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Abstract

This paper describes an implementation of a discriminatoais-
tical model — a Conditional Random Field (CRF) — within a
Dynamic Bayes Net (DBN) formulation of a Hierarchic Hid-
den Markov Model (HHMM) phone recognizer. This CRF-DBN
topology accounts for phone transition dynamics in cooddl
probability distributions over random variables ass@matvith
observed evidence, and therefore has less need faédden vari-
able states corresponding to transitions between phoeagint
more hypothesis space available for modeling higher-lavglis-

tic phenomena such syntax and semantics. The model alshéas t
interesting property that it explicitly represents likébymant tra-
jectories and formant targets of modeled phones in its nandwi-
able distributions, making it more linguistically transgat than
models based on traditional HMMs with conditionally indepe
dent evidence variables. Results on the standard TIMIT @hon
recognition task show this CRF evidence model, even witH-a re
atively simple first-order feature set, is competitive wsthndard
HMMs and DBN variants using static Gaussian mixture models o
MFCC features.

Index terms. Phone recognition, Dynamic Bayes Nets, Condi-
tional Random Fields, dynamic evidence model, phone réeogn
tion, acoustic modeling
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Phone recognition is hard to do well in a manner that allows le
cal, syntactic, and semantic information to also be integraOf-
ten discriminative approaches that do well by themselvesato
extend well to larger models. This paper describes a prelimi
nary implementation of a discriminative acoustical modéhim

a Dynamic Bayes Net (DBN) formulation of a Hierarchic Hid-
den Markov Model (HHMM) [1] phone recognizer. This acousti-
cal model has the interesting property that it explicitlpresents
both formant trajectories and formant targets in its randani-
able distributions: the former in the distributi&{o; | 0;_1,Q)
over the observed acoustical featueest framet given each pos-
sible phon&Q; and the latter in the distributidPn(Fto |0_1,Qt—1)
over binary ‘final state’ variables used in the DBN formudati

of HHMMs. This acoustical model was intended to function as a
component in a larger DBN-based interface that integratiesq-
ogy, syntax, and referential semantics into a single reitiogrpro-

I ntroduction

cess [2]. As a component in such a large system, the acdustica
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model was designed to avoid the need for large sets of context
dependent (e.g. triphone) values for hidden states at tbheeph
level, which are now common in state-of-the-art transmipsys-
tems.

1.1. DBN-based Spoken Language I nterface M odel

The acoustical model described in this paper is defined tctifom
within a structural language model, which explicitly repeats
syntactic constituents and semantics associated witte tbes-
stituents in a linear-time Dynamic Bayes Net (DBN) recogniz
[3]. This network is a variant of a Hierarchical Hidden Mavko
Model (HHMM) topology [1], which has been modified to encode
a finite-stack right-corner parserThe model is factored at each
time step into a finite number of stack elements, each of winésh

a limited number of conditional dependencies, allowing ptax
patterns to be learned from relatively small amounts of.datece
trained, the model can be compiled into an efficient, unfacto
HMM with only one hidden random variable per time step, by
multiplying out all possible combinations of individualctared
random variable values, then adopting a beam-searchgtrite
Viterbi decoding. Thus, any reduction of phonological (pntsic-
tic, or semantic) uncertainty in this compiled hidden vialéado-
main makes a correct interpretation less likely to fall b# beam.

The last two Q ando) levels of this larger interface model
comprise the phone recognizer described in this paper, thih
evidence §) and final-stateR°) variables comprising the acousti-
cal model portion of this recognizer. The experiments dbedrin
Section 3 evaluate this acoustical model and phone recegair
the standard TIMIT phone recognition task, and therefoseme
no lexical- or higher-level input from above the phone legel
Note that the random variables in the acoustical model e di
criminative in that they are conditioned on evidence (wigckatly
simplifies decoding since only one input value need be censii
rather than a whole distribution over a high-dimensionaialde
domain), but they are not strictly discriminative in thaeyhare
also conditioned on hidden variables as well (albeit onék weil-
atively small distributions over a relatively small phoret)s

1This is simply the left-right dual of left-corner parsingeasin com-
piler design. The advantage of the right-corner formutat®that it uses
its stack to store recognized constituents rather than goastituents,
allowing semantics associated with these constituente tceinembered
and used as antecedents of intra-sentential co-referestbsequent con-
stituents.



Figure 1: A graphical representation of the HHMM-based ghon
recognition model at three time steps (speech framgs)-1, and

t, showing hidden random variable@)(over phones or sub-phone
states at each frame, instantiated evidence random vesid)l
over short-time FFT spectra at each frame (each subsumimera s
trum of convexity indicatorg’23-), and boolean final-state vari-
ables £Q andF°) between frames, indicating whether lower-level
variables can serve as final states for higher-level vasabrhick
arcs represent ordinary conditional dependencies betregeiom
variables. Thin arcs and factor nodes (opaque boxes) staarfa
specific dependencies in the evidence model, using an étenfs
factor graph notation [4] to conditional models. The set ades

are a good model structure for this problem because the dynam
ics of the speech signal are complex, and CRFs allow for heavy
overlap of features without explicitly normalizing out theverlap.
One advantage of this approach is that it allows a dynamic
representation of spectral information such as formarnedta-
ries predicted by each phone, rather than a static repegsant
of likely formant configurations at various sub-states ohane,
capturing the intuition that phones are defined not so much by
set of formants beingt a particular configuration of frequencies,
but rather by travelingo a particular configuration of frequencies.
Similar approaches have been tried in connectionist mdégls
which use Recurrent Neural Networks to simultaneously ipted
phones and acoustical features at each time step givendhstac
cal features at the previous time step. However, unlike roost
nectionist approaches, the DBN-based model describeddtsre
permits, in addition to formant trajectories, an explieipresenta-
tion of formanttargetsin distributions associated wiff® random
variables. These variables control whether lower-levelkda
sub-models (in this case, the dynamic model of acoustieflifes)
have reached a final state so that higher-level HMMs (in thgec
phones) can transition. This is simply a straightforwarttegion
of the DBN formulation of HHMMs to cover evidence models,
but intuitively this is motivated by the fact that for a seqoe to
be considered an instance of a particular phone, it is hatgino
for the formants to be on their way to a particular configunati
they also have to eventually arrive there.

2.1. Conditional Random Fields

Conditional Random Fields [5] are probabilistic modelsdtruc-
tured prediction which estimate probabilities of complexput
states as products of exponential weights on arbitrarylapping

connected to a factor node by undirected edges represerit max features of evidence and output states, and then globattpaie

mal cliques of interdependent variables, conditioned bnfehe
nodes with directed arcs into the factor node. Ellipses attdip

of the model denote optional interface with HHMM or other DBN
language models.

2. Discriminative M odelswithin
Generative Models

The acoustical model described in this paper uses a dynamic e
idence model which, unlike conventional HMMs, conditiohe t
observed acoustical features at each time step on the amdust
features at the previous time step, in addition to the ctitrieldlen
(phone) state (see Figure 1). This model maps high-dimeakio
inputs to high-dimensional outputs. In order to make thigma
ping learnable, we 1) restrict our evidence to vectors of dai
nary ‘convexity’ features on frequency domain, which hight
the formant tracks in the spectrum at various granularides 2)
parameterize our model as a Conditional Random Field [Sighvh
calculates probability distributions over ordered segesr(in our
case, an array of spectral peak indicators at the curreetstap)
given another ordered sequence as input (in our case, anadrra
spectral peak indicators at the previous time step) as aiptad
factors on local correlations at the same offset in the iapatout-
put sequences. Probability distributions over output seges are
then computed as a product of these factors normalized bypthe
tal probability of all possible output sequences, which bartal-
culated very efficiently using a dynamic programming altjori
similar to that used in HMM filtering. Conditional random fisl

ize these products over the entire space of possible outgigss
This allows a CRF model to capture more long-distance depen-
dencies (in this case, of widely separated peaks of first acorsl
formants in certain vowel sounds) than non-parametric itimmel
models such as Bayes Net factorizations, which locally ratiza
each component feature over its overlap with other compsnen
This system uses a CRF to model probability distributiores ov
the observed evidence variables (describing short-tinte $gfec-
tra) of a larger DBN model used to recognize phonemes. We cal-
culate this conditional probability distribution as:

eXp(Zr,i,j Arij frﬁiﬁj(ot—botht))
Z(01.1,Q; M)

whereo is the spectral evidence vector at timésee following
section),Q is a realization of a subphone, addo;.1,Qt;A) is a
normalization factor.

Note that this differs from many implementations that have
used CRFs to mode?) (Qq. 7 | 01.7), whereQ 1 are hidden
phones in a segment awg 1 are evidence in that segment. The
purpose in our CRF model is not to discriminatively estinthe
phone, but to generate a conditional probability table fioegra-
tion into the (generative) dynamic evidence DBN model dbscr
above. In other words, most CRFs estimate the probabilitydbf
den states over a segment of time, whereas we estimate the proba-
bility of generating the next observexidence.

With probabilities conditioned on a hidden variable, this
evidence-to-evidence model is not strictly discriminatiwhich
usually implies a large search space when the generatitgista

@)

Pa(ot |01, Q) =



Figure 2: Convexity indicators at= 1 on sample spectrogram for
utterance fragment ‘. .. to helium film flow in the vapor ...’

unknown (i.e. from hidden state to evidence in an HMM). How-
ever, since the portion of the generating state due tcothen-
dom variable is evidence, it is not necessary to iterate exeh of
|O||Q| possibilities, but onlyQ| (where|- | is the set size). Further-
more, since the generated state is also evidence, we ontiytoee
calculate one instana® of equation 1. Therefore, we have added
a dynamic model to the evidence with little additional corapu
tional cost over a traditional HMM.

2.2. Feature Set

The featuresf (0;_1,0t,Q;) used in this work were binary values
indicating the presence of-convexitieé (loosely, ‘peaks’) in the
spectrum at any given time frame (see Figure 2)n-&onvexity
over an interval of discrete data produced by some funaios
defined as

glci+ (1—c)j] >cgli] + (1—c)g]j] )

Here,i < j are both points in the domain gf also,c € [0,1] is an
arbitrary averaging factor such thati- (1—c)j is an integer. The
implication is that the average value at the ends of an iatenust
be less than the midpoint of any two points on the interval.
Adapting this definition for each frequency point in our spec
tral data, we consider only the two nearest neighbors anatdnte
a thresholdy > 0 to reject convexities produced by noise. To ob-
tain features that encode characteristics of the data atetyaf
scales, we performed this convexity detection on diffecdati-
mated versions of the spectrum. We lowpass-filtered thetrspac
using 2*1-tap triangle filters, then decimated b§,2= 0,..,5,
producing the spectrg. We then define binary convexity indica-
tors at each frequency biras follows:

g = {1 i (@ll-oli~1) ~ (@ li+1-gl]) >y g

0 otherwise

The (also binary) features used in the CRF model are thenedkfin
on paired triples of adjacent binary convexity indicatdréha cur-

2The notationn-convex andU-convex help disambiguate confusing
mathematical definitions. In this paper, ‘convex’ and ‘cexity’ exclu-
sively refer ton-convex functions, so that formant ‘peaks’ aoevex. Note
that this is considered concave, not convex, in e.g. opétitia theory.

rent and previous frame:

1 if j=(b"(0ra),...,0"2(0r 1)
bi(ar), ....b"*2(ar))
0 otherwise

fr,i,j(ot-l7ot7Qt) = (4)

The result is a feature set that is sensitive to upward- and
downward- tending formant tracks at overlapping frequerayds
at various granularities.

Decimation on time signals typically reduces the necessary
bandwidth; in our case, decimation to a spectral signattejie
noise at higher cepstral quefrencies. The resulting spécive
lower resolutions, which are useful for detecting chansties
like formants or frication. Combining the data from diffatéev-
els of spectra, we havg?_, 28" —2(r + 1) = 378 features in our
feature vector, where two endpoint convexities are undefarel
unused in eachlevel.

This choice of features departs from typical Mel-frequency
cepstral coefficient (MFCC) feature vectors for severaldngmt
reasons. MFCCs aim to minimize the size of the feature vector
and are known to produce good results with only about 12 cep-
stral coefficients (about 60 features overall). To impleniérs,
the mel-frequency spectrum is organized into up to 40 nealin
frequency bins.

Our approach relies on the observation that the formants in
vowels increase or decrease monotonically over time tosvard
some target configuration - movements which should be obderv
with high resolution. These criteria do not hold for the mel-
frequency spectrum, so we maintain a linear scale for frecye
bins. The linear scale also simplifies the hierarchy ofrthevel
spectra, preserving more of the relevant data.

Another interesting point is that using convexity detecn-
codes a more general notion of ‘peaks’ than local maximagéesg
tinguishing formants which are close together in the spettione
of which slightly dominates the other.

A final, most tangible benefit to using convexity detection is
that binary-valued functions are compatible with the CRFleio
Although the number of features in MFCCs is small, the fezgur
themselves are continuous; this complicates the fornmuatf the
CRF evidence model, which can tractably perform normabmat
using dynamic programming only if there is a finite set of jlalss
values to store and share.

2.3. Final-State Variables

The Murphy-Paskin formulation of Hierarchic HMMs defines
boolean final-state variables at each hidden leviel the HMM
hierarchy, which indicate whether the HMM at dejptltan serve
as a final state for the HMM above it (at demdh- 1). This is
done in order to ensure that the higher-level HMMs in thedrier
chy transition only when the lower-level HMMs have concldde
The model described in this paper extends this formulatioimb
troducing final-state variables at the evidence level a$, weli-
cating whether the observed evidence can serve as a final stat
(i.e. formant target) for the lowest-level hidden statevahio (over
phones or sub-phones). In order to model formants that are su
tained at a target configuration, all sub-phone states need to
self-transition with non-zero probability.

These evidence-level final-state variaféare implemented
as single neuron models (equivalent to a degenerate CRFawith
one-bit output sequence), which can be trained relativaigkdy
using gradient descent. Since distributions over thesé-dtate



random variable(FC | 0r.1,Q;.1) are conditioned on (rather than
generating) the observed evidermehey may use whatever fea-
tures of this evidence provide the most help, covering aymest
ceding frames as desired, as in any discriminatively tchmedel.
However, for simplicity (and because of limited target-atated
data), the final-state models used in this implementatiore we-
fined only on the convexity indicator spectra generated byeth-
dence model at the immediately previous speech frame.

3. Evaluation

The test system was trained on the TIMIT corpus of phoneti-

cally transcribed continuous speech. Because it modelagsho

asculminating in particular formant targets, the dynamic evidence

model defined above dictates an approach to annotationitfeasd

from that used in the TIMIT corpus, in which sonorant phone la

bels are placedround the formant target, with the formant target
in the center.

To make the TIMIT annotation compatible with our model, a

modified training corpus was constructed in which sonoragt s
ments were shifted backward by half the length of the comedp
ing segment in the original TIMIT transcript. These autdoedly
aligned phone targets were then manually checked and adjirst
the DR1 subset of the TIMIT training set.

This need to model formants as monotonically increasing or
decreasing toward a target during each annotated phonessegm

also motivated 1) a decomposition of diphthongs into stadtend
phones (which were approximated to the existing set of menop
thong sonorants), and 2) the introduction of explicit stopais, in
which sonorant formants would converge in a predictablenaan
before a plosive or other closure began.

After training on the formant-target-aligned DR1 subsead an
testing on the entire TIMIT corpus, the CRF-DBN model achiv
phone recognition accuracy of 59% on the standard TIMIT,%est
with a 54% phone error rate (computed as the sum of substitti
insertions, and deletions). This compares to previoushfigled

phone error rates for similar approaches of 47% [7] and 46P6 [8

for context-independent phone recognition:

Method | Corr | Subs Del Ins| PER
HMM(L&M) na na na na | 42%
SFHMM(L&M) na na na na | 46%
Sphinx(L&H) 64% | 26% 10% 11%| 47%
CRF-DBN 59% | 28% 13% 13%| 54%
LFHMM(L&M) na na na na | 71%

4. Conclusion

This paper has presented a novel acoustical model in whatkapr
bility distributions over acoustical evidence, abstreas discrete
spectra of boolean convexity indicators, can be efficiedytyam-

ically estimated using CRFs given a hypothesized phonestarg

and any number of preceding observed spectra. Tractaligagst
ing probability distributions over high-dimensional esttte vari-
able domains, using dynamic programming in a CRF, requiras t
these domains be made discrete, weakening the sensitfvilye o
model. In particular, the convexity indicator spectra diszl in
this paper make the model almost completely insensitivel&tive
magnitudes of spectral peaks (limited to the convexityshotdy).

SExcept for the addition of stop onsets and the decompositiatiph-
thongs, as noted above.

Nevertheless, the model described in this paper perforrmpet

itively with conventional, static MFCC-based HMM approash
under similar conditions, suggesting that it is mostly twation of

spectral peaks, and not their relative magnitudes, whighdso-

logically salient. This model also has a number of potemtitan-

tages over MFCC-based HMM or RNN approaches:

e itis a well-formed probability model that can be extended
naturally to subsume more complex Hierarchic HMM or
other DBN language models without thresholding or ignor-
ing dependency assumptions;

e it allows both the evidence and final-state distributions
(P(o | 0t-1,Q;) and P(RP | 0t.1,Qt-1)) to be summarized
using a probability vector of linear size d)|, allowing
a clean separation of computation-intensive CRF inference
in a networked implementation;

e it accounts for phone transition dynamics in the evidence
model, and therefore may eliminate the need for sub-phone
states in the hidden variable model, leaving more hypothe-
sis space for higher-level linguistic phenomena such as syn
tax and semantics;

e it is relatively transparent (and thus relatively easy te ex
tend), in that parameter weights in the evidenog gnd
final-state £®) models correspond to linguistic intuitions
about where formants should be, whereas parameters of
neural nets or Gaussian mixture models in static HMMs are
often relatively opaque to linguistic interpretation;

e and finally, the fact that this model achieves competitive
recognition results using a very different feature set from
MFCCs suggests that exploring a hybrid approach might
be an attractive avenue of research.
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