Aberrations

Figure Sources

- 1. Thor Labs (an optical hardware and optics company well known in the lab)
 Good figures from their catalog. There's also discussion. Go to the bottom of:
 http://www.thorlabs.com/NewGroupPage9_PF.cfm?Guide=10&Category_
 ID=220&ObjectGroup ID=3208
- 2. Olympus America (among other things, a medical imaging firm)
 I took figures from here:
 http://www.olympusmicro.com/primer/lightandcolor/opticalaberrations.html
 Part of a larger resource that appears to be vast, with great figures:
 http://www.olympusmicro.com/index.html.
- 3. TVTechnology (don't know anything about this e-zine)
 This is a discussion on why small cameras work so well. It's odd given how simple they are. I took some figures from this, as well.
 http://www.tvtechnology.com/article/the-small-format-hd-quality-puzzle/202348

Axial Chromatic Aberration

Credit: (2)

White Light Red Light
Optical Axis
Simple Green (Red Light)
Thin Lens
Figure 1

There is also transverse aberration: different colors having different magnifications.

Axial Chromatic Aberration

Spherical Aberration

Credit: (1)

Coma

Astigmatism

Credit: (1)

Credit: (2)

Field Curvature

Credit: (1)

Distortion

Credit: (1)

Contrast with another view of astigmatism (I) and coma (r).

Credit: (3)

