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Abstract

This paper describes an implementation of a discriminativeacous-
tical model – a Conditional Random Field (CRF) – within a
Dynamic Bayes Net (DBN) formulation of a Hierarchic Hid-
den Markov Model (HHMM) phone recognizer. This CRF-DBN
topology accounts for phone transition dynamics in conditional
probability distributions over random variables associated with
observed evidence, and therefore has less need forhidden vari-
able states corresponding to transitions between phones, leaving
more hypothesis space available for modeling higher-levellinguis-
tic phenomena such syntax and semantics. The model also has the
interesting property that it explicitly represents likelyformant tra-
jectories and formant targets of modeled phones in its random vari-
able distributions, making it more linguistically transparent than
models based on traditional HMMs with conditionally indepen-
dent evidence variables. Results on the standard TIMIT phone
recognition task show this CRF evidence model, even with a rel-
atively simple first-order feature set, is competitive withstandard
HMMs and DBN variants using static Gaussian mixture models on
MFCC features.
Index terms: Phone recognition, Dynamic Bayes Nets, Condi-
tional Random Fields, dynamic evidence model, phone recogni-
tion, acoustic modeling

1. Introduction
Phone recognition is hard to do well in a manner that allows lexi-
cal, syntactic, and semantic information to also be integrated. Of-
ten discriminative approaches that do well by themselves donot
extend well to larger models. This paper describes a prelimi-
nary implementation of a discriminative acoustical model within
a Dynamic Bayes Net (DBN) formulation of a Hierarchic Hid-
den Markov Model (HHMM) [1] phone recognizer. This acousti-
cal model has the interesting property that it explicitly represents
both formant trajectories and formant targets in its randomvari-
able distributions: the former in the distributionP(ooot | ooot−1,Qt)
over the observed acoustical featuresooo at framet given each pos-
sible phoneQ; and the latter in the distributionP(FOOO

t | ooot−1,Qt−1)
over binary ‘final state’ variables used in the DBN formulation
of HHMMs. This acoustical model was intended to function as a
component in a larger DBN-based interface that integrates phonol-
ogy, syntax, and referential semantics into a single recognition pro-
cess [2]. As a component in such a large system, the acoustical
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model was designed to avoid the need for large sets of context-
dependent (e.g. triphone) values for hidden states at the phone
level, which are now common in state-of-the-art transcription sys-
tems.

1.1. DBN-based Spoken Language Interface Model

The acoustical model described in this paper is defined to function
within a structural language model, which explicitly represents
syntactic constituents and semantics associated with these con-
stituents in a linear-time Dynamic Bayes Net (DBN) recognizer
[3]. This network is a variant of a Hierarchical Hidden Markov
Model (HHMM) topology [1], which has been modified to encode
a finite-stack right-corner parser.1 The model is factored at each
time step into a finite number of stack elements, each of whichhas
a limited number of conditional dependencies, allowing complex
patterns to be learned from relatively small amounts of data. Once
trained, the model can be compiled into an efficient, unfactored
HMM with only one hidden random variable per time step, by
multiplying out all possible combinations of individual factored
random variable values, then adopting a beam-search strategy in
Viterbi decoding. Thus, any reduction of phonological (or syntac-
tic, or semantic) uncertainty in this compiled hidden variable do-
main makes a correct interpretation less likely to fall off the beam.

The last two (Q andooo) levels of this larger interface model
comprise the phone recognizer described in this paper, withthe
evidence (ooo) and final-state (Fooo) variables comprising the acousti-
cal model portion of this recognizer. The experiments described in
Section 3 evaluate this acoustical model and phone recognizer on
the standard TIMIT phone recognition task, and therefore assume
no lexical- or higher-level input from above the phone levelQ.
Note that the random variables in the acoustical model are dis-
criminative in that they are conditioned on evidence (whichgreatly
simplifies decoding since only one input value need be considered
rather than a whole distribution over a high-dimensional variable
domain), but they are not strictly discriminative in that they are
also conditioned on hidden variables as well (albeit ones with rel-
atively small distributions over a relatively small phone set).

1This is simply the left-right dual of left-corner parsing used in com-
piler design. The advantage of the right-corner formulation is that it uses
its stack to store recognized constituents rather than goalconstituents,
allowing semantics associated with these constituents to be remembered
and used as antecedents of intra-sentential co-reference in subsequent con-
stituents.
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Figure 1: A graphical representation of the HHMM-based phone
recognition model at three time steps (speech frames)t-2, t-1, and
t, showing hidden random variables (Q) over phones or sub-phone
states at each frame, instantiated evidence random variables (ooo)
over short-time FFT spectra at each frame (each subsuming a spec-
trum of convexity indicatorsb1,2,3,...), and boolean final-state vari-
ables (FQ andFooo) between frames, indicating whether lower-level
variables can serve as final states for higher-level variables. Thick
arcs represent ordinary conditional dependencies betweenrandom
variables. Thin arcs and factor nodes (opaque boxes) show factor-
specific dependencies in the evidence model, using an extension of
factor graph notation [4] to conditional models. The set of nodes
connected to a factor node by undirected edges represent maxi-
mal cliques of interdependent variables, conditioned on all of the
nodes with directed arcs into the factor node. Ellipses at the top
of the model denote optional interface with HHMM or other DBN
language models.

2. Discriminative Models within
Generative Models

The acoustical model described in this paper uses a dynamic ev-
idence model which, unlike conventional HMMs, conditions the
observed acoustical features at each time step on the acoustical
features at the previous time step, in addition to the current hidden
(phone) state (see Figure 1). This model maps high-dimensional
inputs to high-dimensional outputs. In order to make this map-
ping learnable, we 1) restrict our evidence to vectors of only bi-
nary ‘convexity’ features on frequency domain, which highlight
the formant tracks in the spectrum at various granularities; and 2)
parameterize our model as a Conditional Random Field [5], which
calculates probability distributions over ordered sequences (in our
case, an array of spectral peak indicators at the current time step)
given another ordered sequence as input (in our case, an array of
spectral peak indicators at the previous time step) as a product of
factors on local correlations at the same offset in the inputand out-
put sequences. Probability distributions over output sequences are
then computed as a product of these factors normalized by theto-
tal probability of all possible output sequences, which canbe cal-
culated very efficiently using a dynamic programming algorithm
similar to that used in HMM filtering. Conditional random fields

are a good model structure for this problem because the dynam-
ics of the speech signal are complex, and CRFs allow for heavy
overlap of features without explicitly normalizing out that overlap.

One advantage of this approach is that it allows a dynamic
representation of spectral information such as formant trajecto-
ries predicted by each phone, rather than a static representation
of likely formant configurations at various sub-states of a phone,
capturing the intuition that phones are defined not so much bya
set of formants beingat a particular configuration of frequencies,
but rather by travelingto a particular configuration of frequencies.
Similar approaches have been tried in connectionist models[6],
which use Recurrent Neural Networks to simultaneously predict
phones and acoustical features at each time step given the acousti-
cal features at the previous time step. However, unlike mostcon-
nectionist approaches, the DBN-based model described herealso
permits, in addition to formant trajectories, an explicit representa-
tion of formanttargets in distributions associated withFOOO random
variables. These variables control whether lower-level Markov
sub-models (in this case, the dynamic model of acoustical features)
have reached a final state so that higher-level HMMs (in this case
phones) can transition. This is simply a straightforward extension
of the DBN formulation of HHMMs to cover evidence models,
but intuitively this is motivated by the fact that for a sequence to
be considered an instance of a particular phone, it is not enough
for the formants to be on their way to a particular configuration,
they also have to eventually arrive there.

2.1. Conditional Random Fields

Conditional Random Fields [5] are probabilistic models forstruc-
tured prediction which estimate probabilities of complex output
states as products of exponential weights on arbitrary overlapping
features of evidence and output states, and then globally normal-
ize these products over the entire space of possible output states.
This allows a CRF model to capture more long-distance depen-
dencies (in this case, of widely separated peaks of first and second
formants in certain vowel sounds) than non-parametric conditional
models such as Bayes Net factorizations, which locally normalize
each component feature over its overlap with other components.

This system uses a CRF to model probability distributions over
the observed evidence variables (describing short-time FFT spec-
tra) of a larger DBN model used to recognize phonemes. We cal-
culate this conditional probability distribution as:

Pλ(ooot | ooot-1,Qt) =
exp

(

∑r,i, j λr,i, j fr,i, j(ooot-1,ooot ,Qt)
)

Z(ooot-1,Qt ;λ)
(1)

whereooot is the spectral evidence vector at timet (see following
section),Qt is a realization of a subphone, andZ(ooot-1,Qt ;λ) is a
normalization factor.

Note that this differs from many implementations that have
used CRFs to modelPλ(Q1..T | ooo1..T ), whereQ1..T are hidden
phones in a segment andooo1..T are evidence in that segment. The
purpose in our CRF model is not to discriminatively estimatethe
phone, but to generate a conditional probability table for integra-
tion into the (generative) dynamic evidence DBN model described
above. In other words, most CRFs estimate the probability ofhid-
den states over a segment of time, whereas we estimate the proba-
bility of generating the next observedevidence.

With probabilities conditioned on a hidden variable, this
evidence-to-evidence model is not strictly discriminative - which
usually implies a large search space when the generating state is



Figure 2: Convexity indicators atr = 1 on sample spectrogram for
utterance fragment ‘. . . to helium film flow in the vapor . . . ’

unknown (i.e. from hidden state to evidence in an HMM). How-
ever, since the portion of the generating state due to theooo ran-
dom variable is evidence, it is not necessary to iterate overeach of
|OOO||Q| possibilities, but only|Q| (where| · | is the set size). Further-
more, since the generated state is also evidence, we only need to
calculate one instanceooot of equation 1. Therefore, we have added
a dynamic model to the evidence with little additional computa-
tional cost over a traditional HMM.

2.2. Feature Set

The featuresf (ooot−1,ooot ,Qt) used in this work were binary values
indicating the presence of∩-convexities2 (loosely, ‘peaks’) in the
spectrum at any given time frame (see Figure 2). A∩-convexity
over an interval of discrete data produced by some functiong is
defined as

g[ci+(1−c) j] ≥ cg[i]+(1−c)g[ j] (2)

Here,i < j are both points in the domain ofg; also,c ∈ [0,1] is an
arbitrary averaging factor such thatci+(1−c) j is an integer. The
implication is that the average value at the ends of an interval must
be less than the midpoint of any two points on the interval.

Adapting this definition for each frequency point in our spec-
tral data, we consider only the two nearest neighbors and introduce
a thresholdγ ≥ 0 to reject convexities produced by noise. To ob-
tain features that encode characteristics of the data at a variety of
scales, we performed this convexity detection on differentdeci-
mated versions of the spectrum. We lowpass-filtered the spectrum
using 2r+1-tap triangle filters, then decimated by 2r,r = 0, ..,5,
producing the spectragr . We then define binary convexity indica-
tors at each frequency bini as follows:

br,i(g) =

{

1 if (gr[i]−gr[i−1])− (gr [i+1]−gr[i]) > γ
0 otherwise

(3)

The (also binary) features used in the CRF model are then defined
on paired triples of adjacent binary convexity indicators at the cur-

2The notation∩-convex and∪-convex help disambiguate confusing
mathematical definitions. In this paper, ‘convex’ and ‘convexity’ exclu-
sively refer to∩-convex functions, so that formant ‘peaks’ areconvex. Note
that this is considered concave, not convex, in e.g. optimization theory.

rent and previous frame:

fr,i, j(ooot-1,ooot ,Qt) =











1 if j = 〈br,i(ooot-1), . . . ,br,i+2(ooot-1)

br,i(ooot), . . . ,br,i+2(ooot)〉

0 otherwise

(4)

The result is a feature set that is sensitive to upward- and
downward- tending formant tracks at overlapping frequencybands
at various granularities.

Decimation on time signals typically reduces the necessary
bandwidth; in our case, decimation to a spectral signal rejects the
noise at higher cepstral quefrencies. The resulting spectra have
lower resolutions, which are useful for detecting characteristics
like formants or frication. Combining the data from different lev-
els of spectra, we have∑5

r=0 28−r −2(r +1) = 378 features in our
feature vector, where two endpoint convexities are undefined and
unused in eachr level.

This choice of features departs from typical Mel-frequency
cepstral coefficient (MFCC) feature vectors for several important
reasons. MFCCs aim to minimize the size of the feature vector
and are known to produce good results with only about 12 cep-
stral coefficients (about 60 features overall). To implement this,
the mel-frequency spectrum is organized into up to 40 nonlinear
frequency bins.

Our approach relies on the observation that the formants in
vowels increase or decrease monotonically over time towards
some target configuration - movements which should be observed
with high resolution. These criteria do not hold for the mel-
frequency spectrum, so we maintain a linear scale for frequency
bins. The linear scale also simplifies the hierarchy of ther level
spectra, preserving more of the relevant data.

Another interesting point is that using convexity detection en-
codes a more general notion of ‘peaks’ than local maxima, e.g. dis-
tinguishing formants which are close together in the spectrum, one
of which slightly dominates the other.

A final, most tangible benefit to using convexity detection is
that binary-valued functions are compatible with the CRF model.
Although the number of features in MFCCs is small, the features
themselves are continuous; this complicates the formulation of the
CRF evidence model, which can tractably perform normalization
using dynamic programming only if there is a finite set of possible
values to store and share.

2.3. Final-State Variables

The Murphy-Paskin formulation of Hierarchic HMMs defines
boolean final-state variables at each hidden leveld in the HMM
hierarchy, which indicate whether the HMM at depthd can serve
as a final state for the HMM above it (at depthd − 1). This is
done in order to ensure that the higher-level HMMs in the hierar-
chy transition only when the lower-level HMMs have concluded.
The model described in this paper extends this formulation by in-
troducing final-state variables at the evidence level as well, indi-
cating whether the observed evidence can serve as a final state
(i.e. formant target) for the lowest-level hidden state above it (over
phones or sub-phones). In order to model formants that are sus-
tained at a target configuration, all sub-phone states are allowed to
self-transition with non-zero probability.

These evidence-level final-state variablesFOOO are implemented
as single neuron models (equivalent to a degenerate CRF witha
one-bit output sequence), which can be trained relatively quickly
using gradient descent. Since distributions over these final-state



random variablesP(FOOO
t | ooot-1,Qt-1) are conditioned on (rather than

generating) the observed evidenceooo, they may use whatever fea-
tures of this evidence provide the most help, covering as many pre-
ceding frames as desired, as in any discriminatively trained model.
However, for simplicity (and because of limited target-annotated
data), the final-state models used in this implementation were de-
fined only on the convexity indicator spectra generated by the evi-
dence model at the immediately previous speech frame.

3. Evaluation
The test system was trained on the TIMIT corpus of phoneti-
cally transcribed continuous speech. Because it models phones
asculminating in particular formant targets, the dynamic evidence
model defined above dictates an approach to annotation that differs
from that used in the TIMIT corpus, in which sonorant phone la-
bels are placedaround the formant target, with the formant target
in the center.

To make the TIMIT annotation compatible with our model, a
modified training corpus was constructed in which sonorant seg-
ments were shifted backward by half the length of the correspond-
ing segment in the original TIMIT transcript. These automatically
aligned phone targets were then manually checked and adjusted in
the DR1 subset of the TIMIT training set.

This need to model formants as monotonically increasing or
decreasing toward a target during each annotated phone segment
also motivated 1) a decomposition of diphthongs into start and end
phones (which were approximated to the existing set of monoph-
thong sonorants), and 2) the introduction of explicit stop onsets, in
which sonorant formants would converge in a predictable manner
before a plosive or other closure began.

After training on the formant-target-aligned DR1 subset and
testing on the entire TIMIT corpus, the CRF-DBN model achieved
phone recognition accuracy of 59% on the standard TIMIT test,3

with a 54% phone error rate (computed as the sum of substitutions,
insertions, and deletions). This compares to previously published
phone error rates for similar approaches of 47% [7] and 46% [8]
for context-independent phone recognition:

Method Corr Subs Del Ins PER
HMM(L&M) na na na na 42%
SFHMM(L&M) na na na na 46%
Sphinx(L&H) 64% 26% 10% 11% 47%
CRF-DBN 59% 28% 13% 13% 54%
LFHMM(L&M) na na na na 71%

4. Conclusion
This paper has presented a novel acoustical model in which proba-
bility distributions over acoustical evidence, abstracted as discrete
spectra of boolean convexity indicators, can be efficientlydynam-
ically estimated using CRFs given a hypothesized phone target
and any number of preceding observed spectra. Tractably estimat-
ing probability distributions over high-dimensional evidence vari-
able domains, using dynamic programming in a CRF, requires that
these domains be made discrete, weakening the sensitivity of the
model. In particular, the convexity indicator spectra described in
this paper make the model almost completely insensitive to relative
magnitudes of spectral peaks (limited to the convexity thresholdγ).

3Except for the addition of stop onsets and the decompositionof diph-
thongs, as noted above.

Nevertheless, the model described in this paper performs compet-
itively with conventional, static MFCC-based HMM approaches
under similar conditions, suggesting that it is mostly the location of
spectral peaks, and not their relative magnitudes, which isphono-
logically salient. This model also has a number of potentialadvan-
tages over MFCC-based HMM or RNN approaches:

• it is a well-formed probability model that can be extended
naturally to subsume more complex Hierarchic HMM or
other DBN language models without thresholding or ignor-
ing dependency assumptions;

• it allows both the evidence and final-state distributions
(P(ooot | ooot-1,Qt) and P(Fooo

t | ooot-1,Qt-1)) to be summarized
using a probability vector of linear size on|Q|, allowing
a clean separation of computation-intensive CRF inference
in a networked implementation;

• it accounts for phone transition dynamics in the evidence
model, and therefore may eliminate the need for sub-phone
states in the hidden variable model, leaving more hypothe-
sis space for higher-level linguistic phenomena such as syn-
tax and semantics;

• it is relatively transparent (and thus relatively easy to ex-
tend), in that parameter weights in the evidence (ooo) and
final-state (FOOO) models correspond to linguistic intuitions
about where formants should be, whereas parameters of
neural nets or Gaussian mixture models in static HMMs are
often relatively opaque to linguistic interpretation;

• and finally, the fact that this model achieves competitive
recognition results using a very different feature set from
MFCCs suggests that exploring a hybrid approach might
be an attractive avenue of research.
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