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Recap: Lecture #1 Electric Charge and Coulomb’s Law 
(Please read so you can start today up to speed. You don’t need to write 
this down. It’s a summary of last lecture and is available on the web.) 

Electric charge, a “new” quantity, gives rise to the 
electric force – a “new,” fundamental, long-range force. 

Rubbing two objects can transfer charge from one to the 
other. 

When two plastic rods were each rubbed with a piece of 
fur, they repelled. Conclusion: Since they were prepared 
the same way, they should have the same kind of charge. 
Thus: “Like charges repel.” 

On the other hand, the plastic rods were attracted to the 
fur. There must be a different kind charge such that: 
“Unlike charges attract.” 

We call these two kinds of electric charge positive and 
negative. (We have not observed a third kind of electric charge.) 

We measure charge in Coulombs (1 C is a large amount 
of charge) and denote it with a “q”, “Q”, “q1”, etc. 

The magnitude of the force between two point charges is 
given by Coulomb’s Law: 
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 where k = 8.99 x 109 Nm2/C2. The direction 
of the force is along the line of motion connecting them, 

either repulsive or attractive. Also: 2112 FF
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Recap: Lecture #2 Insulators and Conductors 
 

The electrons that make up an insulator can shift a little, so 
an outside external charge can polarize a neutral insulator. 
Also, added charge is stuck in place. 

 

 

The electrons that make up a conductor can move freely. 
Added charge can also move freely. 

• Conductors polarize easily. 
• Excess charge spreads out as much as possible because of 

the repulsion between charges of the same sign. 
• Conductors in contact act like a big conductor, no matter 

how peculiar the shape. 
• The earth (“ground”) can be approximated as a conductor. 

 

 

 

 

 

 

polarized neutral insulator charged 
insulator

Even if you have a peculiar 
shape, the same ideas hold. 

charged 
conductors

polarized neutral conductors 

This is not how a conductor 
polarizes. 



Recap: Lecture #3 The Electric Field 

All electric charge generates an electric field. For a point 

charge q: 2r
qkE = .  

The direction is radial and 
depends on the sign of the 
charge. 

Electric field has units of N/C. 

Since the electric field is a vector, if several charges are 
present (q1, q2, q3 …), the electric field is just the vector 
sum of the individual fields from each charge: 
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This electric field exerts a force on any other point 

charge, Q, according to: EQFQ
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If Q > 0, then the force is parallel to the electric field. 

If Q < 0, the force is anti-parallel (opposite) to the field. 

 

Note that the electric field from a point charge follows an 
inverse square law. If you increase your distance from 
the charge by a factor of 3, the field falls off by a factor of 
9.
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Recap: Lecture #4 Continuous charge distributions. 
Given: L, w, +q Find: electric field at P 

By symmetry, the electric field acts downward. 

Pick a typical “point charge”, dq. No matter 
which point charge is picked, its electric field, dE, 
also points downward. No need to use components 
for this problem. 

Electric field from the point charge: 2r
dqkdE =   

Electric field from all point charges: ∫= dEE  

Thus, ∫= 2r
dqkE  

 
To make sense of the integral, introduce a coordinate 
system that allows you to precisely specify where a given 
point charge is located. Using the coordinate system: 

ywr +=   
dy
L
qdqtherefore

L
dy

q
dq

==  

So, we have: 

( ) ( )
dy

ywL
kqdy

L
q

yw
kE

L

∫∫ +
=

+
=

0
22

11

L 

+q 

w 

P 

dq 

r 

dy 

dE 

E 

y 

Don’t forget to add 
integration limits!!!
They “tell” the 
integral where the 
charge is. 



Recap: Lecture #6 Gauss’s Law 

Given a surface (not a solid!) and the electric field on the 
surface (not inside or outside!), we can determine the 
charge enclosed by the surface. Here are some examples 
that show this idea qualitatively: 
 

 

 

 

 

Gauss’s Law says the same thing quantitatively: 

enc
o

q
ε
1

=Φ
 

Φ = the flux through a closed surface. Flux is essentially 
the amount of electric field poking through the 
surface. It can be positive or negative. (A closed 
surface “holds water”.) 

qenc = the charge enclosed by the surface. Charge that is 
outside the surface must not be included. 

Special-special case: If E
r
 is remains perpendicular to the 

surface, no matter how it might curve around, and if it 
has the same magnitude on the surface: EA=Φ . (A = area.) 

E=0

E=0

E=0 

There must be 
positive charge 

inside. 

There must be 
negative 

charge inside.

There must be 
zero charge 

inside.



Recap: Lecture #7 Gauss’s Law 

Infinite line charge, linear charge density +λ. 
Find the electric field everywhere. 

• Introduce a cylindrical Gaussian surface so that it is 
everywhere normal to the field lines. Then: 

Φ = ΕΑ = Ε (2πrL) 

Note the flux through the end-caps is zero. 

• Use Gauss’s Law to find the flux a second time: 

Φ = 1/εo qenc = 1/εo λL 

• Combine the results to find the field magnitude: 
Ε (2πrL) = 1/εo λL 

Ε =  λ/(2π εor) 
Direction: “radially outwards” 

Side view. Infinite line charge in 
blue, field lines in black, Gaussian 

surface in red. 

End view.  
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Perspective view.  



Recap: Lecture #8 Charged conductors  
Once a solid charged conductor reaches equilibrium (this happens 
quickly and is the only case we’re considering right now): 

The charge resides on the outer surface. 
The electric field inside the “meat” of the conductor is zero. 

The field inside any empty cavities is also zero. 
We proved this using Gauss’s Law: 

Because E = 0, the flux through the Gaussian 
surface is zero: Φ = qenc/εo, therefore the net 
charge enclosed is zero, therefore the cavity is 
charge free! 

There is a non-zero field on the surface, 
however. 
If we place a charge inside the cavity, the field 
inside the meat of the conductor is still zero, but 
everything else changes: 
• The field inside the cavity is non-zero because 

of the charges inside it. 
• qenc = 0 because E = 0 in the “meat”, 

but, qenc = qinner + qcavity, so: 
 qinner = qenc - qcavity = 0 - (-q) = +q! 
• Suppose the total charge on the conductor is 

qcond = +2q. What is the charge on the outer surface? 
 qcond = qinner + qouter 

The charge on the conductor is the sum of the charge on its 
surfaces. 

 qouter = qcond - qinner = +2q - q = +q 
After the cavity charge pulled in +q to the inner surface, only +q 
was left on the outer surface. 

E=0

E=0

Conductor with net 
positive charge. 

Cross-section-view.

E≠0 

E=0

Conductor with net positive 
charge and a cavity charge. 

Cross-section-view. 

E≠0 

-qE≠0



Recap: Lecture #9 Sheets, Potential energy 

Charged Sheets: 

 

Electric Potential Energy: 

A positive charge loses electric potential 
energy if it moves down a field line 
because its motion is in the direction of 
the electric force. 

For a point charge in a uniform field we 
have: dEqU

rr
•−=∆  or θcosEdqU −=∆ . 

(This is an important special case!!!) 

θ is the angle between E
r
 and d

r
 when placed tail-to-tail. 

Be careful of the negative signs. Note that q can be 
negative and so can cosθ. 

Infinite (very big) 
non-conducting 
sheet of charge. 

E = σ/2εo 

Infinite (very big) 
charged conducting 

sheet.

E = σ/εo 

Notice that the charge 
resides on the outer 

surface of the conductor.

E = 0 

E 

∆U < 0 

E

d
θ 

q 



Recap: Lecture #10 Potential energy and potential  

Previously, we said that a charge generates an electric 
field (a vector field) and that this field can then exert a 
force on another charge. 
Associated with the electric field is a scalar field called 
the potential. The potential controls how a system 
(another charge, perhaps) acquires potential energy.  

The potential difference between two points in space can 
be measured using the potential energy change of a point 
charge between those same two points: qUV /∆=∆ . 
The unit of potential is the volt (V). 

The potential difference between two locations in space 
in a uniform electric field is: dEV

rr
•−=∆ . 

This means the unit of electric field is also V/m. 
In general, electric potential decreases as you go down a 
field line. 
We connect points together that are 
at the same potential (have the same 
voltage) to form equipotential lines 
and surfaces. 

Equipotential lines are always 
perpendicular to the electric field lines. 
In the figure, showing a uniform field, note how potential decreases as you go 
to the right. The potential doesn’t change if you go up or down. Also, notice 
that since E = 25 V/m, you drop 25 volts for each meter traveled to the right. 

100 V 75 V 50 V

E = 25 V/m

1 m 1 m



Recap: Lecture #11 Electric  potential  
For a uniform electric field, we have: 

 x
VEx ∆

∆
−=  y

VEy ∆
∆

−=  z
VEz ∆

∆
−=   

So, for example, given two locations along the x-axis we can determine 
the x-component of the electric field (in volts/meter) by measuring the 
potential difference between those two locations (in volts) and the 
distance between them (in meters). 
If the electric field is not uniform, we must use: 

 x
VEx ∂

∂
−=  y

VEy ∂
∂

−=  z
VEz ∂

∂
−=  

From these relations we conclude that a non-zero electric field 
requires the electric potential to vary spatially. 

We can use equipotentials to visualize the variation of 
potential in space. An equipotential line (or surface) 
connects points in space that have the same potential. 
• Adjacent equipotentials should always differ by the 

same voltage difference (10 volts, for example).  
• Equipotential lines are spaced more closely together 

where the electric field is stronger    AND 
they are always perpendicular to the field lines. 

• Conductors are equipotentials   THUS 
electric field lines near a 
conductor are always 
perpendicular to its 
surface!!! 

A

B 

10v 0v 20v30v -10v

E

EA < EB 



Recap: Lecture #13 Capacitors  
A battery can be used to “pump” charge from one conductor 
to another. A pair of conductors used in this way is called a 
capacitor. 

The charge q on 
either plate is 
given by: 

q = C ∆V 

Capacitors 
in parallel.  
 
 

321 VVVV ∆=∆=∆=∆   

321 qqqqe ++=  321 CCCCe ++=  
 

Capacitors in series. 
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parallel plate 
capacitor 

-q

+q

∆V 

+q

-q
cat 

capacitor
∆V 

∆V 
C1  C2 C3  

∆V 
Ce  

∆V

C1 

C2 

C3 

∆V 
Ce 

True for any set of components in parallel !!! 

True for any set of components in 
series !!!

We haven’t derived this yet.



Recap: Lectures #13-15 Parallel and Series. 
Components in parallel have to have the same voltage. 
Components in series have to share the same current. 

Comments 
The current (flow of charge) onto or off a capacitor is zero at steady 
state, but while the current is charging there is a current so you can 
follow the current flow to help you determine if two caps are in 
series. 

Notice that the two statements above apply to any component, not 
just capacitors. 

A third option is that two components will neither be in series or in 
parallel. This is usually the case. 
 
 
 
 
 
 
Inductor L and capacitor C2 are in series. (Don’t know 
what an inductor is yet? Doesn’t matter. It’s still in 
series with C2!) 

The battery and resistors R1 and R2 are all in parallel. 

C1 and Fluffy are in series. 

C1 and R2 are neither in series or parallel.

C1 Fluffy 
the 
cat  

R1

R2

V 
C2

L 



Recap: Lecture #16 Current, Resistance and Power 
CURRENT 
The electric current is the amount of charge passing through a 
reference plane per unit time: 
 i = dq/dt or, for a constant current, i = ∆q/∆t. 
The unit of current is the C/s or Amp (A). 
The current direction is defined as the direction that a 
positive charge would travel. For circuits, the current 
is in the opposite direction of the electron motion. 

Node rule: iin = iout at a node, OR 
  The sum of the currents at a node is zero. 

i1 + i2 + i3 = 0. 
So, if i1 = 2A and i2 = 3A, i3 = -5A. 
(The minus means the current is going out of the node.) 

RESISTANCE 
The electric field inside a conductor when its charges are at rest 
(electrostatic case) is zero. When a current flows through a conductor, 
there is an electric field, given by: JE

rr
ρ=  

J
r

 is the current density. If the current is uniform: J = i/A. 
The direction of J

r
is the same as the current. ρ is the resistivity. 

It is a property of the medium and has units (V/A) m = Ω m. 

RESISTORS 
These are components designed to resist the flow of current. They are 
characterized by a “resistance” such that R = V/i (in Ω) or V = iR. 

POWER 
P = iV  (in general!) PR = i2R = V2/R  (for resistors)

V 

i 

electron motion

i1

i2

i3



Recap: Lecture #17 Multiloop Circuits 
Resistors in combination: Parallel. 

321 iiiie ++=  

321 VVVVe ===  

321

1111
RRRRe

++=
 

Resistors in combination: Series. 

321 iiiie ===  

321 VVVVe ++=  

321 RRRRe ++=  
 
Various components in any order: node and loop rules. 
To use the loop rule, you need to know how to determine 
potential differences: 
 

 

 

 

R3 V R1  R2 

V Re  

V

R1 

R2 

R3 

V Re  

VB 

VB 

Red arrows indicate your 
step direction as you “walk” 

around a loop. 

∆V = +VB 

∆V = -VB 

R 

R 

Blue arrows indicate the 
current direction. 

∆V = -iR 

∆V = +iR 

i 

i 



Recap: Lecture #18 Problem solving 
We looked at this circuit and started by 
identifying the currents. Currents go 
between adjacent nodes. Some are 
identified in the figure. 

 

i4 was found by inspection: i4 = E2/R4. 

 

i3 was found using the loop rule and the 
loop in blue. 

i2 was found using the node rule and 
node Q. 

 

We decided the best way to get iy was to 
replace the resistor network on the left 
with an equivalent resistor: R012 = 67 Ω. 

 

We stopped here, but the remaining currents can be found in the 
same fashion if desired. 

The point of this exercise was to make clear that a variety of strategies 
must be brought into play to characterize a circuit efficiently. 

 

 

 

 

E1 E2 

R1

R2 R4

R3 

P 

Q 

R0 i1 i2
i4

i3 

iy

E1 = 10V, E2 = 20V 
R0 = R1 = R2 = 100 Ω. 

R3 = 300 Ω, R4 = 400 Ω. 

E1 E2 

R1

R2 R4

R3 

P 

Q 

R0 i1 i2
i4

i3 

iy

E1 E2 
R012 R4

R3 Q 

i1 i2
i4

i3 

iy



Here are the solutions to the circuit: 

i4) i4 = E2/R4 = 1/20 A. 

i3) E2 - i3R3 - E1 = 0  ►  i3 = (E2 - E1)/R3 = 10V/300Ω = 1/30 A. 

i2) i2 = i3 + i4 = 1/12 A  (using the node above E2) 
PE2 = E2 i2 = 20/12 W (battery E2 is supplying power) 

iy) iy = E1/R012 = 10/67 Α = 0.15 Α. 

i1) i1 + i3 = iy   ►  i1 = iy - i3 = 0.12 A. 
PE1 = E1 i1 = 1.2 W (battery E1 is supplying power) 

 

VQ - VP  

We solve this class of problem by “walking” from location P to Q 
keeping track of the potential changes found along the way. Any path 
from P to Q will do, although it is easier to walk over batteries rather 
than resistors. 

I’ll use the purple path. We start at 
point P and thus at potential VP. Our 
potential changes as we walk towards 
Q. When we get to Q, our potential is 
VQ: 

 VP - ixR1 + E2 = VQ 

 VQ - VP = E2 - ixR1 

We need ix. ix = E1/(R1 + R2) = 1/20 A. 

 VQ - VP = 20V - (1/20A)(100Ω) = 20V - 5V = 15V. 

Location Q is at higher potential than location P. 

 

E1 E2 

R1

R2 R4

R3 

P 

Q 

R0 i1 i2
i4

i3 

iy

ix



Recap: Lecture #19 RC Circuits 
When a capacitor charges, electrons are 
pumped from one plate to the other. Effectively, 
this is no different than a current flowing 
through the capacitor in the opposite direction. 

When charging or discharging  we will treat 
capacitors as having a current even though, in 
reality, no electrons ever jump the gap from 
one plate to the other. 

 

• An initially uncharged capacitor  effectively acts likes a wire 
when it first starts to charge because pulling the first 
electron off is easy. 

 

 

 

• A fully charged capacitor blocks steady state currents. It acts 
like a broken wire. 

 

e
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S  

q=0  
C E 

R
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=
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S  
i =  0 

E E 

At t = a long time later 

Vc = E 
(in this case)

R 

S  

q=0  
C E 

R

S 

q=0 
=

R 

S  
i =  E/R 

E E 

i  
At t = 0. 

Vc = 0 



Recap: Lecture #21-22 Magnetic force 

From the demonstrations it appears we must conclude: 

• A non-contact force can exist between currents, and 
it’s not the gravitational or electric force. 

• A force can exist between a magnet and a current. 

We guessed (correctly, it turns out) that the force 
between currents is also magnetic. 

Currents generate magnetic fields and magnetic fields 
can exert forces on other currents. 

We’ll consider the way in which currents generate 
magnetic fields later. For now, we simply accept that they 
exist. What force do they exert? Start with the simplest 
situation: A moving point charge in a uniform field. 

The magnitude of the force is given by: 

F = qvB sinθ 

 

So, if the charge doesn’t move, it won’t experience a 
force. You have to have a charge in motion for it to be a 
current! 

If the charge moves parallel to a field line, θ = 0, and 
again the magnetic force on it is zero. 

B v 

θ 
q 



Recap: Lecture #21-22 Magnetic force. 

The magnitude and the direction of the force are given in 
a single equation by: BvqF

rrr
×=  

The cross product, BA
rr

× , is a vector that is perpendicular 
to both A

r
and B

r
. Its magnitude is: θsinABBA =×

rr
 

Right-hand rule for 
cross-products: 

 
Now, since we have: BvqF

rrr
×=  we see immediately that: 

• The force is zero for stationary charges. 
• The force is zero if the velocity vector is parallel (or anti-

parallel) to the field. 
• The force is perpendicular to both the velocity vector 

and the field. 
• The force on a positive charge is opposite in direction to 

the force on a negative charge. 
Finally, if we have a straight wire carrying a current, the 
force on the wire due to a magnetic field is: BLiF

rrr
×= . 

L
r

 is a vector that describes the wire: L is the length of 
the wire that is in the magnetic field and the direction is 
the same as the current.

B

A A x B

B

A B x A

L

i
B

F



Recap: Lecture #24 Ampere’s Law. 
RHR for currents generating a magnetic field!!!!!  
Magnetic field lines circle around currents. Grasping 
the current with your right hand and your thumb in the 
direction of the current, your fingers give the direction 
of the field lines. 

Ampere’s Law: ∫ =• encildB 0µ
rr

. 
You need to pick a closed path (a loop). Different parts of 
the path may contribute differently to the integral. 

(I) If B
r

 is perpendicular to a part of the path, then for that 
part: 0=•∫ ldB

rr
 

(IIa) If B
r

 is constant and parallel to a part of the path, then 
for that part:  BLldB =•∫

rr
 (where L = the path length). 

(IIb) If B
r

 is constant and anti-parallel to a part of the path, 
then for that part: BLldB −=•∫

rr
. 

The thin infinite wire. 
According to case IIa: 

)2( rBBLldB π==•∫
rr

 
Now we need ienc: 

iienc =  
Finally: 

iirB enc 00)2( µµπ ==   so, we get: r
iB

π
µ
2

0=  

Current out of the 
page (note symbol)

Field lines

i, into 
the page R 

Field line
in blue. 

Amperian loop in red 
(just follows the field 
line, for this problem). 

r Notice you have to give 
your path, or Amperian 
loop, dimensions. In this 
case, a radius r.



Recap: Lecture #25 Biot and Savart. 

An infinitesimal piece of wire ld
r
 will generate a magnetic 

field Br  at a location selected by rr  according to the Law of 

Biot and Savart: 3
0

4 r
rldiBd
rr

r ×
=

π
µ  

So, Bd
r
 has magnitude 2

0 sin
4 r
dlidB θ

π
µ

=  and direction given 
by the RHR: Into-the-page, for the case shown. 

Using the Law of Biot and Savart to find the 
magnetic field from a long straight wire: 
(1) Pick a small piece of the wire to be your ld

r
. 

(2) Add the vector rr  from ld
r
 to the location 

where you want to find the field. 
(3) The direction of Bd

r
 is given by rld rr

× , into-the-
page in this case. 

(4) For each component of the field (only one in this 
case), construct an integral: dl

r
iB ∫= 2
0 sin
4

θ
π

µ  

(5) Introduce a variable (or coordinate) that 
indicates where the wire-piece is located. 

 dydl =  22 Ryr +=  rR /sin =θ  
 (6) Solve the integral. 

( ) R
i

R
iRdy

Ry
RiB

π
µ

π
µ

π
µ

2
2

44
0

2
0

2/322
0 ==

+
= ∫

+∞

∞−
 

i 

R 

r 
dl θ 

r 
dl θ 

R 

r 

dl 

θ 
y 



Recap: Lecture #26 Induction. 
Can crusher: The magnetic field generated by the 
solenoid shouldn’t be able to exert a force on the can 
because there shouldn’t be any currents in the can. It’s 
not connected to anything. However, the can is crushed. 
We know from our study of the electric motor that if 
there were a loop current in the can somehow, that would 
explain its being crushed. 
Hypothesis: We have a current in the can or there exists 
still yet another new force or something even crazier. 
Ring toss: Again we get a force on a conductor that 
“shouldn’t” have any currents in it. To test whether we 
have a current or a new force, we can try a split ring. The 
gap in the ring will prevent currents from circulating 
around the ring. A new force would presumably still act 
on the conductor. Result: We find that the force on the 
ring goes away. Kill the possibility of a current and you 
kill the force. 
Hypothesis: A current is generated in the ring and the 
magnetic field present exerts a force on it. 
Why is a current generated? Well, in all this we are 
doing one thing different from everything else we’ve seen 
so far. We are using a time-varying magnetic field. 
Hypothesis: A time-varying magnetic field can generate a 
current in a conductor and then exert a force on that 
current. (We call the generation process “induction”.)



Recap: Lecture #26 Faraday’s Law 
Faraday’s Law tells us how to make a power supply (or EMF 
source) using magnetic fields. Almost all electric power 
generation in the world is done via the use of Faraday’s Law. 

Faraday’s Law: dt
dNE BΦ

−=  

E = the EMF generated throughout a loop. (I haven’t discussed why we use the 
phrase “EMF” yet instead of something like “voltage difference”.) 

ΦB = the magnetic flux going through the surface defined by the loop. For 
purposes of this class, we are only concerned about the flux due to an 
external magnetic field, not any flux generated by the loop itself. 

N = the number of turns in the loop (for example, you might wrap a wire into a 
circular loop going around N=100 times). 

Let’s limit discussion for now to the special 
case of flat loops in uniform fields. Then: 

θcosBAABB =•=Φ
rr

 
So, to use Faraday’s Law just calculate the 
magnetic flux and then take the time derivative. (I’ll discuss 
the minus sign later.) 
There are three basic possibilities for the derivative. More complicated 
possibilities including multiple time dependencies and more complicated 
surfaces and fields can be readily handled by extension. 

B = B(t), A and θ constant: ( )
dt
dBABA

dt
d

dt
d B θθ coscos ==
Φ  

A = A(t), B and θ constant: ( )
dt
dABBA

dt
d

dt
d B θθ coscos ==
Φ  

θ = θ(t), A and B constant: ( ) 





−===

Φ
dt
dBA

dt
dBABA

dt
d

dt
d B θθθθ sincoscos  

This last result requires the chain-rule in the last step. To go further, you 
will need θ(t). For the case where the loop rotates uniformly with period T, 
(or frequency f = 1/T) we have:     θ(t) = 2π t/T = 2πf t,     θ in radians. 

flat wire 
loop, area A 

B

θ 

A



Recap: Lecture #27 Lenz’s Law 
For the problems we’ll look at, use Faraday’s Law to get the 
magnitude of the EMF. Use Lenz’s Law to determine which 
way the EMF is oriented (or which way it will try to drive a 
current). 

Lenz’s Law: The EMF generated will always try to drive a 
current that opposes the change in flux. Lenz’s Law is a 
consequence of the conservation of energy. 

Example. The flux through the 
loop is out-of-the-page and 
decreasing. We know there will 
be an induced current, but cw or 
ccw? 

Well, the induced current will 
generate it’s own magnetic field 
in addition to the external field 
B. Let’s call this new field Bind. 
From Lenz’s Law it must be 
oriented to oppose the change in 
flux. A decreasing flux out-of-the-page will be opposed 
(partially compensated for) if Bind is also out-of-the-page. The 
only way Bind can be out-of-the-page is if the current flows 
CCW. 

For the problems we’ll consider, Bind is significantly smaller 
than B and is never able to prevent the flux from changing. 
You won’t need to worry about the force Bind will exert or 
anything else. That doesn’t mean it’s unimportant but, for us, 
it is mainly a thought-tool that helps us apply Lenz’s Law. 

Since B is 
decreasing the 
induced current will
flow ccw (counter-
clockwise). 

B 

wire loop

Binduced 

B is decreasing 

B 

wire loop



Recap: Lecture #27 The Rail Problem 
Mathematically, this problem isn’t hard. However, you have to be able to 
apply Lenz’s Law, use a number of different right-hand-rules, keep the 
various angles that come into play straight, etc. Circuit concepts and principles 
from P131 have to be recognized, as well. The challenge isn’t math then, but to 
put everything together. The rest of class will be like this! Here it is again: 

Inside the loop formed by the rails and rod, we have an increasing flux into-
the-page so Bind will be out-of-the page. This requires that the induced current 
flow ccw (counter-clockwise). Thus, the induced current flows upwards 
through the rod. Because of this current, there will be a magnetic force on the 
rod to the left. Fext must cancel this force since the rod moves at constant speed. 

dt
dABAB

dt
d

dt
dNE B ==
Φ

= )cos( θ   

Comments: N = 1 because the loop only has 1 turn. B is a constant and comes out of 
the derivative. θ is the angle between the normal to the loop surface and the field 
and is either 0o or 180o for our problem, so the cosine is either 1 or -1. (We only 
want the magnitude of E at this point, so we don’t care about signs.) 
To take the derivative, I need an expression for the area. Let x be the distance 
the rail has traveled. Then A = Lx (length times width). 

Lv
dt
dxLLx

dt
d

dt
dA
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The rest follows: 
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Put in the numbers to see what’s possible.

The rail has mass M and resistance R and is moving at 
constant speed v. 

B = 1T, R = 10 Ω, L = 10 cm, v = 10 m/s. 

Find: E (the loop EMF), i (the loop current), extF
r

 (the 
external force maintaining the motion). 

L v
B

x 

This comes from BLiF
rrr

×= . So here 
“θ” is the angle between Lr  (the 
current direction in the rod) and Br .  




