

Name: _____

Recitation Instructor: Draskovic Helal Ruggiero Wolfe

Problem 1 [25 points]. The current through the leftmost 200Ω resistor is 20 mA.

(a) [10 points]. Find the equivalent resistance of the resistors in the circuit.

(b) [15 points]. What is the battery voltage, V ?

$$V - i_6 R_6 - i_5 R_5 = 0$$

$$R_{12} = R_1 + R_2 = 200\Omega$$

$$V = i_6 R_6 + i_5 R_5$$

$$R_{123} = \left(\frac{1}{R_{12}} + \frac{1}{R_3} \right)^{-1} = 100\Omega$$

$$i_5 = 20\text{ mA}$$

$$R_{1234} = R_{123} + R_4 = 200\Omega$$

R_5 is \parallel to R_{1234}

$$R_{12345} = \left(\frac{1}{R_{1234}} + \frac{1}{R_5} \right)^{-1} = 100\Omega$$

since $R_5 = R_{1234}$

$$R_{\text{eq}} = R_6 + R_{12345} = \boxed{500\Omega}$$

$$i_{1234} = 20\text{ mA}$$

node rule

$$i_6 = 40\text{ mA}$$

$$V = (.04\text{ A})400\Omega + (.02\text{ A})200\Omega$$

$$= 20\text{ V}$$

Name: _____

Recitation Instructor: Draskovic Helal Ruggiero Wolfe

Problem 2 [25 points]. $E_1 = 20V$, $E_2 = 10V$, $E_3 = 5.0V$, $E_4 = 5.0V$ and $R_1 = R_2 = R_3 = R_4 = 1000 \Omega$.

I am only asking questions about selected components. Read each question carefully so you solve for the correct quantity.

(a) [18 points] What is the current magnitude and direction through resistors R_1 , R_2 , and R_4 .

Label your answers clearly, specifying the direction as either "left" or "right", as appropriate.

(b) [7 points] How much power is being supplied by battery E_1 ?4 pts for current
2 pts for each direction

(a) $E_1 - i_1 R_1 = 0$

$i_1 = \frac{E_1}{R_1} = \frac{20V}{1000\Omega} = 0.02A$ left through R_1

$E_3 - i_2 R_2 - E_2 = 0$

$i_2 = \frac{E_3 - E_2}{R_2} = \frac{5V}{1000\Omega} = 0.005 A$ right through R_2

$E_4 + E_1 + E_3 - i_4 R_4 = 0$

$i_4 = \frac{E_4 + E_1 + E_3}{R_4} = \frac{30V}{1000\Omega} = 0.03 A$ left through R_4

(b) $i_{E_1} = i_1 + i_4 = 0.05A$ (in the natural direction for a battery supplying power)

$P_{E_1} = i_{E_1} E_1 = (0.05A)(20V) = 1W$

No more than 1 point total
was taken off for units

0 pts if you set

 i_{E_1} = current through any resistor (must use anode)

the problem breaks into Two Parts:

1) Find C_{EG} 2) Find V_{AB} so we can get U .

①

$$\text{parallel: } 5\mu\text{F} + 10\mu\text{F} = 15\mu\text{F}$$

$$\text{parallel: } 7\mu\text{F} + 13\mu\text{F} = 20\mu\text{F}$$

$$\text{series: } 1/15\mu\text{F} + 1/20\mu\text{F} = 1/60\mu\text{F}$$

$$C_{EG} = \frac{60}{7}\mu\text{F} = 8.571\mu\text{F}$$

5 Points

②

$$\text{"Long Time" } \Rightarrow [I_{cap} = 0] \text{ 5 points}$$

Outside Loop (Counter clockwise current)

$$30V - I_{left} \cdot 400\Omega - I_{right} \cdot 400\Omega - 10V = 0$$

$$\text{Node B: } I_{left} = I_{right} + I_{cap} = I_{right} + 0$$

$$I_{left} = I_{right} = I$$

$$\rightarrow I = \frac{30 - 10}{200\Omega + 400\Omega} = \frac{1}{60} \text{ Amp} = 0.025 \text{ Amps} \text{ 5 points}$$

Walk from A to B:

$$\text{Left Branch: } V_{AB} = 30 - (0.025) 400 = 20V \text{ 5 points}$$

$$\text{Right Branch: } V_{AB} = 10 + (0.025) 400 = 20V \text{ 5 points}$$

Note: You go from A to B through R_{right}

Against the current

$$U = \frac{1}{2} \left(\frac{60}{7} \times 10^{-6} \text{ F} \right) (20V)^2 = 1.71 \times 10^{-3} \text{ Joule}$$

5 Points

Name: _____

Recitation Instructor: Draskovic Helal Ruggiero Wolfe

Multiple Choice Section. Circle the best answer to each question.

Problem 5 [15 points]. Three large, equally spaced, conducting plates are connected to batteries or ground as shown in cross-section in the figure. The plates are not directly connected to each other. An x-axis is given, as well. Note carefully the orientation and voltage of the batteries.

(a) [5 points]. The charge on the right side of the middle plate is: **positive** **zero** **negative**

(Hint: You might want to sketch the charge on the other plates, first.)

(b) [10 points]. Circle the graph which best represents E_x along the x-axis. The shaded regions of the graphs indicate where the conducting plates are.

Figure showing the conducting plates (big grey rectangles).

This answer was given 5pts
partial credit.

Problem 6 [5 points]. Resistors A and B are both made of aluminum and in the shape of a cylinder. Resistor A is 100Ω . Resistor B has twice the radius and twice the length of A. Its resistance is:

(a) 25Ω **(a) 50Ω** (a) 100Ω (a) 200Ω (a) 400Ω

$$R_A = \rho L / A = 100 \Omega$$

$$R_B = \rho(2L)/(4A) = \frac{1}{2} R = 50 \Omega$$

Problem 7 [5 points]. Circle each statement that is true for typical experience. More than one statement might be true, or none of them might be true.

“ 1Ω is a small resistance.”

“ $1 F$ is a small capacitance.”

“ 1 V/m is a small electric field.”