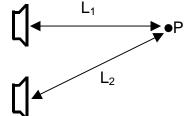

SAMPLE FIRST MIDTERM

Problem 1. A spring/block harmonic oscillator is oscillating with amplitude x_m . The block has mass m. At time t=0, the block is at its equilibrium point with kinetic energy K, moving in the negative x direction.

- Use: $x_m = 0.10 \text{ m}$, m = 4.0 kg, K = 2.0 J.
- (a) What is the spring constant?
- **(b)** What is the frequency of oscillation?

Problem 2. A longitudinal sound wave is propagating in the positive x direction. Let the pressure difference with respect to room pressure be written as Δp , as usual. Write an equation for the wave, $\Delta p(x, t)$, given the following information:

At t=0, $\Delta p=0$ at x=0 and x=0.050, but not in between these locations. $\Delta p_{max}=0.20$


Here time, position, and pressure are in standard SI units: seconds, meters, and pascal.

Problem 3. A string is oscillating as a standing wave at the 4th harmonic, with nodes on each end. The frequency is f, the string length is L, and the amplitude at the anti-nodes is A.

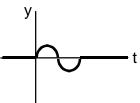
- (a) Sketch a picture of the string when the anti-nodes are at their largest amplitude.
- **(b)** What is the amplitude of the oscillation at a distance L/10 from one of the nodes?

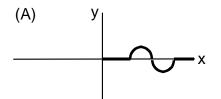
SAMPLE FIRST MIDTERM

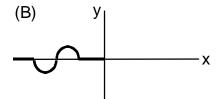
Problem 4. Two speakers are oscillating at frequency f, but out of phase with respect to each other by π . One is a distance L_1 from point P, and the other is a distance L_2 . What are the lowest two frequencies such that the intensity will be a minimum at P?

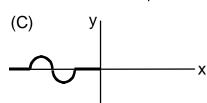
Use: $L_1 = 100 \text{ m}$, $L_2 = 110 \text{ m}$.

Problem 5. A person is between two speakers. In the reference frame of each speaker, the oscillation frequency is f. Both speakers are moving with speed v_s .






Use: f = 1000 Hz, $v_s = 3.0 \text{ m/s}$.


- (a) What is the beat frequency if both speakers are moving to the right?
- **(b)** What is the beat frequency if both speakers are moving toward the person?

Problem 6. The graph to the right shows the time variation of a wave pulse that consists of a single cycle of a sine wave at x = 0. The wave is propagating in the <u>-x direction</u>. Select the letter of the graph that best shows the spatial variation of the wave pulse after some time has passed.

