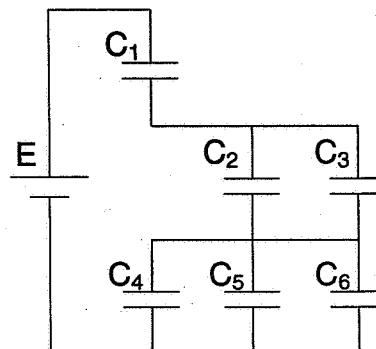


Name: _____

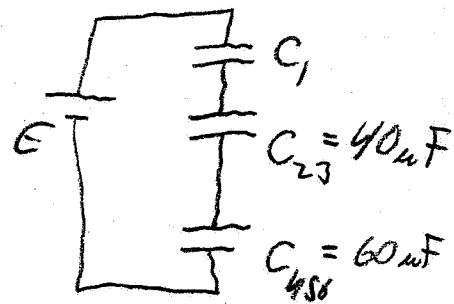

Recitation Instructor: Knobbe Morss Parks Potashnik Slaunwhite Stevens

Problem 1, 25 points total. $E = 100 \text{ V}$ and all capacitors are $20 \mu\text{F}$.

(a) [13 points] How much energy is stored in the capacitor network?

(b) [12 points] Find the voltage across each capacitor.

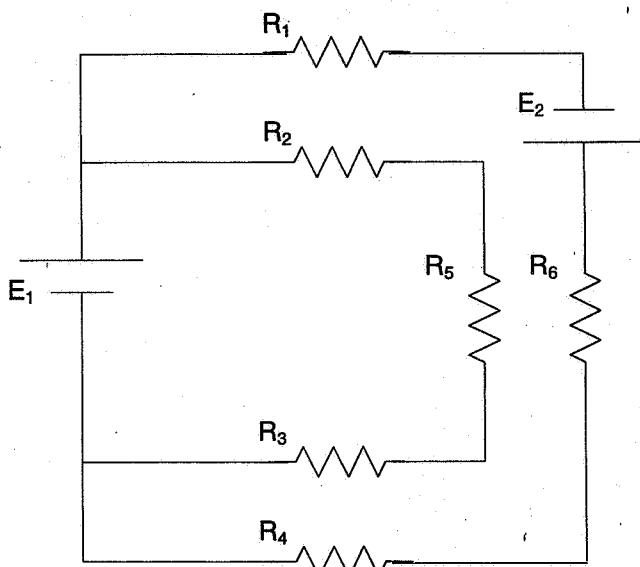
$$U = \frac{1}{2} C_e E^2 = 55 \text{ mJ} \checkmark$$



$$V_1 = \frac{C_1}{C_e} = \frac{6e}{C_e} \quad C_e = C_e E = 1091 \mu\text{C}$$

$$= 54.5 \text{ V} \quad \checkmark$$

$$V_2 = V_3 = V_{23} = \frac{C_{23}}{C_{23}} = \frac{6e}{C_{23}} = 27.3 \text{ V} \quad \checkmark$$


$$V_4 = V_5 = V_6 = E - V_1 - V_2 = 18.2 \text{ V} \quad \checkmark$$

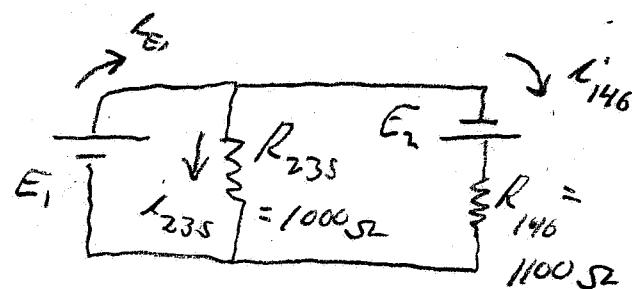
$$C_e = 10.9 \mu\text{F}$$

Name: _____

Recitation Instructor: Knobbe Morss Parks Potashnik Slaunwhite Stevens

Problem 2, 27 points total. $E_2 = 10 \text{ V}$. The current through R_5 is 0.020 A. $R_1 = 100 \Omega$, $R_2 = 200 \Omega$, $R_3 = 300 \Omega$, $R_4 = 400 \Omega$, $R_5 = 500 \Omega$, $R_6 = 600 \Omega$.(a) [7 points] What is E_1 ?(b) [7 points] What is the voltage across R_6 ?(c) [7 points] How much power is supplied by E_1 ?

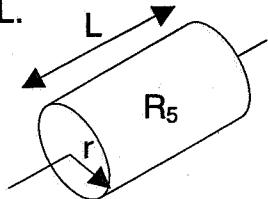
$$\textcircled{a} \quad E_1 = i_{235} R_{235}$$


$$= (0.020 \text{ A})(1000 \Omega)$$

$$= 20 \text{ V} \quad \checkmark$$

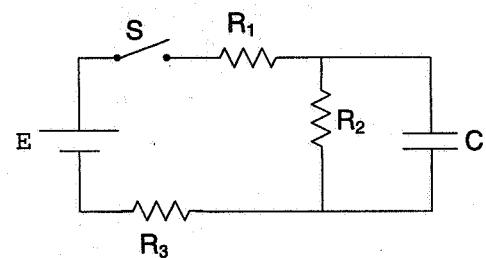
$$\textcircled{b} \quad V_6 = i_6 R_6 = i_{146} R_6$$

$$E_1 + E_2 - i_{146} R_{146} = 0$$


$$i_{146} = 27.2 \text{ mA}$$

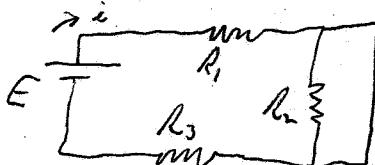
$$V_6 = 16.4 \text{ V} \quad \checkmark$$

$$\textcircled{c} \quad i_E = i_{235} + i_{146} = 47.2 \text{ mA}$$


$$P_{E_1} = i_E E_1 = 944 \text{ mW} \quad \checkmark$$

(d) [6 points] Suppose R_5 was in the shape of a cylinder with radius r and length L .(i) If the radius was doubled the resistance would (circle one):
 decrease remain the same increase(ii) If the length was doubled the current through R_6 would (circle one):
 decrease remain the same increase

Name: _____

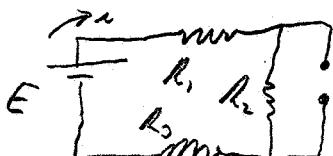

Recitation Instructor: Knobbe Morss Parks Potashnik Slaunwhite Stevens

Problem 3, 24 points total. $E = 10V$, $R_1 = 10 \Omega$, $R_2 = 20 \Omega$, $R_3 = 30 \Omega$, $C = 2 \mu F$. The switch is initially open and the capacitor is initially uncharged. The switch is then closed.

(a) [12 points] Immediately after the switch is closed, find:

- V_1 the voltage across resistor R_1 .
- i_c = the current through C .
- P = the battery power.

$$i = \frac{E}{R_1 + R_3} = 0.25A$$

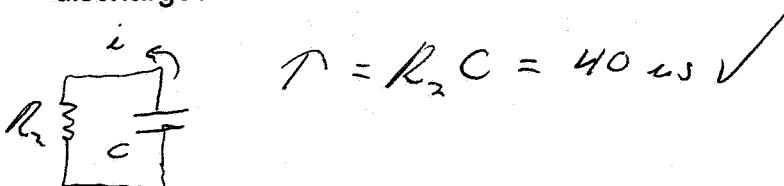

$$V_1 = i R_1 = 2.5V \checkmark$$

$$i_c = i = 0.25A \checkmark$$

$$P = iE = 2.5W \checkmark$$

(b) [8 points] A long time after the switch is closed, find:

- V_2 = voltage across resistor R_2 .
- U = the energy stored by C .

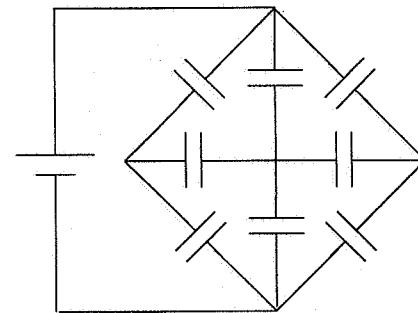
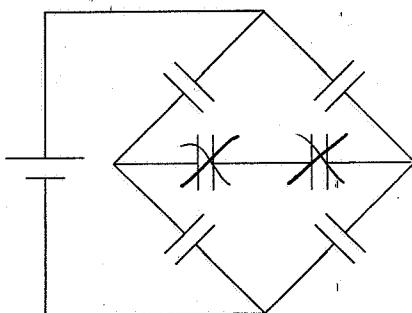
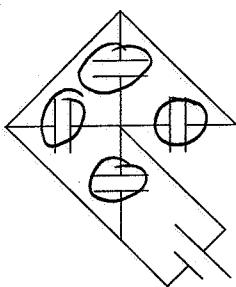


$$i = \frac{E}{R_1 + R_2 + R_3} = 0.17A$$

$$V_2 = i R_2 = 3.3V \checkmark$$

$$U = \frac{1}{2} C V_2^2 = \frac{1}{2} C V_2^2 = 11 \mu J \checkmark$$

(c) [4 points] If the switch was opened again, what would be the time constant for the capacitor discharge?




$$\tau = R_2 C = 40 \mu s \checkmark$$

Name: _____

Recitation Instructor: Knobbe Morss Parks Potashnik Slaunwhite Stevens

Problem 4, 24 points total. Following are several unrelated questions.

(A) [9 points] For each circuit below: Circle every capacitor that is in parallel with at least one other capacitor; Draw an "X" through every capacitor that is in series with at least one other capacitor.

(B) [15 points] A solid conducting sphere, radius 1.0 cm, is at a potential of 300 V. (Assume a potential reference of $V = 0$ at infinity.)

(i) What is the potential at the center of the sphere?

$$V = 300 \text{ V} \quad \text{bc the sphere is an equipotential!} \quad \checkmark$$

(ii) What is the potential at a distance of 2.0 cm from the center of the sphere?

$$V(r) = \frac{kq}{r} \quad \text{so} \quad V(2\text{cm}) = \frac{1}{2} V(1\text{cm}) = 150 \text{ V} \quad \checkmark$$

(iii) What is the net charge on the sphere? (Reminder: $k = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2}$)

$$q = \frac{V(r) r}{k}$$

$$= \frac{(300 \text{ V})(0.010 \text{ m})}{k} = 0.33 \text{ nC} \quad \checkmark$$