
A Syntactic Time-Series Model for Parsing Fluent and Disfluent Speech∗

Tim Miller
University of Minnesota
tmill@cs.umn.edu

William Schuler
University of Minnesota
schuler@cs.umn.edu

Abstract

This paper describes an incremental ap-
proach to parsing transcribed spontaneous
speech containing disfluencies with a Hier-
archical Hidden Markov Model (HHMM).
This model makes use of the right-corner
transform, which has been shown to in-
crease non-incremental parsing accuracy on
transcribed spontaneous speech (Miller and
Schuler, 2008), using trees transformed in
this manner to train the HHMM parser.
Not only do the representations used in this
model align with structure in speech repairs,
but as an HMM-like time-series model, it
can be directly integrated into conventional
speech recognition systems run on continu-
ous streams of audio. A system implement-
ing this model is evaluated on the standard
task of parsing the Switchboard corpus, and
achieves an improvement over the standard
baseline probabilistic CYK parser.

1 Introduction

Disfluency is one obstacle preventing speech recog-
nition systems from being able to recognize sponta-
neous speech. Perhaps the most challenging aspect of
disfluency recognition is the phenomenon of speech
repair, which involves a speaker realizing a mistake,
cutting off the flow of speech, and then continuing on,
possibly retracing and replacing part of the utterance
to that point. This paper will describe a system which
applies a syntactic model of speech repair to a time-
series parsing model, and evaluate that system on the
standard Switchboard corpus parsing task.

The speech repair terminology used here follows
that of Shriberg (1994). A speech repair consists of a
reparandum, aninterruption point, and thealteration.
The reparandum contains the words that the speaker

∗The authors would like to thank the anonymous reviewers
for their input. This research was supported by National Science
Foundation CAREER/PECASE award 0447685. The views ex-
pressed are not necessarily endorsed by the sponsors.

means to replace, including both words that are in er-
ror and words that will be retraced. The interruption
point is the point in time where the stream of speech
is actually stopped, and the repairing of the mistake
can begin. The alteration contains the words that are
meant to replace the words in the reparandum.

2 Background

Historically, research in speech repair has focused on
acoustic cues such as pauses and prosodic contours
for detecting repairs, which could then be excised
from the text for improved transcription. Recent work
has also looked at the possible contribution of higher-
level cues, including syntactic structure, in the detec-
tion of speech repair. Some of this work is inspired
by Levelt’s (1983) investigation of the syntactic and
semantic variables in speech repairs, particularly his
well-formedness rule, which states that the reparan-
dum and alteration of a repair typically have the same
consitituent label, similar to coordination.

Hale et al. (2006) use Levelt’s well-formedness
rule to justify an annotation scheme where unfinished
categories (marked X-UNF) have the UNF label ap-
pended to all ancestral category labels all the way up
to the top-most constituent beneath an EDITED label
(EDITED labels denoting a reparandum). They rea-
son that this should prevent grammar rules of finished
constituents in the corpus from corrupting the gram-
mar of unfinished constituents. While this annotation
proves helpful, it also leads to the unfortunate result
that a large reparandum requires several special re-
pair rules to be applied, even though the actual error
is only happening at one point.

Intuitively, though, it seems that an error is only
occurring at the end of the reparandum, and that un-
til that point only fluent grammar rules are being ap-
plied by the speaker. This intuition has also been con-
firmed by empirical studies (Nakatani and Hirschberg,
1994), which show that there is no obvious error sig-
nal in speech up until the moment of interruption. Al-
though speakers may retrace much of the reparandum
for clarity or other reasons, ideally the reparandum
contains nothing but standard grammatical rules until

the speech is interrupted.1

Another recent approach to this problem (Johnson
and Charniak, 2004) uses a tree-adjoining grammar
(TAG) approach to define a mapping between a source
sentence possibly containing a repair, and a target, flu-
ent sentence. The use of the TAG channel model is
justified by the putative crossing dependencies seen
in repairs like . . . a flight to Boston, uh, I mean, to
Denver. . . where there is repetition from the reparan-
dum to the repair. Essentially, this model is building
up the reparandum and alteration in tandem, based on
these crossing dependencies. While this is an inter-
esting model, it focuses on detection and removal of
EDITED sections, and subsequent parsing of cleaned
up speech. As such, it introduces challenges for inte-
grating the system into a real-time speech recognizer.

Recent work by Miller and Schuler (2008) showed
how a probabilistic grammar trained on trees modi-
fied by use of theright-corner transformcan improve
parsing accuracy over an unmodified grammar when
tested on the Switchboard corpus. The approach de-
scribed here builds on that work in using right-corner
transformed trees, and extends it by mapping them to
a time-series model to do parsing directly in a model
of the sort used in speech recognition. This system
is shown to be more accurate than a baseline CYK
parser when used to parse the Switchboard corpus.
The remainder of this section will review the right-
corner transform, followed by Section 3, which will
step through an extended example giving details about
the transform process and its applicability to the prob-
lem of processing speech repairs.

2.1 Right-corner transform

The right-corner transform rewrites syntax trees, turn-
ing all right branching structure into left branching
structure, and leaving left branching structure as is.
As a result, constituent structure can be explicitly
built from the bottom up during incremental recog-
nition. This arrangement is well-suited to recognition
of speech with errors, because it allows constituent
structure to be built up using fluent speech rules until
the moment of interruption, at which point a special
repair rule may be applied.

Before transforming the trees in the grammar into
right-corner trees, trees are binarized in the same
manner as Johnson (1998b) and Klein and Manning
(2003).2 Binarized trees are then transformed into
right-corner trees using transform rules similar to

1One objection to this claim is the case of multiple nested re-
pairs. In this case, though, we presume that all reparanda were
originally intended by the speaker to be fluent at the time of gen-
eration.

2For the details of the particular binarization process used
here, see Miller and Schuler (2008).

those described by Johnson (1998a). In this trans-
form, all right branching sequences in each tree are
transformed into left branching sequences of symbols
of the formA1/A2, denoting an incomplete instance
of categoryA1 lacking an instance of categoryA2 to
the right.3

Rewrite rules for the right-corner transform are
shown below, first flattening right-branching struc-
ture:

A1

α1 A2

α2 A3

a3

⇒

A1

A1/A2

α1

A2/A3

α2

A3

a3

A1

α1 A2

A2/A3

α2

. . .

⇒

A1

A1/A2

α1

A2/A3

α2

. . .

then replacing it with left-branching structure:

A1

A1/A2:α1 A2/A3

α2

. . . ⇒

A1

A1/A3

A1/A2:α1 α2

. . .

Here, the first two rewrite rules are applied iter-
atively (bottom-up on the tree) to flatten all right
branching structure, using incomplete constituents to
record the original nonterminal ordering. The third
rule is then applied to generate left branching struc-
ture, preserving this ordering.

An important property of this transform is that it is
reversible. Rewrite rules for reversing a right-corner
transform are simply the converse of those shown
above.

Because this process turns right expansion into
left expansion (leaving center expansion as the only
stack consumer), right-corner transformed trees also
require less stack memory than ordinary phrase struc-
ture trees. This key property of the right-corner trans-
form is exploited in the mapping of transformed train-
ing trees to a time-series model. This property will be
examined further in Section 5.

3 Speech Repair Example

A substantial example of a speech repair from the
Switchboard corpus can be seen in Figures 1 and 2,

3Here, allAi denote nonterminal symbols, and allαi denote
subtrees; the notationA1:α1 indicates a subtreeα1 with labelA1;
and all rewrites are applied recursively, from leaves to root.

S

NP

CC

and

NP

EDITED-NP

NP

DT

the

NN

JJ

first

NN

kind

PP[-UNF]

IN

of

NP[-UNF]

NP

invasion

PP-UNF

of

NP

NP

DT

the

NN

JJ

first

NN

type

PP

IN

of

NP

privacy

VP

. . .

Figure 1: Binarized tree repair structure, with the -UNF propagation as in Hale et al. (2006) shown in brackets.

S/VP

S/VP

S/S

CC

and

NP

NP/NP

NP/PP

NP/NP

EDITED-NP

NP/PP

NP/NP

NP/PP

NP

NP/NN

NP/NN

DT

the

JJ

first

NN

kind

IN

of

NP

invasion

PP-UNF

of

NP

NP/NN

NP/NN

DT

the

JJ

first

NN

type

IN

of

NP

privacy

VBD

. . .

Figure 2: Right-corner transformed tree with repair structure

in which the same repair and surrounding context
is shown after the preliminary binarization process,
and after the right-corner transform. Figure 1 also
shows, in brackets, the augmented annotation de-
scribed above from Hale et al. (2006). This scheme
consisted of adding -X to an EDITED label which
produced a category X (daughter annotation), as well
as propagating the -UNF label at the right corner of
the tree up through every parent below the EDITED
root.

3.1 Re-annotation of speech repair

Before applying the right-corner transform, some cor-
pus pre-processing steps are applied — Figure 1
shows an example tree after these changes. These
steps aim to improve on the default annotation of re-

pair in the Switchboard corpus by making the repre-
sentation more in line with linguistic as well as pro-
cessing desiderata.

The standard annotation practice of having the
EDITED label as the category at the root of a reparan-
dum does not represent any proposed linguistic phe-
nomenon, and it conflates speech repairs of different
categories. As a result, the parser is unable to make
use of information about which syntactic category the
reparandum was originally intended to be. This in-
formation would be useful in the example discussed
here, since an unfinished NP is followed by a com-
pleted NP. The daughter annotation used by Hale et
al. fixes this annotation to allow the parser to have ac-
cess to this information. The annotation scheme in
this paper also makes use of the daughter annotation.

In addition, trees are modified to reduce the arity
of speech repair rules, and to change the model of
how repairs occur. The default Switchboard has, e.g.
an NP reparandum (headed by EDITED) and the NP
alteration represented as siblings in the syntax tree.
This annotation seems to implicitly model all repairs
as stopping the process of producing the current con-
stituent, then starting a new one. In contrast, the
representation here models repairs of this type as a
speaker generating a partial noun phrase, realizing an
error, and then continuing to generatethe same noun
phrase. This representation scheme thus represents
the beginning of an effort to distinguish between re-
pairs that are changing the direction of the utterance
and those that are just fixing a local mistake.

3.2 Right-corner transform model of speech
repair

The right corner transform is then applied to this ex-
ample in Figure 2. The resulting tree representation
is especially valuable because it models human pro-
duction of speech repairs well, by not applying any
special rule until the moment of interruption.

In the example in Figure 1, there is an unfin-
ished constituent (PP-UNF) at the end of the reparan-
dum. This standard annotation is deficient because
even if an unfinished consituent like PP-UNF is cor-
rectly recognized, and the speaker is essentially in
an error state, there may be several partially com-
pleted constituents above — in Figure 1, the NP,
PP, and NP above the PP-UNF. These constituents
need to be completed, but using the standard anno-
tation there is only one chance to make use of the
information about the error that has occurred — the
‘NP → NP PP-UNF’ rule. Thus, by the time the er-
ror section is completed, there is no information by
which a parsing algorithm could choose to reduce the
topmost NP to EDITED (or EDITED-NP) other than
independent rule probabilities.

The approach used by Hale et al. (2006) works be-
cause the information about the transition to an “er-
ror state” is propagated up the tree, in the form of
the -UNF tags. As the parsing chart is filled in from
the bottom up, each rule applied is essentially coming
out of a special repair rule set, and so at the top of
the tree the EDITED hypothesis is much more likely.
However, this requires that several fluent speech rules
from the data set be modified for use in a special re-
pair grammar, which not only reduces the amount of
available training data, but violates our intuition that
reparanda are usually fluent up until the actual edit
occurs.

The right corner transform works in a different way,
by building up constituent structure from left to right.

In Figure 2, the same repair is shown as it appears in
the training data for this system. With this represen-
tation, the problem noticed by Hale and colleagues
has been solved in a different way, by incrementally
building upleft-branchingrather than right-branching
structure, so that only a single special error rule is re-
quired at the end of the constituent. As seen in the fig-
ure, all of the structure beneath the EDITED-NP label
is built using rules from the fluent grammar. It is only
at one point, when the PP-UNF is found, that a repair
rule is applied and the EDITED-NP section is found.
The next step in the process is that the NP essentially
restarts (the NP/NP label), and the subsequent words
start to build up what will be the NP alteration in a
fluent manner.

To summarize, while the -UNF propagation scheme
often requires the entire reparandum to be generated
from a speech repair rule set, this scheme only re-
quires one special rule, where the moment of inter-
ruption actually occurred. This reduces the number of
special speech repair rules that need to be learned and
saves more potential examples of fluent speech rules,
and therefore potentially makes better use of limited
data.

4 Mapping to an HHMM

This section describes how a corpus of trees trans-
formed as above can be mapped to a time-series
model called a Hierarchical Hidden Markov Model
(HHMM) in order to incorporate parsing into speech
decoding. This suggests that this approach can be
used in applications using streaming speech input, un-
like other parsing approaches which are cubic time
on input length at best, and require input to be pre-
segmented.

This section will begin by showing how HHMMs
can model linguistic structure by extending stan-
dard Hidden Markov Models (HMMs) used in speech
recognition, and will follow with a description of how
right-corner transformed trees can be mapped to this
model topology.

4.1 Hierarchical HMMs

In general, the hidden state in an HMM can be as
simple or complex as necessary. This can include
factorizing the hidden state into any number of inter-
dependent random variables modeling the sub-states
of the complex hidden state. A Hierarchical Hidden
Markov Model is essentially an HMM with a specific
factorization that is useful in many domains — the
hidden state at each time step is factored intod ran-
dom variables which function as a stack, andd ad-
ditional boolean random variables which regulate the
operations of the stack through time. The boolean

random variables are typically marginalized out when
performing inference on a sequence.

While the vertical direction of the hidden sub-states
(at a fixedt) represents a stack at a single point in
time, the horizontal direction of the hidden sub-states
(at a fixedd) can be viewed as simple HMMs at
depthd, taking direction from the HMM above them
and controlling those below them. This interpretation
will be useful when formally defining the transitions
between the stack elements at different time steps be-
low.

Formally, HMMs characterize speech or text as a
sequence of hidden statesqt (which may consist of
speech sounds, words, and/or other hypothesized syn-
tactic or semantic information), and observed statesot

at corresponding time stepst (typically short, over-
lapping frames of an audio signal, or words or char-
acters in a text processing application). A most likely
sequence of hidden statesq̂1..T can then be hypoth-
esized given any sequence of observed stateso1..T ,
using Bayes’ Law (Equation 2) and Markov inde-
pendence assumptions (Equation 3) to define a full
P(q1..T | o1..T) probability as the product of aLan-
guage Model (ΘL) prior probability and anObserva-
tion Model (ΘO) likelihood probability:

q̂1..T = argmax
q1..T

P(q1..T | o1..T) (1)

= argmax
q1..T

P(q1..T) · P(o1..T | q1..T) (2)

def
= argmax

q1..T

T
∏

t=1

PΘL
(qt | qt−1) · PΘO

(ot | qt) (3)

Language model transitionsPΘL
(qt | qt−1) over

complex hidden statesqt can be modeled using syn-
chronized levels of stacked-up component HMMs in
a Hierarchic Hidden Markov Model (HHMM) (Mur-
phy and Paskin, 2001). HHMM transition probabil-
ities are calculated in two phases: a ‘reduce’ phase
(resulting in an intermediate, marginalized stateft), in
which component HMMs may terminate; and a ‘shift’
phase (resulting in a modeled stateqt), in which unter-
minated HMMs transition, and terminated HMMs are
re-initialized from their parent HMMs. Variables over
intermediateft and modeledqt states are factored into
sequences of depth-specific variables — one for each
of D levels in the HMM hierarchy:

ft = 〈f1
t . . . fD

t 〉 (4)

qt = 〈q1
t . . . qD

t 〉 (5)

Transition probabilities are then calculated as a prod-
uct of transition probabilities at each level, using

level-specific ‘reduce’ΘF and ‘shift’ ΘQ models:

P(qt | qt−1) =
∑

ft

P(ft | qt−1) · P(qt | ft qt−1) (6)

def
=

∑

f1
t
..fD

t

D
∏

d=1

PΘF(f
d
t | fd+1

t qd
t−1q

d−1
t−1)

·
D
∏

d=1

PΘQ(qd
t | f

d+1
t fd

t qd
t−1q

d−1
t) (7)

with fD+1
t andq0

t defined as constants.
Shift and reduce probabilities are now defined in

terms of finitely recursive FSAs with probability dis-
tributions over transition, recursive expansion, and
final-state status of states at each hierarchy level. In
simple HHMMs, each intermediate state variable is
a boolean switching variablefd

t ∈ {0,1} and each
modeled state variable is a syntactic, lexical, or pho-
netic stateqd

t . The intermediate variablefd
t is true

(equal to1) with probability 1 if there is a transition
at the level immediately belowd and the stack ele-
mentqd

t−1 is a final state, and false (equal to0) with
probability 1 otherwise:4

PΘF(f
d
t | fd+1

t qd
t−1q

d−1
t−1)

def
=

{

if fd+1
t =0 : [fd

t =0]

if fd+1
t =1 : PΘF-Reduce(f

d
t | qd

t−1, q
d−1
t−1)

(8)

wherefD+1 = 1 andq0
t = ROOT.

Shift probabilities at each level are defined us-
ing level-specific transitionΘQ-Trans and expan-
sionΘQ-Expandmodels:

PΘQ(qd
t | f

d+1
t fd

t qd
t−1q

d−1
t)

def
=







if fd+1
t =0, fd

t =0 : [qd
t = qd

t−1]

if fd+1
t =1, fd

t =0 : PΘQ-Trans(q
d
t | q

d
t−1q

d−1
t)

if fd+1
t =1, fd

t =1 : PΘQ-Expand(q
d
t | q

d−1
t)

(9)

wherefD+1 = 1 andq0
t = ROOT. This model is

conditioned on final-state switching variables at and
immediately below the current HHMM level. If there
is no final state immediately below the current level
(the first case above), it deterministically copies the
current HHMM state forward to the next time step.
If there is a final state immediately below the cur-
rent level (the second case above), it transitions the
HHMM state at the current level, according to the
distributionΘQ-Trans. And if the state at the current
level is final (the third case above), it re-initializes
this state given the state at the level above, accord-
ing to the distributionΘQ-Expand. The overall effect

4Here[·] is an indicator function:[φ] = 1 if φ is true,0 other-
wise.

d=1

d=2

d=3

word

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13

and

the

first

kind

of

invasion

of

the

first

type

of

privacy

. . .

− − − − − − − −

N
P

/N
N

N
P

/N
N

− −

− −

N
P

/N
N

N
P

/N
N

N
P

/P
P

N
P

/N
P

N
P

/P
P

N
P

/N
P

N
P

/N
P

N
P

/N
P

N
P

/P
P

N
P

/N
P

− S
/S

S
/S

S
/S

S
/S

S
/S

S
/S

S
/S

S
/S

S
/S

S
/S

S
/S

S
/V

P

Figure 3: Sample tree from Figure 2 mapped toqd
t variable positions of an HHMM at each stack depthd

(vertical) and time stept (horizontal). Values for final-state variablesfd
t are not shown. Note that some

nonterminal labels have been omitted; labels for these nodes can be reconstructed from their children. This
includes the EDITED-NP nonterminal that occurs as a child of the NP/NP att=8,d=2, indicated in boldface.

is that higher-level HMMs are allowed to transition
only when lower-level HMMs terminate. An HHMM
therefore behaves like a probabilistic implementation
of a pushdown automaton (or ‘shift-reduce’ parser)
with a finite stack, where the maximum stack depth
is equal to the number of levels in the HHMM hierar-
chy.

4.2 Mapping trees to HHMM derivations

Any tree can now be mapped to an HHMM derivation
by aligning the nonterminals withqd

t categories. First,
it is necessary to define rightward depthd, right index
position t, and final (right) child statusf , for every
nonterminal nodeA in a tree, where:

• d is defined to be the number of right branches
between nodeA and the root,

• t is defined to be the number of words beneath or
to the left of nodeA, and

• f is defined to be0 if nodeA is a left (or unary)
child, 1 otherwise.

Any binary-branching tree can then be annotated with
these values and rewritten to define labels and final-
state values for every combination ofd and t cov-
ered by the tree. This process simply copies stacked
up constituents over multiple time steps, while other
constituents are being recognized. Coordinatesd, t ≤
D, T that are not covered by the tree are assigned la-
bel ‘−’, andf = 1. The resulting label and final-state
values at each node now define a value ofqd

t andfd
t+1

for each depthd and time stept of the HHMM (see
Figure 3). Probabilities for HHMM modelsΘQ-Expand,
ΘQ-Trans, and ΘF-Reducecan then be estimated from
these values directly. Like the right-corner transform,
this mapping is reversible, soq andf values can be
taken from a hypothesized most likely sequence and

mapped back to trees (which can then undergo the re-
verse of the right-corner transform to become ordi-
nary phrase structure trees).

5 HHMM Application to Speech Repair

While the HHMM parser described above can pro-
duce the same output as a standard probablistic CYK
parser (the most likely parse tree), the different pars-
ing strategy of an HHMM parser and the close con-
nection of this system with a probabilistic model of
semantics present potential benefits to the recognition
of disfluent speech.

First, by using a depth-limited stack, this model
better adheres to psycholinguistically observed short
term memory limits that the human parser and gen-
erator are likely to obey (Cowan, 2001; Miller,
1956). The use of a depth-limited stack is enabled by
the right-corner transform’s property of transforming
right expansions to left expansions, which minimizes
stack usage. Corpus studies (Schuler et al., 2008) sug-
gest that broad coverage parsing can be achieved via
this transform using only four stack elements. In prac-
tical terms this means that the model is less likely than
a standard CYK parser to spend time and probability
mass on analyses that conflict with the memory limits
humans appear to be constrained by when generating
and understanding speech.

Second, this model is part of a more general frame-
work that incorporates a model of referential seman-
tics into the parsing model of the HHMM (Schuler
et al., in press). While the framework evaluated in
this paper models only the syntactic contribution to
speech repair, there are some cases where syntactic
cues are not sufficient to distinguish disfluent from
fluent utterances. In many of these cases, semantic
information is the only way to tell that an utterance

contains a repair.5 A recognition system that incor-
porates referential semantics with syntax should im-
prove the accuracy of speech repair recognition as it
has been shown to increase recognition of entities in
fluent speech recognition (Schuler and Miller, 2005).

Finally, the semantic model just described, as well
as the mechanics of the HHMM parser on a right-
corner transformed grammar, combine to form a
model that accounts for two previously distant as-
pects of speech processing: referential semantics and
speech repair. From the generative view of language
processing, the model starts with a desired referent,
and based on that referent selects the appropriate syn-
tactic structures, and within those it selects the appro-
priate lexical items to unambiguously describe the ref-
erent. In the semantic sense, then, the model is operat-
ing in a top-down fashion, with the referent being the
driving force for the generation of syntax and words.
However, since the model is also working in a left-
to-right fashion on a highly left-branching grammar,
there is also a bottom-up composition of constituents,
which models the phenomenon of speech repair natu-
rally and accurately.

6 Evaluation

The evaluation of this system was performed on
the Switchboard corpus of transcribed conversational
speech, using themrg annotations in directories 2
and 3 for training, and the files sw4004.mrg to
sw4153.mrg in directory 4 for evaluation, following
Charniak and Johnson (2001). In addition to test-
ing the HHMM parser on the Switchboard corpus,
the experiment testing a CYK parser from Miller and
Schuler (2008) was replicated, with slightly better re-
sults due to a change in the evaluation script6 and
small changes in the binarization process (both of
these changes affect the baseline and test systems).

The input to the system consists of the terminal
symbols from the trees in the corpus section men-
tioned above. The terminal symbol strings are first
pre-processed by stripping punctuation and empty
categories, which could not be expected from the out-
put of a speech recognizer. In addition, any informa-
tion about repair is stripped from the input, includ-
ing partial words, repair symbols,7 and interruption
point information. While an integrated system for

5For example, the sentence “The red. . . uh. . . blue box” is
more likely to be considered a repair in a context with single col-
ored boxes, whereas the sentence “The big. . . uh. . . blue box” is
less likely to be considered a repair in the same context, although
the two sentences have the same syntactic structure.

6Specifically, we switched to using the evalb tool created by
Sekine and Collins (1997).

7The Switchboard corpus has special terminal symbols indi-
cating e.g. the start and end of the reparandum.

System Parseval F EDIT F
Baseline 63.43 41.82
CYK (H06) 71.16 41.7
RCT 73.21 61.03
HHMM+RCT 77.15 68.03
TAG-based model (JC04) – 79.7

Table 1: Baseline results are from a standard CYK
parser with binarized grammar. We were unable
to find the correct configuration to match the base-
line results from Hale et al. RCT results are on
the right-corner transformed grammar (transformed
back to flat treebank-style trees for scoring purposes).
HHMM+RCT results are for the HHMM parser de-
scribed in this paper. CYK and TAG lines show rele-
vant results from related work.

processing and parsing speech may use both acous-
tic and syntactic information to find repairs, and thus
may have access to some of this information about
where interruptions occur, this testing paradigm is in-
tended to evaluate the use of the right-corner trans-
form in a time-series model on parsing speech repair.
To make a fair comparison to the CYK baseline of
Hale et al. (2006), the recognizer was given correct
part-of-speech tags as input along with words.

The results presented here use two standard met-
rics for assessing accuracy of transcribed speech with
repairs. The first metric, Parseval F-measure, takes
into account precision and recall of all non-terminal
(and non pre-terminal) constituents in a hypothesized
tree relative to the gold standard. The second met-
ric, EDIT-finding F, measures precision and recall of
the words tagged as EDITED in the hypothesized tree
relative to those tagged EDITED in the gold standard.
F score is defined as usual,2pr/(p + r) for precision
p and recallr.

Table 1 shows the results of experiments using the
model of speech repair described in this paper. The
‘Baseline’ result shows the accuracy of the binarized
grammar at parsing the Switchboard test set. The
’RCT’ result shows the accuracy of parsing when
the right-corner transform is performed on the trees
in the training set prior to training. Finally, the
’HHMM+RCT’ results shows the accuracy of the
HHMM parser system described in this paper, trained
on right-corner trees mapped to the random variables
at each time step.

These results show an improvement over the stan-
dard CYK parsing algorithm, in both overall pars-
ing accuracy and EDIT-finding accuracy. This shows
that the HHMM parser, which is more applicable to
speech input due to its asymptotic linear time com-

plexity, does not need to sacrifice any accuracy to do
so, and indeed improves on accuracy for both metrics
under consideration.

7 Conclusion

The work described here has extended previous work
for recognizing disfluent speech to an incremental
model, moving in a direction that holds promise for
eventual direct implementation in a speech recog-
nizer.

The next step in this work will attempt to apply
this parsing model to unsegmented utterances. In
its current form, this model assumes pre-segmented
utterances, but segmenting speech into sentence-like
units is itself a difficult and unsolved research prob-
lem (Roark et al., 2006). This framework may be ex-
tended to perform sentence segmentation along with
parsing, with relatively small changes to the system.

The time series model for parsing described here
can then be extended to actual speech by making the
word level a hidden variable, and adding a pronun-
ciation model which generates the observed acoustic
evidence.

Extending this model to actual speech adds some
complexity, since disfluency phenomena are difficult
to detect in an audio signal. However, there are also
advantages in this extension, since the extra phono-
logical variables and acoustic observations contain in-
formation that can be useful in the recognition of dis-
fluency phenomena.

References
Charniak, Eugene and Mark Johnson. 2001. Edit detec-

tion and parsing for transcribed speech. In2nd Meeting
of the North American Chapter of the Association for
Computational Linguistics, pages 118–126.

Cowan, Nelson. 2001. The magical number 4 in short-
term memory: A reconsideration of mental storage ca-
pacity. Behavioral and Brain Sciences, 24:87–185.

Hale, John, Izhak Shafran, Lisa Yung, Bonnie Dorr, Mary
Harper, Anna Krasnyanskaya, Matthew Lease, Yang
Liu, Brian Roark, Matthew Snover, and Robin Stewart.
2006. PCFGs with syntactic and prosodic indicators of
speech repairs. InProceedings of the 45th Annual Con-
ference of the Association for Computational Linguistics
(COLING-ACL).

Johnson, Mark and Eugene Charniak. 2004. A tag-based
noisy channel model of speech repairs. InProceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL ’04), pages 33–39,
Barcelona, Spain.

Johnson, Mark. 1998a. Finite state approximation of
constraint-based grammars using left-corner grammar
transforms. InProceedings of COLING/ACL, pages
619–623.

Johnson, Mark. 1998b. PCFG models of linguistic
tree representation.Computational Linguistics, 24:613–
632.

Klein, Dan and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. InProceedings of the 41st
Annual Meeting of the Association for Computational
Linguistics, pages 423–430.

Levelt, William J.M. 1983. Monitoring and self-repair in
speech.Cognition, 14:41–104.

Miller, Tim and William Schuler. 2008. A unified syn-
tactic model for parsing fluent and disfluent speech. In
Proceedings of the 46th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL ’08).

Miller, George A. 1956. The magical number seven, plus
or minus two: Some limits on our capacity for process-
ing information.Psychological Review, 63:81–97.

Murphy, Kevin P. and Mark A. Paskin. 2001. Linear time
inference in hierarchical HMMs. InProc. NIPS, pages
833–840.

Nakatani, C. and J. Hirschberg. 1994. A corpus-based
study of repair cues in spontaneous speech.The Journal
of the Acoustic Society of America, 95:1603–1616.

Roark, Brian, Yang Liu, Mary Harper, Robin Stewart,
Matthew Lease, Matthew Snover, Izhak Safran, Bonnie
Dorr, John Hale, Anna Krasnyanskaya, and Lisa Yung.
2006. Reranking for sentence boundary detection in
conversational speech. InProceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP’06).

Schuler, William and Tim Miller. 2005. Integrating de-
notational meaning into a DBN language model. In
Proceedings of the 9th European Conference on Speech
Communication and Technology / 6th Interspeech Event
(Eurospeech/Interspeech’05), pages 901–904, Lisbon,
Portugal.

Schuler, William, Samir AbdelRahman, Tim Miller, and
Lane Schwartz. 2008. Toward a psycholinguistically-
motivated model of language. InProceedings of COL-
ING, Manchester, UK.

Schuler, William, Stephen Wu, and Lane Schwartz. in
press. A framework for fast incremental interpretation
during speech decoding.Computational Linguistics.

Sekine, Satoshi and Michael Collins. 1997. Evalb bracket
scoring program.

Shriberg, Elizabeth. 1994.Preliminaries to a Theory of
Speech Disfluencies. Ph.D. thesis, University of Cali-
fornia at Berkeley.

