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Abstract. Context-sensitive speech recognizers use environment or digdours
formation to influence language model probabilities used in speech idgcod
This is usually done by switching language models between utterancesaFhis
per explores the use ofcantinuously context-sensitive language model that uses
incremental interpretation to update context at every time step in decdgtng.
cause it only explores the world model incrementally, this semantic mads d
not need to be pre-computed, raising the possibility of representing consty-
variable concepts as semantic referents (such as time points and emeasts,

or real numbers themselves), and supporting dynamic reasoning ebose-
guences of actions during speech decoding.

1 Introduction

It is now common for spoken language interfaces to emmaytext-sensitive lan-
guage models that are pre-compiled for particular dis@argenvironment states, and
swapped out between utterances [1, 2]. But to approach hlagwels of recognition ac-
curacy, spoken language interfaces will also need to exgboitextcontinuously during
utterance recognition, not just between utterances Fanpbe the probability distri-
bution over the next word in the utterance ‘go to the distidousource directory and
open ...  will depend crucially on the linguistic and envirnent context leading up to
this point: the meaning of the first part of this directive ‘@othe distribution source
directory,” as well as the files that will be available oncis thart of the directive has
been carried out.

This paper will describe semantic representation straseigi a statistical language
model that incrementally interprets spoken directivesmduiviterbi decoding. Un-
like earlier constraint-based incremental interpret8r4], the approach described in
this paper pursues multiple interpretations at once, mnkebabilistically. Finally,
since the language model performs interpretation basetiefeft-to-right sharing of
a Viterbi dynamic programming algorithm instead of the bottup sharing of a CKY-
like parsing algorithm [5—8], this approach can constraimantics at the beginning of
recognition using the context of prior utterances, avajdime large, relatively uncon-
strained sets of referents which arise at the bottom of a&palsart.
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Viewed as a generative process, this model representsdgadat the top level as a
random walk through a world model of referents (entitieseds ®f entities) connected
by relations (logic predicates). The model first choosesasgimrelation label and
referentsy, at each time step that are reachable from the semantic referentsat
the previous time step. The model then chooses syntactgaa¢sc;, wordsw;, and
speech phoneg, to verbalize these relatiors:
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During the course of processing, categories and referesyseed to be stored and
retrieved, sax; andeg will in fact consist ofstacks (or vectors) of categories and ref-
erents, most of which will simply be propagated forward frome step to time step.
Propagation of category labels ¢awill not vary across environments, and so can be
pre-compiled into a static syntactic mod?ii)syn(ct | ci_1,lt). But propagation of refer-
ents ing will vary across environments. To account for this propiageatvithout pre-
compiling environment information into the language modeatoindexation pattery
will be introduced consisting of a vector of pointers to refes ing_; for each referent
ineg:
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These coindexation patterns are derived from referenablas specified in the same
grammar rules as those used to derﬁ@syn(cdct_hlt) (see Section 2). Relation la-
belsl; and referents are then chosen according to the pattern specifieg, iso that
probabilitieslseSemReT(It, & |v,a-1) will be well defined for relation§ of any arity.

In Viterbi decoding, the above probability (1) must be ctdted for every possible
combination ofg_1, ¢_1, W1, andp_1, on the trellis at timé — 1, for every possible
transition available to the model. Of the terms in this emumtthe referent transition
lSOSemReI(It’ & |w,a-1) is potentially the most expensive, because it requires ydae
possibly very large world model. But this expense is mitglty the following factors:

1. Referents will only transition when a word at the bottomtlué stack changes
(which will be possible only for the fraction of trellis ergs that are on their fi-
nal phone);

2. When referents do transition, these transitions will maliaed to particular stack
elements (in most cases transitions only affect the stamkeht above the most
recent stack pop); and

3. The same semantic referent transitions will be queriedyntianes across neigh-
boring time steps, or within the same time step (by syntaetgronunciation vari-
ants of a predicate, or synonyms), so considerable savargbe achieved through
caching query results.

1 This model is an instance of a Hierarchic Hidden Markov Model [9], amduch also includes
binary ‘final state’ variables between levels to synchronize transitioeacit level with those
below. Terms for these final state variables have been omitted from tla¢i@u, since they are
a standard topology and not germane to this paper.



Overall, unless words are very short or referents are heatiérconnected, the com-
bination of acoustical and referential constraints in thiedel keeps the number of
semantic transitions explored on the trellis fairly low. Arsion of this system main-
taining the top 255 trellis hypotheses at each time step iumsal time on a dual

processor 2.6GHz desktop, in tests using a world model edi@rireal time from a net-

work connection, with an average fanout of 18 reachableeafs from each context
referent. With these runtime parameters the system was@iaintain a significant

improvement in concept accuracy due to incremental semantérpretatior?.

2 Semantic Representation

One ostensible disadvantage of this incremental semamtitehis that incrementally
recognized entity descriptions will be incompletely sfiedi during most of their exis-
tence on the Viterbi trellis. This means they must eitherdpesented adistributions
over individual entities, each of which consumes a trelisyefrom the available beam
width, or assets (reified first-order referents), which exponentially ireses the size of
the world model over one which represents only individudltexss (zero-order refer-
ents).

Fortunately, a key advantage of this incremental semantidainis that the world
model can be queried only as needed by the recognizer. Fonpdgathe real-time
server implementation of this interface queries the worttled for an initial context
referent at the start of each utterance (which may simply belareferent). Then,
when any referent makes it onto thébest trellis, the referents immediately reachable
from it (connected by one relation) are pre-fetched fromdalent world model and
cached in a local world model, before any word describing @inthese relations has
concluded. This ‘just in time’ exploration means that thecfeeferents defined in the
world model can be extremely large (e.g. the power set ofgelaet of entities), or even
infinite, without affecting the run-time performance of theerface, as long as the level
of interconnectivity among referents remains controlled.

Relations (e.g. subsumption) among referents correspgnadi sets can be navi-
gated as a graph, just like relations over individual esgitProperties (unary relations
like ‘jar file’ or ‘write-protected’) can be represented imetreferent transition model
ﬁ@SemRef(lt,q |vi,a_1) as labeled edgds from supersets_; to subsets defined by
intersecting the se&_; with the set[l;] satisfying the property;. The world model
can therefore be cast as a subsumption lattice with the st efitities at the topr
(the result of intersecting an empty set of properties) d&edempty set of entities at
the bottom.L (resulting from an intersection of properties denotingaiiig sets)® The
result of conjoining a propertlywith a context see can therefore be found by down-
ward traversal of an edge in this lattice labele@ind departing frone. Thus, the set
of ‘jar files (propertyJ) that arewrite-protectedpropertyW)’ would be reachable by
traversing aW’ relation from the set of jar files, or by traversingX telation from the

2 Achieving a concept accuracy of 73%, vs. 46% for a baseline usilygsgntax and acoustics,
on a corpus of 160 spoken shell directives (‘goto...’, ‘add ...tQ etc.).

3 This lattice need not be an actual data structure. Since the world modedrigdjincremen-
tally, the lattice relations may be calculated as needed.



set of write-protected files, or by either pAhJ or pathJW from T. The resulting set
may then serve as context for subsequent traversals. Agjeamplate for intersective
adjectives can be expressed as a grammarirule:

NP(g,h) — Adj:1(g,k) NP(k,h)

whereg, h andk are variables over referent segds the referential context of the parent
noun phrase (in some sense, the set of entities the ageimkithabout before inter-
preting the noun phrasel},is the result of interpreting the relatidnassociated with
the adjective ‘Adj’ in contexy, andh is the result of interpreting the noun phrase that
follows this in contexk. These referentg, h,k are similar to thenformation states in
Dynamic Predicate Logic [10] if an information state is take be a set of entities to
which the system is currently paying attention (similar mtitees being ‘selected’ in

a graphical interface). The world model may thus define séimaansition probabili-
ties for propertie$5@SemRei(lt,a |Vi,a_1) to be (say) uniform ovelg, then deterministic
one: equal to one iy = _1 N li], zero otherwise.

Sequences of properties (unary relations) can be integbeet simple nonbranching
paths from referent to referent in a subsumption latticehigher-arity relations define
more complex paths that fork and rejoin. For example, thefséirectories (set)) that
‘contain (relationC) files that arewrite-protected(propertyW) would be reachable
only by:

1. pushing the original set of directorig®nto the referent staak, then

2. traversing & relation departing to obtain the contents of those directorjeshen

3. traversing aV relation departingj to obtain the set of contents that are write-
protectedk, then

4., traversing the invers€’ of relation C to obtain the containers of these write-
protected contents, then intersecting this set with thgirtal set of directorieg
to geth: the directories containing write-protected files.

Forking is therefore handled via syntactic recursion: ceih is explored by the recog-
nizer while the other waits on a stack. A general templatéfanching reduced relative
clauses (or prepositional phrases) that exhibit this fayliehavior can be expressed as
below, using the variableg h, j,k defined above:

RR(g,h) — Verbi(g,j) NP(j,k) —'(k.g,h)

where the inverse relatiol at the last, empty constituent-* is intended to apply
when this rule is reduced (when the forked paths are re<inEhe calculation of
semantic transition probabilities forary relations thus resembles that for properties,
except that the probability term associated with the irveesationl’ would depend on
both referent& andg on the staclq.

The ability to efficiently represent first-order world masielvith sets of entities as
referents, is also important for modeling quantifiers, big topic is beyond the scope
of this paper.

4 A statistically weighted grammar of such rules is used to dd?i@gn(cdct,l,lt), wherec;
andc;_; are stacks of syntactic categories.
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Fig. 1. A sample randomly generated SLAM-like environment. The small box withtrilangle
attached represents a robot (with the triangle denoting orientation). Taessttall box (colored
red on the actual interface) represents the target to which the subgadtiglirect the robot.
Subjects were told that the target did not represent a tangible object irottet 3@ that they did
not say, for example ‘Go to the red box'. Subjects were also showe thr@gronments rotated
randomly between 20 and 70 degrees to discourage use of scratenededirections (e.g. ‘Go to
the top left room’).

3 Continuous-Valued World States as Referents:
A Robot Navigation Application

Spoken directives can refer not only to discrete objectsidel of thecurrent state of
the world; they can also refer to hypothetical consequefveedd states) in a branching
model ofpossible worlds, of the sort commonly used in Al planning. Such statey
be comprised of arbitrarily large sets of discrete or cardirs properties, and as such
may be uncountably infinite. Modeling an infinite set of refes may seem daunting,
but continuous-valued referents can be calculated onlyeaded by the recognizer in
the context-sensitive interface system described in theiqus section.

This system is therefore currently being evaluated in atrobeigation application,
in which referent states have continuous location, ort@raand velocity properties.
This extends the set of modeled referents from an expotigriiege power set of enti-
ties in a first-order world model to an uncountably infinité @&epoints in a continuous
multidimensional space. But since there is still a finite benof words that can be rec-
ognized at any point in a directive, the incremental serdatiguage model described
above will still be able to track these referents and use tteeconstrain this search.

3.1 Map Navigation Task

This interface has been implemented in a system for giviogeplanguage directives
for robot navigation in a simulated mobile robot with SLAMirg&iltaneous Localiza-
tion and Mapping) [11] capabilities. The output of a mobiddat performing SLAM



indoors with a laser range finder is a collection of pointg tza be regressed to a set
of line segments representing the walls and doors of the@mvient. The goal of this
application is to allow a user to direct the robot througls ttdntinuous environment
without needing to micromanage the movements (such as vjatystick or other form
of tele-operation). Similar work in this area includes [lig]which a human user gives
navigation directions to a robot with a camera. This diffiecsn the work described
here in that recognition at the phone level is not informedg®&myantics, and therefore
may converge on analyses that are acoustically possibledbsemantically likely.

For the current work, environments representing SLAM mapsewandomly gen-
erated, and subjects were asked to verbally guide a robot the starting position
and orientation inside one room in the environment to a fieatidation room in the
environment (See Figure 1 for illustration of a sample emvinent). Each randomly
generated environment consists of two separate rectariguilding segments, placed
either side by side or at right angles. Each segment conkstvgeen one and three
inner blocks representing offices or rooms, and each inmekldontains between one
and four doors. The representation of the environmentabfailto the simulated robot
consists only of the set of line segments making up the waltilsraoms.

The starting position is the center of a randomly chosen raatmin a randomly
chosen segment, and the destination is the center of a rapdtiwsen room within
the other segment. Spontaneous spoken descriptions wkzeted from a few subjects
with the goal of determining what semantic modeling wouldniest beneficial. The
collected utterances were generally either directing tfs®trto turn ninety degrees in
either direction, or go forward until some condition was niétus, the main source of
complexity in this domain is in the variety of different cdtidns that could exist for
stopping forward motion. Some of the stopping conditionsoemtered include:

— a doorway appears on the right
— you get into the hallway

— there’s a corner on your right

— there is a wall

— you hit the wall

3.2 Semantic Representation of Navigation Directives

Incremental interpretation requires a model of what refer@re accessible from the
current context state via the defined semantic relations. réferents in this world
model represent the state of the robot, and are potentidihjte. The state of the robot
consists o andy coordinates in the environment, an orientatéoim degrees relative
to the environment, and a velocity

As mentioned above, the robot is only aware of the environrasm collection of
line segments. Using this information, the robot is able 8 some simple rules to
figure out where there are doorways, corners, and walls.ifffasmation can be used
to predict what relations and states are reachable fromutiertt state.

For a simple example, the robot can turn right or left from stage. So, if the robot’s
world model is queried for reachable states from a state evihntation® = 90, two of
the returned reachable states will be the state with the heta tvalued = 0 (via the



relation TURNLEFT), and the state with the new theta valie- 180 (via the relation
TURNRIGHT). In both cases the relation is defined not to change any gsaiable
other than orientation.

An example of a more difficult utterance to model is ‘Go sthaigntil you hit the
wall." Presumably the subjects did not intend to send thetrokashing into the wall, but
to go straight until the path forward was blocked by a walliticipation of a turning
command. The first part, ‘Go straight. .., is modeled with tkelation ®STRAIGHT,
which is available in any state, and has the effect of settirgl, meaning the robot
will be moving.

The second part of the phrase, ‘. . . until you hit the wallrhigdeled with the relation
EXTRAPOLATETO with the entity referent for the wall as an argument. Thiatieh is
only available when the robot is in a moving state, as it isop@ing criterion. The
effect of the relation ETRAPOLATETO is to transition the current state of the robot to
a new state in which theandy values are changed to reflect the robot moving forward
along its current trajectory as far as possible until it gédse to the entity referent of
its argument (in this case the wall). This new referent statebe computed quickly on
the fly by the world model from any location by finding the clsismtersection point
between the current trajectory of the robot and all the waltee environment.

3.3 Semantic Representation of Number

Representation of number is a potential problem for systmh as this, because the
system may be required to choose between referents that tiffthe values of contin-
uous variables. In a continuous environment such as robligation, the robot could
have a state which includes real numbers for its locatiorgnimg there are an infinite
number of successive states. This can be a problem becanségth potentially infinite
branching factor for future states, and thus potentialfinite referents for the system
to evaluate at each time step.

The system described here solves this problem by modelinthats explicitly as
referents, which can be taken as arguments of relationseR#ian infinitely branch-
ing, the reference path forks to recognize this number, thgrins to provide the num-
ber as an argument. The argument fork has on the order of ssilg@branches at each
time step (assuming decimal numbers).

In the robot domain described above, numerical referenaklde exemplified by
the sentence ‘Go straight three feeifter the words ‘Go straight,’ the system will
have hypothesized the relatioroSTRAIGHT as described above, and a resulting robot
state. From the resulting state, the recognizer will queeyworld model for possible
relations departing this state. Among these departingioals, the option DSTANCE
will be available, transitioning to a real-valued measuias relation transitions from
any state referent to a referesy, an initially unspecified number. This referent can
then transition to the refereneg—1, en—2, ..., En—9, Via the relations QE, TWO,
..., NINE, depending on subsequent recognized words. Additionabeusrwill allow

5 Subjects did not actually use any distance terms like this in our corpus, tieeewas no
indication of scale in the environments. However, in a world model reptew a real envi-
ronment, it is easy to imagine speakers using this kind of directive.



transitions from (saygn—3 to en—37 permitting arbitrarily long number descriptions
without ever encountering branching factors significagtiyater than ten. At any point
in the recognition process, the recognizer will be explptiypotheses that terminate
the description of this number, filling in the number refdéras a distance argument to
another relation.

With this framework, the world model may use non-uniform lgability distribu-
tions over numbers (e.g. defining a Gaussian over likelyadists for various actions),
using different context referenes, €|, . . . for different distributions. This continuously
context-sensitive recognition of numbers also allowssiszrefer to real-valued refer-
ents already in the world model (e.g. ‘the three-foot waE)well as new referents.

4 Conclusion

Context-sensitive interfaces have been shown to be morgatecthan interfaces that
are not sensitive to context. The research described irptper shows that context-
sensitive recognition can be performed continuously dudiecoding, in real time, with
modest hardware requirements, and can still be flexible giméa represent complex
and even continuous environments.
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