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Abstract

This paper describes an incremental ap-
proach to parsing transcribed spontaneous
speech containing disfluencies with a Hier-
archical Hidden Markov Model (HHMM).
This model makes use of the right-corner
transform, which has been shown to in-
crease non-incremental parsing accuracy on
transcribed spontaneous speech (Miller and
Schuler, 2008), using trees transformed in
this manner to train the HHMM parser.
Not only do the representations used in this
model align with structure in speech repairs,
but as an HMM-like time-series model, it
can be directly integrated into conventional
speech recognition systems run on continu-
ous streams of audio. A system implement-
ing this model is evaluated on the standard
task of parsing the Switchboard corpus, and
achieves an improvement over the standard
baseline probabilistic CYK parser.
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means to replace, including both words that are in er-
ror and words that will be retraced. The interruption
point is the point in time where the stream of speech
is actually stopped, and the repairing of the mistake
can begin. The alteration contains the words that are
meant to replace the words in the reparandum.

2 Background

Historically, research in speech repair has focused on
acoustic cues such as pauses and prosodic contours
for detecting repairs, which could then be excised
from the text for improved transcription. Recent work
has also looked at the possible contribution of higher-
level cues, including syntactic structure, in the detec-
tion of speech repair. Some of this work is inspired
by Levelt's (1983) investigation of the syntactic and
semantic variables in speech repairs, particularly his
well-formedness rule, which states that the reparan-
dum and alteration of a repair typically have the same
consitituent label, similar to coordination.

Hale et al. (2006) use Levelt's well-formedness
rule to justify an annotation scheme where unfinished
categories (marked X-UNF) have the UNF label ap-
pended to all ancestral category labels all the way up

Disfluency is one obstacle preventing speech recolf the top-most constituent beneath an EDITED label
nition systems from being able to recognize spontdEDITED labels denoting a reparandum). They rea-
neous speech. Perhaps the most challenging aspect@h that this should prevent grammar rules of finished
disfluency recognition is the phenomenon of speedPnstituents in the corpus from corrupting the gram-
repair, which involves a speaker realizing a mistakénar of unfinished constituents. While this annotation
cutting off the flow of speech, and then continuing onProves helpful, it also leads to the unfortunate result
possibly retracing and replacing part of the utteranddat a large reparandum requires several special re
to that point. This paper will describe a system whictpair rules to be applied, even though the actual error
applies a syntactic model of speech repair to a timés only happening at one point.
series parsing model, and evaluate that system on thdntuitively, though, it seems that an error is only
standard Switchboard corpus parsing task. occurring at the end of the reparandum, and that un-
The speech repair terminology used here followdl that point only fluent grammar rules are being ap-
that of Shriberg (1994). A speech repair consists of Rlied by the speaker. This intuition has also been con-
reparandumaninterruption point and thealteration ~ firmed by empirical studies (Nakatani and Hirschberg,

The reparandum contains the words that the speakk94), which show that there is no obvious error sig-
nal in speech up until the moment of interruption. Al-
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the speech is interruptéd. those described by Johnson (1998a). In this trans-
Another recent approach to this problem (Johnsdiorm, all right branching sequences in each tree are

and Charniak, 2004) uses a tree-adjoining grammégansformed into left branching sequences of symbols

(TAG) approach to define a mapping between a sourcé the form 4, /A,, denoting an incomplete instance

sentence possibly containing a repair, and a target, flof categoryA; lacking an instance of categos, to

ent sentence. The use of the TAG channel model ike right3

justified by the putative crossing dependencies seenRewrite rules for the right-corner transform are

in repairs like ...a flight to Boston, uh, | mean, to shown below, first flattening right-branching struc-

Denver...where there is repetition from the reparanture:

dum to the repair. Essentially, this model is building Ay
up the reparandum and alteration in tandem, based on Ay
these crossing dependencies. While this is an inter- o Ag
esting model, it focuses on detection and removal of = A1/Ay  AslA3  Aj
EDITED sections, and subsequent parsing of cleaned dy  As | | |
up speech. As such, it introduces challenges for inte- | a1 Qs as
grating the system into a real-time speech recognizer. as

Recent work by Miller and Schuler (2008) showed Ay
how a probabilistic grammar trained on trees modi- Ay
fied by use of theight-corner transforncan improve o1 Az
parsing accuracy over an unmodified grammar when N = AdAy AslAs
tested on the Switchboard corpus. The approach de-  A2/43 ... | |
scribed here builds on that work in using right-corner oy %)
transformed trees, and extends it by mapping them to Q2
a time-series model to do parsing directly in a modehen replacing it with left-branching structure:
of the sort used in speech recognition. This system Ay Ay
is shown to be more accurate than a baseline CYK
parser when used to parse the Switchboard corpus.  A,/4,:a; Ax/A; ... = AiJAs ...
The remainder of this section will review the right- /\
corner transform, followed by Section 3, which will Qo AlAyia; Qg

step through an extended example giving details aboutere, the first two rewrite rules are applied iter-
the transform process and its applicability to the pmbatively (bottom-up on the tree) to flatten all right
lem of processing speech repairs. branching structure, using incomplete constituents to
record the original nonterminal ordering. The third

. _ rule is then applied to generate left branching struc-
The right-corner transform rewrites syntax trees, tUrfyyre preserving this ordering.

ing all right branching structure into left branching ap important property of this transform is that it is

structure, and leaving left branching structure as igeyersible. Rewrite rules for reversing a right-corner

As a result, constituent structure can be explicitlyansform are simply the converse of those shown
built from the bottom up during incremental recog-pgve.

nition. This arrangement is well-suited to recognition gecause this process turns right expansion into
of speech with errors, because it allows constituemts expansion (leaving center expansion as the only
structure to be built up using fluent speech rules untdack consumer), right-corner transformed trees also
the moment of interruption, at which point a speciajequire less stack memory than ordinary phrase struc-
repair rule may be applied. ture trees. This key property of the right-corner trans-
Before transforming the trees in the grammar intgorm js exploited in the mapping of transformed train-

right-comer trees, trees are binarized in the samgy trees to a time-series model. This property will be
manner as Johnson (1998b) and Klein and Manning.amined further in Section 5.

(2003)2 Binarized trees are then transformed into
right-corner trees using transform rules similar t&@ Speech Repair Example

2.1 Right-corner transform

0ne objection to this claim is the case of multiple nested reA substantial example of a speech repair from the
pairs. In this case, though, we presume that all reparanda wetgyitchboard corpus can be seen in Figures 1 and 2
originally intended by the speaker to be fluent at the time ofgen-_____ ’
eration. 3Here, allA; denote nonterminal symbols, and all denote
2For the details of the particular binarization process usesubtrees; the notatian; ;1 indicates a subtree; with label A;;
here, see Miller and Schuler (2008). and all rewrites are applied recursively, from leaves to root.
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Figure 1: Binarized tree repair structure, with the -UNF propagation aglie ¢t al. (2006) shown in brackets.
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Figure 2: Right-corner transformed tree with repair structure

in which the same repair and surrounding contexgair in the Switchboard corpus by making the repre-
is shown after the preliminary binarization processsentation more in line with linguistic as well as pro-
and after the right-corner transform. Figure 1 alscessing desiderata.

shows, in brackets, the augmented annotation de-The standard annotation practice of having the
scribed above from Hale et al. (2006). This schemeDITED label as the category at the root of a reparan-
consisted of adding -X to an EDITED label whichdum does not represent any proposed linguistic phe-
produced a category X (daughter annotation), as welbmenon, and it conflates speech repairs of different
as propagating the -UNF label at the right corner ofategories. As a result, the parser is unable to make
the tree up through every parent below the EDITERse of information about which syntactic category the
root. reparandum was originally intended to be. This in-
formation would be useful in the example discussed
here, since an unfinished NP is followed by a com-
Before applying the right-corner transform, some completed NP. The daughter annotation used by Hale et
pus pre-processing steps are applied — Figure dl. fixes this annotation to allow the parser to have ac-
shows an example tree after these changes. Thesss to this information. The annotation scheme in
steps aim to improve on the default annotation of rethis paper also makes use of the daughter annotation.

3.1 Re-annotation of speech repair



In addition, trees are modified to reduce the arityn Figure 2, the same repair is shown as it appears in
of speech repair rules, and to change the model e training data for this system. With this represen-
how repairs occur. The default Switchboard has, e.tation, the problem noticed by Hale and colleagues
an NP reparandum (headed by EDITED) and the NRas been solved in a different way, by incrementally
alteration represented as siblings in the syntax treleuilding upleft-branchingrather than right-branching
This annotation seems to implicitly model all repairsstructure, so that only a single special error rule is re-
as stopping the process of producing the current coquired at the end of the constituent. As seen in the fig-
stituent, then starting a new one. In contrast, there, all of the structure beneath the EDITED-NP label
representation here models repairs of this type asisbuilt using rules from the fluent grammar. It is only
speaker generating a partial noun phrase, realizing ahone point, when the PP-UNF is found, that a repair
error, and then continuing to generdéte same noun rule is applied and the EDITED-NP section is found.
phrase This representation scheme thus represenifie next step in the process is that the NP essentially
the beginning of an effort to distinguish between rerestarts (the NP/NP label), and the subsequent words
pairs that are changing the direction of the utterancgart to build up what will be the NP alteration in a

and those that are just fixing a local mistake. fluent manner.
To summarize, while the -UNF propagation scheme
3.2 Right-corner transform model of speech often requires the entire reparandum to be generated
repair from a speech repair rule set, this scheme only re-

The right corner transform is then applied to this exquires one special rule, where the moment of inter-
ample in Figure 2. The resulting tree representatioftption actually occurred. This reduces the number of
is especially valuable because it models human prépecial speech repair rules that need to be learned and
duction of speech repairs well, by not applying anygaves more potential examples of fluent speech rules,
special rule until the moment of interruption. and therefore potentially makes better use of limited
In the example in Figure 1, there is an unfindata.
ished constituent (PP-UNF) at the end of the reparaﬂ-
dum. This standard annotation is deficient because

even if an unfinished consituent like PP-UNF is corThis section describes how a corpus of trees trans-
rectly recognized, and the speaker is essentially farmed as above can be mapped to a time-series
an error state, there may be several partially conmodel called a Hierarchical Hidden Markov Model
pleted constituents above — in Figure 1, the NRHHMM) in order to incorporate parsing into speech
PP, and NP above the PP-UNF. These constituedgcoding. This suggests that this approach can be
need to be completed, but using the standard anngsed in applications using streaming speech input, un-
tation there is only one chance to make use of thgke other parsing approaches which are cubic time
information about the error that has occurred — then input length at best, and require input to be pre-
‘NP — NP PP-UNF’ rule. Thus, by the time the er-segmented.
ror section is completed, there is no information by This section will begin by showing how HHMMs
which a parsing algorithm could choose to reduce thgan model linguistic structure by extending stan-
topmost NP to EDITED (or EDITED-NP) other thandard Hidden Markov Models (HMMs) used in speech
independent rule probabilities. recognition, and will follow with a description of how

The approach used by Hale et al. (2006) works beight-corner transformed trees can be mapped to this
cause the information about the transition to an “efimodel topology.
ror state” is propagated up the tree, in the form of
the -UNF tags. As the parsing chart is filled in from*-1 Hierarchical HMMs
the bottom up, each rule applied is essentially cominigy general, the hidden state in an HMM can be as
out of a special repair rule set, and so at the top afimple or complex as necessary. This can include
the tree the EDITED hypothesis is much more likelyfactorizing the hidden state into any number of inter-
However, this requires that several fluent speech rulegpendent random variables modeling the sub-states
from the data set be modified for use in a special ref the complex hidden state. A Hierarchical Hidden
pair grammar, which not only reduces the amount dilarkov Model is essentially an HMM with a specific
available training data, but violates our intuition thafactorization that is useful in many domains — the
reparanda are usually fluent up until the actual editidden state at each time step is factored iht@an-
occurs. dom variables which function as a stack, ahad-

The right corner transform works in a different wayditional boolean random variables which regulate the
by building up constituent structure from left to right.operations of the stack through time. The boolean

Mapping to an HHMM



random variables are typically marginalized out whefevel-specific ‘reduce®r and ‘shift’ ©g models:
performing inference on a sequence.

While the vertical direction of the hidden sub-states " (4 | ¢-1) = Z P(felam) - Plael fear1)  (6)
(at a fixedt) represents a stack at a single point in fi

time, the horizontal direction of the hidden sub-states def D 41 rdd d dd

(at a fixedd) can be viewed as simple HMMs at :Z H Per(fi [ i g di)
depthd, taking direction from the HMM above them g d=1

and controlling those below them. This interpretation D

will be useful when formally defining the transitions ' HF’@Q(%? | ftd+1 tdqlfl—lfﬁi_l) )
between the stack elements at different time steps be- d=1

low.

with £ andq defined as constants.

Formally, HMMs characterize speech or text as a shift and reduce probabilities are now defined in
sequence of hidden statgs (which may consist of terms of finitely recursive FSAs with probability dis-
speech sounds, words, and/or other hypothesized s¥Ahutions over transition, recursive expansion, and
tactic or semantic information), and observed states final-state status of states at each hierarchy level. In
at corresponding time steps(typically short, over- simple HHMMs, each intermediate state variable is
lapping frames of an audio signal, or words or charg hoolean switching variablg? € {0,1} and each
acters in a text processing application). A most likelynodeled state variable is a syntactic, lexical, or pho-
sequence of hidden statgs.r- can then be hypoth- netic stateg?. The intermediate variablgd is true
esized given any sequence of observed staies, (equal tol) with probability 1 if there is a transition
using Bayes’ Law (Equation 2) and Markov inde-t the level immediately below and the stack ele-
pendence assumptions (Equation 3) to define a fulkenty | is a final state, and false (equal @ with

P(g1.7 | o1.7) probability as the product of &an-  probability 1 otherwisé:
guage Model ©y,) prior probability and arDbserva-

tion Model @) likelihood probability: P@)F(ftd | f;l—quilqill)(?lzef
if fi1=0 [fi=0]
j1.7 = argmax P ) 1 ; (8)
Q1--T ;C{LT x (Q1--T ‘ 1“T) ( ) {If ftd‘H: 1 : P@F-Reduce(ftd ‘ qil’ qul:ll)
= argmaxP(q1.7) - P(or.7 | q1.7) (@) wherefPH — 1 andg? = ROOT.
q1.. T
' T Shift probabilities at each level are defined us-

def
:arqngaXHPGL(qt\Qt_ﬂ'P®o(0t\%) (3) ing level-specific transitionOo.trans and expan-
1.. _ .
=1 SioN ©g-expangmodels:

Language model transition®e, (q:|q+1) over P d| pdtl pd d d-1ydef
. . OQ(Qt | g ) =
complex hidden stateg can be modeled using syn- i 4 ey
chronized levels of stacked-up component HMMs in !f ffmzo’ ftd:O: a=qi4] g aa
a Hierarchic Hidden Markov Model (HHMM) (Mur- i f%_; 1, f=0: Pogramddf IQtqult ) (9)
phy and Paskin, 2001). HHMM transition probabil- if fi=1, fi=1: P@Q-Expand(qg la; )

ities are calculated in two phases: a ‘reduce’ phase . .
D+ _ 0 _—
(resulting in an intermediate, marginalized stadein where f = 1andg; = ROOT. This model is

which component HMMs may terminate; and a‘Shif,[,conditioned on final-state switching variables at and

phase (resulting in a modeled statk in which unter- immediately below the current HHMM level. If there

minated HMMs transition. and terminated HMMs arés no final state immediately below the current level

re-initialized from their parent HMMs. Variables over(the first case above), it deterministically gopies the
intermediatef; and modeled; states are factored into current HHMM state forward to the next time step.

sequences of depth-specific variables — one for eaf:fhthere is a final state immediately pelow t_he cur
of D levels in the HMM hierarchy: rent level (the second case above), it transitions the

HHMM state at the current level, according to the
1 I distribution ©q.1rans And if the state at the current
fe="{fe - f) 4) Jevel is final (the third case above), it re-initializes
a=(q...q") (5) this state given the state at the level above, accord-
ing to the distribution®q.gxpana  The overall effect

Transition probabilities are then calculated as a prod- apere[Jis an indicator functioni¢] = 1 if ¢ is true,0 other-
uct of transition probabilities at each level, usingwise.
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Figure 3: Sample tree from Figure 2 mapped;fovariable positions of an HHMM at each stack degth
(vertical) and time step (horizontal). Values for final-state variablg¢ are not shown. Note that some
nonterminal labels have been omitted; labels for these nodes can betrec@usfrom their children. This
includes the EDITED-NP nonterminal that occurs as a child of the NP/NB8ati=2, indicated in boldface.

is that higher-level HMMs are allowed to transitionmapped back to trees (which can then undergo the re-
only when lower-level HMMs terminate. An HHMM verse of the right-corner transform to become ordi-
therefore behaves like a probabilistic implementationary phrase structure trees).
of a pushdown automaton (or ‘shift-reduce’ parser)
with a finite stack, where the maximum stack dept HHMM Application to Speech Repair
is equal to the number of levels in the HHMM hierar-
chy. While the HHMM parser described above can pro-
duce the same output as a standard probablistic CYK
parser (the most likely parse tree), the different pars-
Any tree can now be mapped to an HHMM derivatioring strategy of an HHMM parser and the close con-
by aligning the nonterminals witlf’ categories. First, nection of this system with a probabilistic model of
it is necessary to define rightward deptlright index semantics present potential benefits to the recognition
positiont, and final (right) child statug, for every of disfluent speech.
nonterminal nodel in a tree, where: First, by using a depth-limited stack, this model
Qetter adheres to psycholinguistically observed short
term memory limits that the human parser and gen-
erator are likely to obey (Cowan, 2001; Miller,
¢ ¢ is defined to be the number of words beneath dr956). The use of a depth-limited stack is enabled by
to the left of nodeA, and the right-corner transform’s property of transforming
right expansions to left expansions, which minimizes
stack usage. Corpus studies (Schuler et al., 2008) sug-
gest that broad coverage parsing can be achieved via
Any binary-branching tree can then be annotated witthis transform using only four stack elements. In prac-
these values and rewritten to define labels and findical terms this means that the model is less likely than
state values for every combination dfand¢ cov- a standard CYK parser to spend time and probability
ered by the tree. This process simply copies stack#&dass on analyses that conflict with the memory limits
up constituents over multiple time steps, while othehumans appear to be constrained by when generating
constituents are being recognized. Coordindteés< and understanding speech.
D, T that are not covered by the tree are assigned la- Second, this model is part of a more general frame-
bel‘—’, and f = 1. The resulting label and final-statework that incorporates a model of referential seman-
values at each node now define a valugjoénd f, tics into the parsing model of the HHMM (Schuler
for each depthi and time stepg of the HHMM (see et al., in press). While the framework evaluated in
Figure 3). Probabilities for HHMM model8q.expana  this paper models only the syntactic contribution to
©Q-Trans and Or_reduceCan then be estimated fromspeech repair, there are some cases where syntactic
these values directly. Like the right-corner transforngues are not sufficient to distinguish disfluent from
this mapping is reversible, spand f values can be fluent utterances. In many of these cases, semantic
taken from a hypothesized most likely sequence andformation is the only way to tell that an utterance

4.2 Mapping trees to HHMM derivations

e d is defined to be the number of right branche
between nodel and the root,

e fis defined to b@ if node A is a left (or unary)
child, 1 otherwise.



contains a repaft. A recognition system that incor- | System Parseval F| EDIT F
porates referential semantics with syntax should im-Baseline 63.43 41.82
prove the accuracy of speech repair recognition as|iCYK (HO6) 71.16 41.7
has been shown to increase recognition of entities jrRCT 73.21 61.03
fluent speech recognition (Schuler and Miller, 2005), HHMM+RCT 77.15 68.03
Finally, the semantic model just described, as well TAG-based model (JC04) - 79.7

as the mechanics of the HHMM parser on a right- _
comer transformed grammar, combine to form gable 1: Baseline results are from a standard CYK

model that accounts for two previously distant agP@rser with binarized grammar. We were unable
pects of speech processing: referential semantics afufind the correct configuration to match the base-
speech repair. From the generative view of languagi€ results from Hale et al. RCT results are on
processing, the model starts with a desired refererffi® right-comer transformed grammar (transformed
and based on that referent selects the appropriate ska to flat treebank-style trees for scoring purposes).
tactic structures, and within those it selects the appr6iHMM+RCT results are for the HHMM parser de-
priate lexical items to unambiguously describe the refi¢ribed in this paper. CYK and TAG lines show rele-
erent. In the semantic sense, then, the model is oper@Nt results from related work.

ing in a top-down fashion, with the referent being the

driving force for the generation of syntax and words. . .
However, since the model is also working in a leftProcessing and parsing speech may use both acous-

to-right fashion on a highly left-branching grammartic and syntactic information to find repairs, and thus

there is also a bottom-up composition of constituent§)ay have access to some of this information about

which models the phenomenon of speech repair natfyhere interruptions occur, this testing paradigm is in-
rally and accurately. tended to evaluate the use of the right-corner trans-

form in a time-series model on parsing speech repair.
6 Evaluation To make a fair comparison to the CYK baseline of
Hale et al. (2006), the recognizer was given correct
The evaluation of this system was performed oRart-of-speech tags as input along with words.
the Switchboard corpus of transcribed conversational The results presented here use two standard met-

speech, using thenrg annotations in directories 2 ijqs for assessing accuracy of transcribed speech with

and 3 for training, and the files sw4004.mrg Qgnairs. The first metric, Parseval F-measure, takes
sw4153.mrg in directory 4 for evaluation, followingntq account precision and recall of all non-terminal

Charniak and Johnson (2001). In addition to tes{zng non pre-terminal) constituents in a hypothesized
ing the HHMM parser on the Switchboard corpusyee relative to the gold standard. The second met-

the experiment testing a CYK parser from Miller andjc  £p)T-finding F, measures precision and recall of
Schuler (2008) was repll_cated, with sllghtly bgtter "ehe words tagged as EDITED in the hypothesized tree
sults due to a change in the evaluation s€riptd ro|ative to those tagged EDITED in the gold standard.

small changes in the binarization process (both &f s.qre is defined as usuapy/(p + ) for precision
these changes affect the baseline and test systems)p and recalb-.

Tf;)e Ilnﬁ)ut toﬂ':het syste_m tcéon&sts of thet_termmal Table 1 shows the results of experiments using the
Symnois from the ees In e corpus section Mefy,yq) of speech repair described in this paper. The

tioned above. The terminal symbol strings are f'rsbaseline’ result shows the accuracy of the binarized

pre-processed by stripping punctuation and emp rammar at parsing the Switchboard test set. The
categories, which could not be expected from the oul: CT’ result shows the accuracy of parsing when

put of a speech_rgcogmzer. n addltlon_, any lnformat-he right-corner transform is performed on the trees
tion about repair is stripped from the input, includ-

. tial d . bolsand int i in the training set prior to training. Finally, the
INg partial words, repair Symooisand INterruption ., v RCT” results shows the accuracy of the

point information. While an integrated system for|_“_“v”v| parser system described in this paper, trained

SFor example, the sentence “The red...uh...blue box” i®N right-corner trees mapped to the random variables
more likely to be considered a repair in a context with single colat each time step.
ored boxes, whereas the sentence “The big...uh...blue box” is .
less likely to be considered a repair in the same context, although | N€S€ results show an improvement over the stan-
the two sentences have the same syntactic structure. dard CYK parsing algorithm, in both overall pars-
Specifically, we switched to using the evalb tool created ang accuracy and EDIT—fIndIng accuracy. This shows

Sekine and Collins (1997). . .
"The Switchboard corpus has special terminal symbols indF—hat the HHMM parser, which is more applicable to

cating e.g. the start and end of the reparandum. speech input due to its asymptotic linear time com-



plexity, does not need to sacrifice any accuracy to dihnson, Mark. 1998b. PCFG models of linguistic
so, and indeed improves on accuracy for both metrics tree representatiorComputational Linguistic24:613—-
under consideration. 632.
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7 Conclusion rate unlexicalized parsing. IRroceedings of the 41st
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its current form, this model assumes pre—segmentedtlon for Computational Linguistics (ACL 08)

utterances, but segmenting speech into sentence-likéler, George A. 1956. The magical number seven, plus

units is itself a difficult and unsolved research prob- OF minus two: Some limits on our capacity for process-
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