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This work proposes a new approach to modeling psycholinguistic time series — deconvolutional
time series regression (DTSR) — and applies it to existing datasets in order to show that temporal
diffusion of effects may play a major role in subject behavior that existing modeling approaches do
not fully account for. Although time series are abundant in psycholinguistic data, popular modeling
techniques like linear mixed-effects regression (LME) [3, 4, 10, 8] and generalized additive models
(GAM) [9] make strong temporal independence assumptions. A standard approach for handling
the possibility of temporal diffusion or delay is to use spillover regressors, where a regressor
value is used to predict the dependent variable at some later point in the time series. But this
strategy has several undesirable properties. First, the modeled spillover positions are assumed
as part of the model architecture rather than learned from data. Second, the use of relative event
indices obscures potentially important details about the actual amount of time passed between
events. And third, including multiple spillover positions per predictor quickly leads to a parametric
explosion, especially if fully-articulated random effects structures are used.

DTSR avoids these pitfalls by learning impulse response functions (IRF) of the history of inde-
pendent variable values rather than linear weights for the values at a particular timestep. Specifi-
cally, given an assumed parameterizable functional form for the IRF, DTSR learns best-fit convolu-
tional parameters that mediate the relationship between two signals: the independent variable(s)
on the one hand, and the dependent variable on the other. This procedure produces fine-grained
estimates of the timecourse of each regressor’s influence on the dependent measure.’

This work applies DTSR to an existing self-paced reading (SPR) corpus (Natural Stories [6])
and two existing eye-tracking corpora (Dundee [7] and UCL [5]). Both Natural Stories and Dundee
contain long time series (stories/articles), while UCL contains short time series (isolated sen-
tences). Modeled variables include sentence position, series position, word length, 5-gram sur-
prisal, and PCFG surprisal. The DTSR models also include a rate predictor equal to 1 at each
fixation? and apply a Gaussian convolution to all predictors but sentence position and series posi-
tion. Results are shown in Figure 1. Loss improvement on unseen data of DTSR over LME and
GAM models, pooled across corpora, is highly significant by permutation test (p < 1le — 4 for all six
competitors, the smallest detectible value using 10,000 resampling iterations).

Four important generalizations emerge from these results. First, for Natural Stories and Dundee
(but not UCL), DTSR produces a substantially better predictive model of reading than either LME
or GAM, suggesting that it is indeed history modeling that drives the performance improvement.
Second, the non-linguistic variables rate and saccade length dominate model estimates and are
assigned larger influences than those typically observed in broad-coverage LME estimates [8].
Third, the large negative estimates for rate are likely capturing inertial characteristics (fast read-
ing in the past engenders fast reading in the future). And fourth, while 5-gram surprisal emerges
as a strong predictor in eye-tracking (Dundee/UCL), the large prediction improvement for Natural
Stories is driven almost entirely by rate. DTSR might thus be revealing inertial patterns in SPR
(habituation to repeated button presses) to which eye-tracking may be less susceptible. While it is
possible that different design decisions might change the relative importance of predictors, these
results support the hypothesis that temporal diffusion is a major potential confound in psycholin-
guistic time series that, if left uncontrolled, might lead researchers to draw incorrect conclusions.

"The goal of controlling for temporal diffusion is separate from but complementary to recent work [1, 2] on controlling
for auto-correlation and non-stationarity in psycholinguistic time series.

2Note that this variable is nonsensical for non-deconvolution regression approaches, since it is identical to the inter-
cept term. For this reason it was not included in competing models.
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Figure 1: Mean squared prediction error from DTSR vs. LME/GAM baseline models on the Natural Stories, Dundee, and UCL corpora.
Train and test losses are presented for various random effects structures, since differences can be diagnostic of overfitting. For history
modeling, each baseline system was tried with no spillover (noS), optimized spillover (optS) and full spillover 0-3 (fullS) of all predictors.
Each system was evaluated with no random effects (@), by-subject random intercepts (ls,r;), and by-subject random intercepts and
slopes (Ssupj)- Daggers indicate convergence failure. Missing GAM cells are because prediction from mixed models is not implemented
in mgcv. Plots show learned IRF from the Sg,; DTSR model for each dataset. Each curve shows the estimated influence on reading
latency over time of a single observation of 1 SD of the independent variable (e.g. for Dundee, 1 SD of 5-gram surprisal will incur about
35ms of slowdown at the current word and about 10ms of slowdown at a word observed 200ms later).

References

[1] Harald Baayen, Shravan Vasishth, Reinhold Kliegl, and Douglas Bates. The cave of shadows: Addressing the human factor with
generalized additive mixed models. Journal of Memory and Language, 94(Supplement C):206 — 234, 2017.

[2] R. Harald Baayen, Jacolien van Rij, Cecile de Cat, and Simon Wood. Autocorrelated errors in experimental data in the language
sciences: Some solutions offered by Generalized Additive Mixed Models. In Dirk Speelman, Kris Heylen, and Dirk Geeraerts,
editors, Mixed Effects Regression Models in Linguistics. Springer, Berlin, 2018.

[38] Vera Demberg and Frank Keller. Data from eye-tracking corpora as evidence for theories of syntactic processing complexity.
Cognition, 109(2):193—-210, 2008.

[4] Victoria Fossum and Roger Levy. Sequential vs. hierarchical syntactic models of human incremental sentence processing. In
Proceedings of CMCL 2012. Association for Computational Linguistics, 2012.

[6] Stefan L. Frank, Irene Fernandez Monsalve, Robin L. Thompson, and Gabriella Vigliocco. Reading time data for evaluating
broad-coverage models of English sentence processing. Behavior Research Methods, 45:1182-1190, 2013.

[6] Richard Futrell, Edward Gibson, Hal Tily, Anastasia Vishnevetsky, Steve Piantadosi, and Evelina Fedorenko. Natural stories
corpus. in prep.

[7] Alan Kennedy, James Pynte, and Robin Hill. The Dundee corpus. In Proceedings of the 12th European conference on eye
movement, 2003.

[8] Cory Shain, Marten van Schijndel, Richard Futrell, Edward Gibson, and William Schuler. Memory access during incremental
sentence processing causes reading time latency. In Proceedings of the Computational Linguistics for Linguistic Complexity
Workshop, pages 49-58. Association for Computational Linguistics, 2016.

[9] Nathaniel J. Smith and Roger Levy. The effect of word predictability on reading time is logarithmic. Cognition, 128:302-319,
2013.

[10] Marten van Schijndel and William Schuler. Hierarchic syntax improves reading time prediction. In Proceedings of NAACL-HLT
2015. Association for Computational Linguistics, 2015.



