Cambridge, MA.

Johnson, Mark. 1998a. Finite state approximation of
constraint-based grammars using left-corner gram-
mar transforms. In Proceedings of COLING/ACL,
pages 619–623.

Johnson, Mark. 1998b. PCFG models of linguistic tree
representation. Computational Linguistics, 24:613–
632.

Klein, Dan and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated
corpus of English: the Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Marcus, Mitch. 1980. A theory of syntactic recognition
for natural language. MIT Press.

Miller, George and Noam Chomsky. 1963. Finitary
models of language users. In Luce, R., R. Bush,
and E. Galanter, editors, Handbook of Mathematical
Psychology, volume 2, pages 419–491. John Wiley.

Miller, George A. 1956. The magical number seven,
plus or minus two: Some limits on our capacity
for processing information. Psychological Review,
63:81–97.

Murphy, Kevin P. and Mark A. Paskin. 2001. Lin-
ear time inference in hierarchical HMMs. In Proc.
NIPS, pages 833–840.

Roark, Brian. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249–276.

Sagae, Kenji and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proceed-
ings of the Ninth International Workshop on Parsing
Technologies (IWPT’05).

Schuler, William, Stephen Wu, and Lane Schwartz. in
press. A framework for fast incremental interpre-
tation during speech decoding. Computational Lin-
guistics.

Smolensky, Paul and Géraldine Legendre. 2006.
The Harmonic Mind: From Neural Computation to
Optimality-Theoretic GrammarVolume I: Cognitive
Architecture. MIT Press.

Steedman, Mark. 2000. The syntactic process. MIT
Press/Bradford Books, Cambridge, MA.

Tanenhaus, Michael K., Michael J. Spivey-Knowlton,
Kathy M. Eberhard, and Julie E. Sedivy. 1995. Inte-
gration of visual and linguistic information in spoken
language comprehension. Science, 268:1632–1634.

