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This talk in one slide

+ Temporal diffusion of effects can be a serious confound in psycholinguistic data

+ Modeling temporal diffusion is problematic with existing tools
+ Proposal:

+ Deconvolutional time series regression (DTSR)
+ Continuous-time mixed-effects deconvolutional regression model
+ Can be applied to any time series

+ Results:
+ Recovers known temporal structures with high fidelity
+ Finds plausible, replicable, and high-resolution estimates of temporal structure in reading

data

+ Documented open-source Python package supports easy adoption

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,
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Motivation

+ Time matters a lot in psycholinguistics
+ Psycholinguistic data are generated by people with brains
+ The brain is a dynamical system that responds to its environment in time
+ Most (all?) psycholinguistic data are underlyingly time series
+ The brain’s response to a stimulus may be slow (temporally diffuse)
+ Psycholinguistic measures may capture lingering response to preceding events
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Motivation

+ Signal processing provides a framework for capturing temporal diffusion
+ Stimuli and responses can be recast as convolutionally-related signals
+ Relation described by an impulse response function (IRF)
+ If we can discover the structure of the IRF (deconvolution), we can convolve predictors with it

to obtain a model of the response that takes diffusion directly into account
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Motivation

+ Deconvolution is hard for psycholinguistic time series
+ Major frameworks are discrete time

+ Finite impulse response models (FIR) (Dayal and MacGregor 1996)
+ Vector autoregression (VAR) (Sims 1980)

+ Why is this a problem? Variably-spaced events
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Motivation

+ “Distortionary solution” might look familiar

+ Spillover models like this are widely used in psycholinguistics (Erlich and Rayner 1983)
+ Problems with spillover

+ Ignores temporal localization of events, only retains relative order
+ May introduce multicolinearity
+ Difficult to motivate choice of spillover configuration
+ Prone to overfitting and non-convergence, especially with random effects
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Motivation

+ Deconvolution is hard for psycholinguistic time series

+ Failure to control for temporal diffusion can lead to misleading models
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Motivation

+ Shain et al. (2016): analysis of large SPR corpus (Futrell et al. 2018)

+ Significant effects of constituent wrap-up and dependency locality

+ First strong evidence of memory effects in broad-coverage sentence processing

+ Paper has a couple of citations

+ Accepted as a long-form talk at CUNY 2017
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Motivation

β-ms t-value p-value
Constituent wrap-up 1.54 8.15 2.33e-14
Dependency locality 1.10 6.48 4.87e-10

But after spilling over one baseline variable...

Constituent wrap-up: p = 0.816
Dependency locality: p = 0.370

Tiny tweak to timecourse modeling→ huge impact on hypothesis testing
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Motivation

Deconvolution of psycholinguistic timecourses is both difficult and important.
What should we do?
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Motivation

+ Continuous-time deconvolution would
+ Avoid discretizing time into lags
+ Support variably-spaced events
+ Support unsynchronized events
+ Apply without sparsity/distortion to any psycholinguistic time series
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Motivation

+ Until recently, continuous-time deconvolution was hard because non-linear in its
parameters

+ Estimators would have to be derived by hand
+ Derive likelihood function (depends on IRF)
+ Find its 1st and 2nd derivatives w.r.t. all parameters
+ Use derivatives to compute maximum likelihood estimators
+ Repeat for new model

+ Recent developments in machine learning allow us to avoid this through
autodifferentiation and stochastic optimization
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Proposal: Deconvolutional Time Series Regression

+ Jointly fits:
+ Continuous-time parametric IRFs for each predictor
+ Linear model on convolved predictors

+ Uses autodifferentiation and gradient-based

+ Applies to any time series using any set of parametric IRF kernels optimization

+ Provides an interpretable model that directly estimates temporal diffusion

+ O(1) model complexity on num. timesteps
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Proposal: Deconvolutional Time Series Regression

+ Expands range of application of deconvolutional modeling (e.g. to reading)

+ Provides high-resolution estimates of temporal dynamics
+ Documented open-source Python package supports

+ Mixed effects modeling (intercepts, slopes, and IRF parameters)
+ Various IRF kernels (and more coming)
+ Non-parametric IRFs through spline kernels
+ Composition of IRF kernels
+ MLE, Bayesian, and variational Bayesian inference modes

+ https://github.com/coryshain/dtsr
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DTSR Implementation Used Here

+ ShiftedGamma IRF kernel

f(x;α, β, δ) =
βα(x − δ)α−1e−β(x−δ)

Γ(α)

+ Black box variational inference (BBVI)

+ Implemented in Tensorflow (Abadi et al. 2015) and Edward (Tran et al. 2016)
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Synthetic Evaluation

+ Sanity check: Can DTSR recover known IRFs?

+ Generate data from a model with known convolutional structure

+ Fit DTSR to that data and compare estimates to ground truth
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Synthetic Evaluation

Ground truth Estimated

ρ = 0
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Synthetic Evaluation

Ground truth Estimated

ρ = 0.25
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Synthetic Evaluation

Ground truth Estimated

ρ = 0.5
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Synthetic Evaluation

Ground truth Estimated

ρ = 0.75
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Synthetic Evaluation

+ DTSR can recover known IRFs with high fidelity

+ Estimates are robust to multicolinearity
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Naturalistic Evaluation: Reading Times

+ Datasets:
+ Natural Stories (SPR) (Futrell et al. 2018)
+ Dundee (ET) (Kennedy, Pynte, and Hill 2003)
+ UCL (ET) (Frank et al. 2013)
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Naturalistic Evaluation: Reading Times

+ Convolved predictors
+ Saccade length (eye-tracking only)
+ Word length
+ Unigram logprob
+ 5-gram surprisal
+ Rate (DTSR only)

+ Linear predictors
+ Sentence position
+ Trial

+ Response: Log reading times (go-past for eye-tracking)
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Naturalistic Evaluation: Reading Times

+ More on Rate:
+ Rate predictor is an intercept (vector of 1’s) that gets convolved with an IRF
+ Captures effects of stimulus timing independently of stimulus properties
+ Only detectable through deconvolution
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Naturalistic Evaluation: Fitted IRF
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Large negative influence of Rate (convolved intercept) suggests inertia
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Naturalistic Evaluation: Fitted IRF
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Top-down response slower than bottom-up (surp vs. word/sac. len) (Friederici 2002)
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Naturalistic Evaluation: Fitted IRF
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Null influence of unigram logprob (c.f. e.g. Levy 2008; Staub 2015)
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Naturalistic Evaluation: System Comparison

Natural Stories Dundee UCL

Mean squared prediction error (MSPE), DTSR vs. competitors
LME (blue); LME-S (orange); GAM (green); GAM-S (red); DTSR (purple)
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Naturalistic Evaluation: Summary

+ Estimated IRFs shed new light on temporal dynamics in naturalistic reading

+ Estimates are plausible, replicable, and fine-grained

+ Models show high quality prediction performance, validating IRFs
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Hypothesis Testing

So how do I test a claim using DTSR?
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Hypothesis Testing

+ DTSR stochastically optimizes over a non-convex likelihood surface
+ Nearly ubiquitous property of modern machine learning algorithms
+ Introduces possibility of estimation noise

+ Convergence to a non-global optimum
+ Imperfect convergence to an optimum
+ Evaluation using Monte Carlo sampling (Bayesian only)

+ Estimates and training predictions/likelihoods are not guaranteed to be globally optimal

+ Differences between models may be influenced artifacts of fitting procedure
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Hypothesis Testing

+ Despite not being provably optimal
+ Synthetic results suggest DTSR does recover model near-optimally
+ We want to understand a non-linear and non-convex world
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Hypothesis Testing

+ Three frameworks for using DTSR in hypothesis tests
+ Directly compare DTSR models (permutation test)
+ Use DTSR to transform predictors as inputs to linear models (2-step test)
+ Use DTSR to (1) compute a Rate predictor and (2) motivate spillover structure
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Hypothesis Testing

+ Three frameworks for using DTSR in hypothesis tests
+ Directly compare DTSR models (permutation test)

+ Spirit: Machine learning “bakeoff”
+ Use DTSR to transform predictors as inputs to linear models (2-step test)

+ Spirit: Pre-convolution with canonical HRF in fMRI
+ Use DTSR to (1) compute a Rate predictor and (2) motivate spillover structure

+ Spirit: Exploratory data analysis
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Hypothesis Testing: Example

Test p-value
Permutation 9.99e-05***

2-Step TBD

In-sample test for effect of Surprisal in Natural Stories
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Other applications of DTSR

+ Other response measures: E.g. HRF deconvolution with naturalistic stimuli

+ 2D predictors: E.g. effects of word cosine similarities

+ Composed IRFs: E.g. separating neural and hemodynamic responses in fMRI

+ Spline kernels: E.g. response shape discovery

+ ...
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You too can DTSR!

Demo...
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Conclusion

+ DTSR
+ Provides plausible, replicable, and high resolution estimates of temporal dynamics
+ Affords new insights into the temporal dynamics of reading behavior
+ Recovers known ground-truth IRFs with high fidelity
+ Applies to variably-spaced time series
+ Can help avoid spurious findings due to poor control of temporal diffusion
+ Can be integrated into various hypothesis testing frameworks
+ Is supported by documented open-source software
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Thank you!
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Appendix: Synthetic data generation procedure

+ 10,000 data points 100ms apart

+ 20 randomly sampled covariates ∼ N(0, 1)

+ 20 unique coefficientsU(−50, 50)

+ 20 unique IRF
+ k ∼ U(1, 6)
+ θ ∼ U(0, 5)
+ δ ∼ U(0, 1)

+ Noise added ∼ N(0, 202)

+ DTSR history window clipped at 128 observations
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Appendix: Reading time experiments

+ Natural Stories (Futrell et al. 2018)
+ Constructed narratives, self-paced reading, 181 subjects, 485 sentences, 10,245 tokens,

848,768 fixation events
+ Post-processing: Removed sentence boundaries, events for which subjects missed 4+

comprehension questions and fixations < 100 ms or > 3000 ms.

+ Dundee (Kennedy, Pynte, and Hill 2003)
+ Newspaper editorials, eye-tracking, 10 subjects, 2,368 sentences, 51,502 tokens, 260,065

fixation events
+ Post-processing: Removed document, screen, sentence, and line boundaries

+ UCL (Frank et al. 2013)
+ Sentences from novels presented in isolation, eye-tracking, 42 subjects, 205 sentences,

1,931 tokens, 53,070 fixation events
+ Post-processing: Removed sentence boundaries
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Appendix: Reading time experiments

+ Baselines
+ LME (lme4) and GAM (mgcv)
+ By-subject intercepts and slopes
+ Spillover variants

+ No predictors spilled over
+ Spillover 0-3 for each predictor (-S)
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Appendix: Reading time experiments

+ Data split
+ Train (50%)
+ Dev (25%)
+ Test (25%)
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