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Abstract. Context-sensitive speech recognizers use environment or discourse in-
formation to influence language model probabilities used in speech decoding.
This is usually done by switching language models between utterances. Thispa-
per explores the use of acontinuously context-sensitive language model that uses
incremental interpretation to update context at every time step in decoding.Be-
cause it only explores the world model incrementally, this semantic model does
not need to be pre-computed, raising the possibility of representing continuously-
variable concepts as semantic referents (such as time points and measurements,
or real numbers themselves), and supporting dynamic reasoning about conse-
quences of actions during speech decoding.

1 Introduction

It is now common for spoken language interfaces to employcontext-sensitive lan-
guage models that are pre-compiled for particular discourse or environment states, and
swapped out between utterances [1, 2]. But to approach humanlevels of recognition ac-
curacy, spoken language interfaces will also need to exploit contextcontinuously during
utterance recognition, not just between utterances For example, the probability distri-
bution over the next word in the utterance ‘go to the distribution source directory and
open . . . ’ will depend crucially on the linguistic and environment context leading up to
this point: the meaning of the first part of this directive ‘goto the distribution source
directory,’ as well as the files that will be available once this part of the directive has
been carried out.

This paper will describe semantic representation strategies in a statistical language
model that incrementally interprets spoken directives during Viterbi decoding. Un-
like earlier constraint-based incremental interpreters [3, 4], the approach described in
this paper pursues multiple interpretations at once, ranked probabilistically. Finally,
since the language model performs interpretation based on the left-to-right sharing of
a Viterbi dynamic programming algorithm instead of the bottom-up sharing of a CKY-
like parsing algorithm [5–8], this approach can constrain semantics at the beginning of
recognition using the context of prior utterances, avoiding the large, relatively uncon-
strained sets of referents which arise at the bottom of a parser chart.
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Viewed as a generative process, this model represents language at the top level as a
random walk through a world model of referents (entities or sets of entities) connected
by relations (logic predicates). The model first chooses semantic relation labelslt and
referentset , at each time stept, that are reachable from the semantic referentset−1 at
the previous time step. The model then chooses syntactic categoriesct , wordswt , and
speech phonespt to verbalize these relations:1

P̂(et ct wt pt |et−1 ct−1 wt−1 pt−1)
def
=

∑
lt

P̂ΘSem(lt et |et−1 ct−1) · P̂ΘSyn(ct |ct−1 lt) · P̂ΘLex(wt |wt−1 ct) · P̂ΘPhon(pt | pt−1 wt) (1)

During the course of processing, categories and referents may need to be stored and
retrieved, soct andet will in fact consist ofstacks (or vectors) of categories and ref-
erents, most of which will simply be propagated forward fromtime step to time step.
Propagation of category labels inct will not vary across environments, and so can be
pre-compiled into a static syntactic modelP̂ΘSyn(ct |ct−1, lt). But propagation of refer-
ents inet will vary across environments. To account for this propagation without pre-
compiling environment information into the language model, a coindexation patternvt

will be introduced consisting of a vector of pointers to referents inet−1 for each referent
in et :

P̂ΘSem(lt ,et |et−1,ct−1) = ∑
vt

P̂ΘSemCoind(vt |ct−1,et−1) · P̂ΘSemRef(lt ,et |vt ,et−1) (2)

These coindexation patterns are derived from referent variables specified in the same
grammar rules as those used to deriveP̂ΘSyn(ct |ct−1, lt) (see Section 2). Relation la-
belslt and referentset are then chosen according to the pattern specified invt , so that
probabilitiesP̂ΘSemRef(lt ,et |vt ,et−1) will be well defined for relationslt of any arity.

In Viterbi decoding, the above probability (1) must be calculated for every possible
combination ofet−1, ct−1, wt−1, andpt−1, on the trellis at timet−1, for every possible
transition available to the model. Of the terms in this equation, the referent transition
P̂ΘSemRef(lt ,et |vt ,et−1) is potentially the most expensive, because it requires a query to a
possibly very large world model. But this expense is mitigated by the following factors:

1. Referents will only transition when a word at the bottom ofthe stack changes
(which will be possible only for the fraction of trellis entries that are on their fi-
nal phone);

2. When referents do transition, these transitions will be localized to particular stack
elements (in most cases transitions only affect the stack element above the most
recent stack pop); and

3. The same semantic referent transitions will be queried many times across neigh-
boring time steps, or within the same time step (by syntacticor pronunciation vari-
ants of a predicate, or synonyms), so considerable savings can be achieved through
caching query results.

1 This model is an instance of a Hierarchic Hidden Markov Model [9], andas such also includes
binary ‘final state’ variables between levels to synchronize transitions ateach level with those
below. Terms for these final state variables have been omitted from the equation, since they are
a standard topology and not germane to this paper.



Overall, unless words are very short or referents are heavily interconnected, the com-
bination of acoustical and referential constraints in thismodel keeps the number of
semantic transitions explored on the trellis fairly low. A version of this system main-
taining the top 255 trellis hypotheses at each time step runsin real time on a dual
processor 2.6GHz desktop, in tests using a world model queried in real time from a net-
work connection, with an average fanout of 18 reachable referents from each context
referent. With these runtime parameters the system was ableto maintain a significant
improvement in concept accuracy due to incremental semantic interpretation.2

2 Semantic Representation

One ostensible disadvantage of this incremental semantic model is that incrementally
recognized entity descriptions will be incompletely specified during most of their exis-
tence on the Viterbi trellis. This means they must either be represented asdistributions
over individual entities, each of which consumes a trellis entry from the available beam
width, or assets (reified first-order referents), which exponentially increases the size of
the world model over one which represents only individual entities (zero-order refer-
ents).

Fortunately, a key advantage of this incremental semantic model is that the world
model can be queried only as needed by the recognizer. For example, the real-time
server implementation of this interface queries the world model for an initial context
referent at the start of each utterance (which may simply be anull referent). Then,
when any referent makes it onto then-best trellis, the referents immediately reachable
from it (connected by one relation) are pre-fetched from theclient world model and
cached in a local world model, before any word describing oneof these relations has
concluded. This ‘just in time’ exploration means that the set of referents defined in the
world model can be extremely large (e.g. the power set of a large set of entities), or even
infinite, without affecting the run-time performance of theinterface, as long as the level
of interconnectivity among referents remains controlled.

Relations (e.g. subsumption) among referents corresponding to sets can be navi-
gated as a graph, just like relations over individual entities. Properties (unary relations
like ‘jar file’ or ‘write-protected’) can be represented in the referent transition model
P̂ΘSemRef(lt ,et |vt ,et−1) as labeled edgeslt from supersetset−1 to subsetset defined by
intersecting the setet−1 with the setJltK satisfying the propertylt . The world model
can therefore be cast as a subsumption lattice with the set ofall entities at the top⊤
(the result of intersecting an empty set of properties) and the empty set of entities at
the bottom⊥ (resulting from an intersection of properties denoting disjoint sets).3 The
result of conjoining a propertyl with a context sete can therefore be found by down-
ward traversal of an edge in this lattice labeledl and departing frome. Thus, the set
of ‘ jar files (propertyJ) that arewrite-protected(propertyW )’ would be reachable by
traversing a ‘W ’ relation from the set of jar files, or by traversing a ‘J’ relation from the

2 Achieving a concept accuracy of 73%, vs. 46% for a baseline using only syntax and acoustics,
on a corpus of 160 spoken shell directives (‘go to . . . ’, ‘add . . . to .. . ’, etc.).

3 This lattice need not be an actual data structure. Since the world model is queried incremen-
tally, the lattice relations may be calculated as needed.



set of write-protected files, or by either pathWJ or pathJW from ⊤. The resulting set
may then serve as context for subsequent traversals. A general template for intersective
adjectives can be expressed as a grammar rule:4

NP(g,h) → Adj:l(g,k) NP(k,h)

whereg, h andk are variables over referent sets:g is the referential context of the parent
noun phrase (in some sense, the set of entities the agent is thinking about before inter-
preting the noun phrase),k is the result of interpreting the relationl associated with
the adjective ‘Adj’ in contextg, andh is the result of interpreting the noun phrase that
follows this in contextk. These referentsg,h,k are similar to theinformation states in
Dynamic Predicate Logic [10] if an information state is taken to be a set of entities to
which the system is currently paying attention (similar to entities being ‘selected’ in
a graphical interface). The world model may thus define semantic transition probabili-
ties for propertieŝPΘSemRef(lt ,et |vt ,et−1) to be (say) uniform overlt , then deterministic
on et : equal to one ifet = et−1∩ JltK, zero otherwise.

Sequences of properties (unary relations) can be interpreted as simple nonbranching
paths from referent to referent in a subsumption lattice, but higher-arity relations define
more complex paths that fork and rejoin. For example, the setof directories (setg) that
‘contain (relationC) files that arewrite-protected(propertyW )’ would be reachable
only by:

1. pushing the original set of directoriesg onto the referent stacket , then
2. traversing aC relation departingg to obtain the contents of those directoriesj, then
3. traversing aW relation departingj to obtain the set of contents that are write-

protectedk, then
4. traversing the inverseC′ of relation C to obtain the containers of these write-

protected contents, then intersecting this set with the original set of directoriesg
to geth: the directories containing write-protected files.

Forking is therefore handled via syntactic recursion: one path is explored by the recog-
nizer while the other waits on a stack. A general template forbranching reduced relative
clauses (or prepositional phrases) that exhibit this forking behavior can be expressed as
below, using the variablesg,h, j,k defined above:

RR(g,h) → Verb:l(g, j) NP( j,k) −:l′(k,g,h)

where the inverse relationl′ at the last, empty constituent ‘−’ is intended to apply
when this rule is reduced (when the forked paths are re-joined). The calculation of
semantic transition probabilities forn-ary relations thus resembles that for properties,
except that the probability term associated with the inverse relationl′ would depend on
both referentsk andg on the stacket .

The ability to efficiently represent first-order world models, with sets of entities as
referents, is also important for modeling quantifiers, but this topic is beyond the scope
of this paper.

4 A statistically weighted grammar of such rules is used to defineP̂ΘSyn(ct |ct−1, lt), wherect

andct−1 are stacks of syntactic categories.



Fig. 1. A sample randomly generated SLAM-like environment. The small box with the triangle
attached represents a robot (with the triangle denoting orientation). The other small box (colored
red on the actual interface) represents the target to which the subject should direct the robot.
Subjects were told that the target did not represent a tangible object in the world so that they did
not say, for example ‘Go to the red box’. Subjects were also shown these environments rotated
randomly between 20 and 70 degrees to discourage use of screen-centered directions (e.g. ‘Go to
the top left room’).

3 Continuous-Valued World States as Referents:
A Robot Navigation Application

Spoken directives can refer not only to discrete objects in amodel of thecurrent state of
the world; they can also refer to hypothetical consequences(world states) in a branching
model ofpossible worlds, of the sort commonly used in AI planning. Such statesmay
be comprised of arbitrarily large sets of discrete or continuous properties, and as such
may be uncountably infinite. Modeling an infinite set of referents may seem daunting,
but continuous-valued referents can be calculated only as needed by the recognizer in
the context-sensitive interface system described in the previous section.

This system is therefore currently being evaluated in a robot navigation application,
in which referent states have continuous location, orientation, and velocity properties.
This extends the set of modeled referents from an exponentially large power set of enti-
ties in a first-order world model to an uncountably infinite set of points in a continuous
multidimensional space. But since there is still a finite number of words that can be rec-
ognized at any point in a directive, the incremental semantic language model described
above will still be able to track these referents and use themto constrain this search.

3.1 Map Navigation Task

This interface has been implemented in a system for giving spoken language directives
for robot navigation in a simulated mobile robot with SLAM (Simultaneous Localiza-
tion and Mapping) [11] capabilities. The output of a mobile robot performing SLAM



indoors with a laser range finder is a collection of points that can be regressed to a set
of line segments representing the walls and doors of the environment. The goal of this
application is to allow a user to direct the robot through this continuous environment
without needing to micromanage the movements (such as with ajoystick or other form
of tele-operation). Similar work in this area includes [12], in which a human user gives
navigation directions to a robot with a camera. This differsfrom the work described
here in that recognition at the phone level is not informed bysemantics, and therefore
may converge on analyses that are acoustically possible butnot semantically likely.

For the current work, environments representing SLAM maps were randomly gen-
erated, and subjects were asked to verbally guide a robot from the starting position
and orientation inside one room in the environment to a final destination room in the
environment (See Figure 1 for illustration of a sample environment). Each randomly
generated environment consists of two separate rectangular building segments, placed
either side by side or at right angles. Each segment containsbetween one and three
inner blocks representing offices or rooms, and each inner block contains between one
and four doors. The representation of the environment available to the simulated robot
consists only of the set of line segments making up the walls and rooms.

The starting position is the center of a randomly chosen roomwithin a randomly
chosen segment, and the destination is the center of a randomly chosen room within
the other segment. Spontaneous spoken descriptions were collected from a few subjects
with the goal of determining what semantic modeling would bemost beneficial. The
collected utterances were generally either directing the robot to turn ninety degrees in
either direction, or go forward until some condition was met. Thus, the main source of
complexity in this domain is in the variety of different conditions that could exist for
stopping forward motion. Some of the stopping conditions encountered include:

– a doorway appears on the right
– you get into the hallway
– there’s a corner on your right
– there is a wall
– you hit the wall

3.2 Semantic Representation of Navigation Directives

Incremental interpretation requires a model of what referents are accessible from the
current context state via the defined semantic relations. The referents in this world
model represent the state of the robot, and are potentially infinite. The state of the robot
consists ofx andy coordinates in the environment, an orientationθ in degrees relative
to the environment, and a velocityv.

As mentioned above, the robot is only aware of the environment as a collection of
line segments. Using this information, the robot is able to use some simple rules to
figure out where there are doorways, corners, and walls. Thisinformation can be used
to predict what relations and states are reachable from the current state.

For a simple example, the robot can turn right or left from anystate. So, if the robot’s
world model is queried for reachable states from a state withorientationθ = 90, two of
the returned reachable states will be the state with the new theta valueθ = 0 (via the



relation TURNLEFT), and the state with the new theta valueθ = 180 (via the relation
TURNRIGHT). In both cases the relation is defined not to change any statevariable
other than orientation.

An example of a more difficult utterance to model is ‘Go straight until you hit the
wall.’ Presumably the subjects did not intend to send the robot crashing into the wall, but
to go straight until the path forward was blocked by a wall, inanticipation of a turning
command. The first part, ‘Go straight. . . ,’ is modeled with the relation GOSTRAIGHT,
which is available in any state, and has the effect of settingv = 1, meaning the robot
will be moving.

The second part of the phrase, ‘. . . until you hit the wall,’ ismodeled with the relation
EXTRAPOLATETO with the entity referent for the wall as an argument. This relation is
only available when the robot is in a moving state, as it is a stopping criterion. The
effect of the relation EXTRAPOLATETO is to transition the current state of the robot to
a new state in which thex andy values are changed to reflect the robot moving forward
along its current trajectory as far as possible until it getsclose to the entity referent of
its argument (in this case the wall). This new referent statecan be computed quickly on
the fly by the world model from any location by finding the closest intersection point
between the current trajectory of the robot and all the wallsin the environment.

3.3 Semantic Representation of Number

Representation of number is a potential problem for systemssuch as this, because the
system may be required to choose between referents that differ in the values of contin-
uous variables. In a continuous environment such as robot navigation, the robot could
have a state which includes real numbers for its location, meaning there are an infinite
number of successive states. This can be a problem because there is a potentially infinite
branching factor for future states, and thus potentially infinite referents for the system
to evaluate at each time step.

The system described here solves this problem by modeling numbers explicitly as
referents, which can be taken as arguments of relations. Rather than infinitely branch-
ing, the reference path forks to recognize this number, thenrejoins to provide the num-
ber as an argument. The argument fork has on the order of ten possible branches at each
time step (assuming decimal numbers).

In the robot domain described above, numerical reference could be exemplified by
the sentence ‘Go straight three feet.’5 After the words ‘Go straight,’ the system will
have hypothesized the relation GOSTRAIGHT as described above, and a resulting robot
state. From the resulting state, the recognizer will query the world model for possible
relations departing this state. Among these departing relations, the option DISTANCE

will be available, transitioning to a real-valued measure.This relation transitions from
any state referent to a referenteN , an initially unspecified number. This referent can
then transition to the referentseN=1, eN=2, . . . , eN=9, via the relations ONE, TWO,
. . . , NINE, depending on subsequent recognized words. Additional numbers will allow

5 Subjects did not actually use any distance terms like this in our corpus, sincethere was no
indication of scale in the environments. However, in a world model representing a real envi-
ronment, it is easy to imagine speakers using this kind of directive.



transitions from (say)eN=3 to eN=3.7 permitting arbitrarily long number descriptions
without ever encountering branching factors significantlygreater than ten. At any point
in the recognition process, the recognizer will be exploring hypotheses that terminate
the description of this number, filling in the number referent as a distance argument to
another relation.

With this framework, the world model may use non-uniform probability distribu-
tions over numbers (e.g. defining a Gaussian over likely distances for various actions),
using different context referentseN , e′N , . . . for different distributions. This continuously
context-sensitive recognition of numbers also allows users to refer to real-valued refer-
ents already in the world model (e.g. ‘the three-foot wall’)as well as new referents.

4 Conclusion

Context-sensitive interfaces have been shown to be more accurate than interfaces that
are not sensitive to context. The research described in thispaper shows that context-
sensitive recognition can be performed continuously during decoding, in real time, with
modest hardware requirements, and can still be flexible enough to represent complex
and even continuous environments.
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