
Name: _____

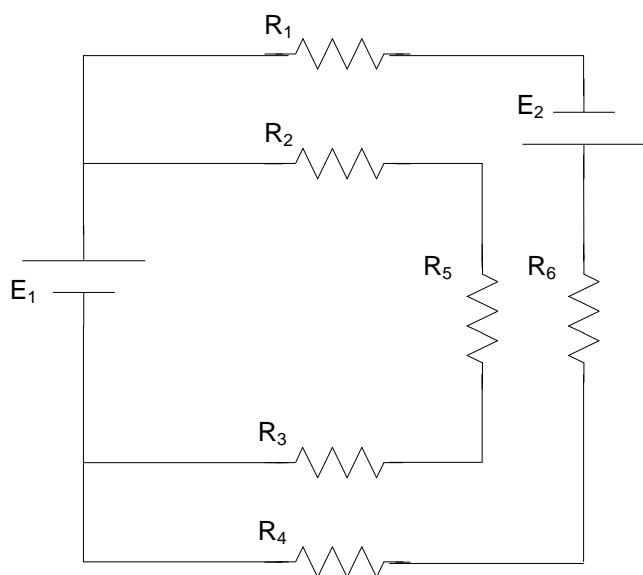
Recitation Instructor: Knobbe Morss Parks Potashnik Slaunwhite Stevens

Problem 1, 25 points total. $E = 100 \text{ V}$ and all capacitors are $20 \mu\text{F}$.

(a) [13 points] How much energy is stored in the capacitor network?

(b) [12 points] Find the voltage across each capacitor.

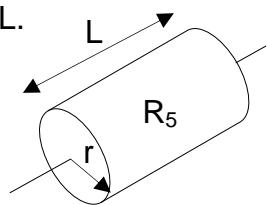
Name: _____


Recitation Instructor: Knobbe Morss Parks Potashnik Slaunwhite Stevens

Problem 2, 27 points total. $E_2 = 10 \text{ V}$. The current through R_5 is 0.020 A. $R_1 = 100 \Omega$, $R_2 = 200 \Omega$, $R_3 = 300 \Omega$, $R_4 = 400 \Omega$, $R_5 = 500 \Omega$, $R_6 = 600 \Omega$.

(a) [7 points] What is E_1 ?

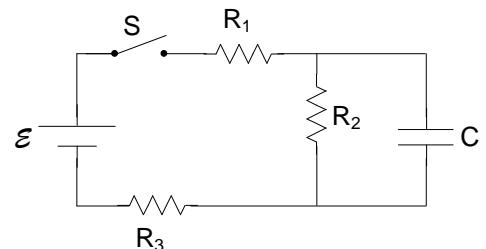
(b) [7 points] What is the voltage across R_6 ?


(c) [7 points] How much power is supplied by E_1 ?

(d) [6 points] Suppose R_5 was in the shape of a cylinder with radius r and length L .

(i) If the radius was doubled the resistance would (circle one):
 decrease remain the same increase

(ii) If the length was doubled the current through R_6 would (circle one):
 decrease remain the same increase

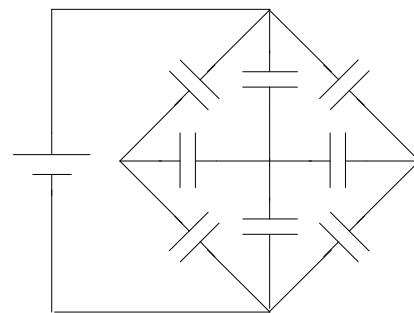
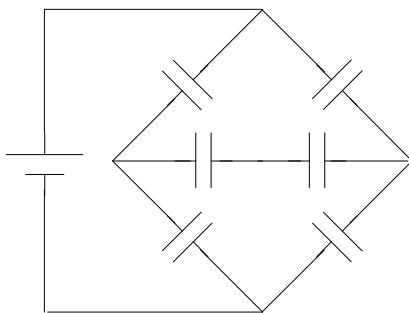
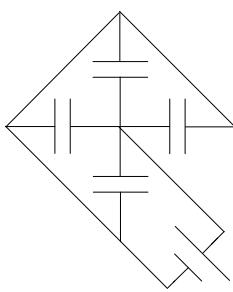

Name: _____

Recitation Instructor: Knobbe Morss Parks Potashnik Slaunwhite Stevens

Problem 3, 24 points total. $E = 10V$, $R_1 = 10 \Omega$, $R_2 = 20 \Omega$, $R_3 = 30 \Omega$, $C = 2 \mu F$. The switch is initially open and the capacitor is initially uncharged. The switch is then closed.

(a) [12 points] Immediately after the switch is closed, find:

- V_1 the voltage across resistor R_1 .
- i_c = the current through C .
- P = the battery power.




(b) [8 points] A long time after the switch is closed, find:

- V_2 = voltage across resistor R_2 .
- U = the energy stored by C .

(c) [4 points] If the switch was opened again, what would be the time constant for the capacitor discharge?

Name: _____

Recitation Instructor: Knobbe Morss Parks Potashnik Slaunwhite Stevens

Problem 4, 24 points total. Following are several unrelated questions.**(A) [9 points]** For each circuit below: Circle every capacitor that is in parallel with at least one other capacitor; Draw an "X" through every capacitor that is in series with at least one other capacitor.**(B) [15 points]** A solid conducting sphere, radius 1.0 cm, is at a potential of 300 V. (Assume a potential reference of $V = 0$ at infinity.)

(i) What is the potential at the center of the sphere?

(ii) What is the potential at a distance of 2.0 cm from the center of the sphere?

(iii) What is the net charge on the sphere? (Reminder: $k = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \frac{Nm^2}{C^2}$)