
Homework Set #5 Due: 2-20-12

(1) Text 5.8.

Always include a quick sketch of what the stable mode looks like for
problems like this. For example, for a symmetric cavity close to confocal,
you could simply draw something like:

(2) Text 5.11.

(3) Text 5.14.

Assume a symmetric confocal cavity.
As discussed in lecture, Siegman has a nice treatment of sensitivity to misalignment.

(4) Text 5.15.

My answer differs from the text by a factor of 4 and the denominator should be w3, not w2.



5) The Etalon.

In this problem you’ll derive the basic properties of a Fabry-Perot etalon. There are many different types of etalon, but
this problem captures the essentials. Etalons are most commonly used for spectral measurement, but they are also used
for spectral shaping in laser systems, particularly narrow line lasers, but also short pulse lasers. A laser cavity is itself
an etalon, so this problem will help aid our understanding of laser operation. The main goal here, however, is simply to
get a physical feel for what an etalon is and how it acts as a spectral filter by using wave interference. This is a classic
problem and there are plenty of references (including me!). Note, there is an alternate solution that simply involves
matching boundary conditions between fields inside and outside the etalon. Feel free to take that approach if you like.

In the figure, light of wavelength  is
incident on a rectangular medium of
index n with flat, parallel sides and
dimensions as shown. A medium in this
shape is often called a “window” or a
“flat”. There is no absorption, but both
sides of the flat are coated so that the
electric field reflectivity of each face is r
and r’. Thus, if A is the complex electric
field magnitude of an incident plane
wave, Areflected = r * Aincident, for the left
face. Likewise, the electric field
transmissions are t and t’. For this
problem, assume that r = r’, t = t’, there
is no absorption (so r2+t2=1) and there is
no phase shift due to reflection at an
interface. The last is clearly wrong, but
these assumptions do not throw away any interesting physics and simplify the math.

(i) We can write A1 = t2 Ai. Likewise A2 can be written as A2 = C ei Ai. The factor ei accounts
for the phase shift between the outgoing fields A1 and A2 because of the extra path length
traveled for A2. Find C and in terms for t,r,n,l,,. Explain why (or if) I am allowed to
neglect the phase shift in my expression for A1.

(ii) Write the total transmitted field, At, as an infinite series of terms: At = A1 + A2 + …
This series converges to a finite result, so find a simple analytic expression for At.

(iii) Show that the fractional transmitted power, T = |At|
2 / |Ai|
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R is the reflection coefficient for the intensity.

(iv) The transmission is periodic in frequency. In other words, light with a frequency of:

  mn

will be completely transmitted with no reflection losses, even if R = 99.999%!  is called
the free spectral range (FSR). Find the FSR. Sketch T versus frequency.

(v) Sketch the transmission function over several free spectral ranges for two values of F: F1 and
F2 where F1 < F2. Convince yourself that F determines the “bandpass” of the etalon.
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