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Temporal diffusion of effects can be a serious confound in psycholinguistic data
Modeling temporal diffusion is problematic with existing tools
Proposal:

Deconvolutional time series regression (DTSR)
Continuous-time mixed-effects deconvolutional regression model
Can be applied to any time series

Results:

Recovers known temporal structures with high fidelity

Finds plausible, replicable, and high-resolution estimates of temporal structure in reading
data

Documented open-source Python package supports easy adoption

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,
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The brain is a dynamical system that responds to its environment in time
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Motivation

Signal processing provides a framework for capturing temporal diffusion
Stimuli and responses can be recast as convolutionally-related signals
Relation described by an impulse response function (IRF)

If we can discover the structure of the IRF (deconvolution), we can convolve predictors with it
to obtain a model of the response that takes diffusion directly into account
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Motivation

Deconvolution is hard for psycholinguistic time series
Major frameworks are discrete time

Finite impulse response models (FIR) (Dayal and MacGregor 1996)
Vector autoregression (VAR) (Sims 1980)

Why is this a problem? Variably-spaced events

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,
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Variable spacing, A not fixed, can’t deconvolve
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Sparse solution: Add lots of coefficients.
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Sparse solution: Add lots of coefficients. A = 0.01, but few coefficients have data.

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,
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Distortionary solution: Delete temporal variation.
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Distortionary solution: Delete temporal variation. A uninterpretable, time model broken.

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,
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Motivation

“Distortionary solution” might look familiar

Spillover models like this are widely used in psycholinguistics (Erlich and Rayner 1983)
Problems with spillover

Ignores temporal localization of events, only retains relative order

May introduce multicolinearity

Difficult to motivate choice of spillover configuration

Prone to overfitting and non-convergence, especially with random effects

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,
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Motivation

-+ Deconvolution is hard for psycholinguistic time series
+ Failure to control for temporal diffusion can lead to misleading models

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,
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Motivation

Shain et al. (2016): analysis of large SPR corpus (Futrell et al. 2018)
Significant effects of constituent wrap-up and dependency locality

First strong evidence of memory effects in broad-coverage sentence processing
Paper has a couple of citations
Accepted as a long-form talk at CUNY 2017
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Motivation

| p-ms  t-value  p-value
Constituent wrap-up | 1.54 8.15 2.33e-14
Dependency locality | 1.10 6.48  4.87e-10

But after spilling over one baseline variable...

Gonstituentwrap-up: p = 0.816
Bependenecytoeality: p = 0.370

Tiny tweak to timecourse modeling — huge impact on hypothesis testing
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Motivation

Deconvolution of psycholinguistic timecourses is both difficult and important.
What should we do?
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Motivation

Continuous-time deconvolution would
Avoid discretizing time into lags
Support variably-spaced events
Support unsynchronized events
Apply without sparsity/distortion to any psycholinguistic time series
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Motivation

Until recently, continuous-time deconvolution was hard because non-linear in its
parameters
Estimators would have to be derived by hand

Derive likelihood function (depends on IRF)

Find its 15t and 2" derivatives w.r.t. all parameters

Use derivatives to compute maximum likelihood estimators

Repeat for new model
Recent developments in machine learning allow us to avoid this through
autodifferentiation and stochastic optimization

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,
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Proposal: Deconvolutional Time Series Regression

Jointly fits:
Continuous-time parametric IRFs for each predictor
Linear model on convolved predictors

Uses autodifferentiation and gradient-based

Applies to any time series using any set of parametric IRF kernels optimization
Provides an interpretable model that directly estimates temporal diffusion

O(1) model complexity on num. timesteps
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Proposal: Deconvolutional Time Series Regression

Expands range of application of deconvolutional modeling (e.g. to reading)

Provides high-resolution estimates of temporal dynamics
Documented open-source Python package supports

Mixed effects modeling (intercepts, slopes, and IRF parameters)
Various IRF kernels (and more coming)

Non-parametric IRFs through spline kernels

Composition of IRF kernels

MLE, Bayesian, and variational Bayesian inference modes

https://github.com/coryshain/dtsr
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DTSR Implementation Used Here

+ ShiftedGamma IRF kernel

ﬁa(X _ 5)01—1 e—ﬁ(x—é)

f(x;,B,6) = @
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DTSR Implementation Used Here

+ ShiftedGamma IRF kernel

ﬁa(X _ 6)0—1 e—ﬁ(x—é)
M(a)

f(x;@,B,6) =

+ Black box variational inference (BBVI)
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DTSR Implementation Used Here

+ ShiftedGamma IRF kernel

ﬁa(X _ 6)(1—1 e—ﬁ(x—é)

f(x;@,B,6) = @

+ Black box variational inference (BBVI)
-+ Implemented in Tensorflow (Abadi et al. 2015) and Edward (Tran et al. 2016)

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,



Synthetic Evaluation

+ Sanity check: Can DTSR recover known IRFs?
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Synthetic Evaluation

+ Sanity check: Can DTSR recover known IRFs?
-+ Generate data from a model with known convolutional structure
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Synthetic Evaluation

-+ Sanity check: Can DTSR recover known IRFs?
+ Generate data from a model with known convolutional structure
+ Fit DTSR to that data and compare estimates to ground truth
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Synthetic Evaluation
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Synthetic Evaluation
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Synthetic Evaluation
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Synthetic Evaluation
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Synthetic Evaluation
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Ground truth Estimated

p=0.75
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Synthetic Evaluation

+ DTSR can recover known IRFs with high fidelity
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Synthetic Evaluation

+ DTSR can recover known IRFs with high fidelity
-+ Estimates are robust to multicolinearity
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Naturalistic Evaluation: Reading Times

+ Datasets:
-+ Natural Stories (SPR) (Futrell et al. 2018)
+ Dundee (ET) (Kennedy, Pynte, and Hill 2003)
-+ UCL (ET) (Frank et al. 2013)
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Naturalistic Evaluation: Reading Times

+ Convolved predictors
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-+ Saccade length (eye-tracking only)
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Naturalistic Evaluation: Reading Times

+ Convolved predictors
-+ Saccade length (eye-tracking only)
-+ Word length
-+ Unigram logprob
+ 5-gram surprisal
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Naturalistic Evaluation: Reading Times

+ Convolved predictors
-+ Saccade length (eye-tracking only)
-+ Word length
-+ Unigram logprob
+ 5-gram surprisal
+ Rate (DTSR only)

-+ Linear predictors
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Naturalistic Evaluation: Reading Times

+ Convolved predictors
-+ Saccade length (eye-tracking only)
-+ Word length
-+ Unigram logprob
+ 5-gram surprisal
+ Rate (DTSR only)
-+ Linear predictors

-+ Sentence position
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Naturalistic Evaluation: Reading Times

+ Convolved predictors
-+ Saccade length (eye-tracking only)
-+ Word length
 Unigram logprob
- 5-gram surprisal
+ Rate (DTSR only)
I Linear predictors

- Sentence position
f Trial
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Naturalistic Evaluation: Reading Times

+ Convolved predictors

-+ Saccade length (eye-tracking only)
-+ Word length
 Unigram logprob
- 5-gram surprisal
+ Rate (DTSR only)
I Linear predictors

- Sentence position
f Trial

+ Response: Log reading times (go-past for eye-tracking)
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Naturalistic Evaluation: Reading Times

-+ More on Rate:
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Naturalistic Evaluation: Reading Times

+ More on Rate:
-+ Rate predictor is an intercept (vector of 1’s) that gets convolved with an IRF
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Naturalistic Evaluation: Reading Times

-+ More on Rate:

-+ Rate predictor is an intercept (vector of 1’s) that gets convolved with an IRF
-+ Captures effects of stimulus timing independently of stimulus properties
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Naturalistic Evaluation: Reading Times

-+ More on Rate:

-+ Rate predictor is an intercept (vector of 1’s) that gets convolved with an IRF
+ Captures effects of stimulus timing independently of stimulus properties
- Only detectable through deconvolution
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Naturalistic Evaluation: Fitted IRF

Self-Paced Reading
Natural Stories
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Naturalistic Evaluation: Fitted IRF

Self-Paced Reading
Natural Stories
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Naturalistic Evaluation: Fitted IRF

Self-Paced Reading Eye-Tracking
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Naturalistic Evaluation: Fitted IRF

Fixation duration (log ms)

Self-Paced Reading
Natural Stories
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Naturalistic Evaluation: Fitted IRF

Self-Paced Reading
Natural Stories
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Naturalistic Evaluation: Fitted IRF
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Naturalistic Evaluation: System Comparison
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Naturalistic Evaluation: Summary

+ Estimated IRFs shed new light on temporal dynamics in naturalistic reading
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Naturalistic Evaluation: Summary

+ Estimated IRFs shed new light on temporal dynamics in naturalistic reading
-+ Estimates are plausible, replicable, and fine-grained
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Naturalistic Evaluation: Summary

-+ Estimated IRFs shed new light on temporal dynamics in naturalistic reading
-+ Estimates are plausible, replicable, and fine-grained
+ Models show high quality prediction performance, validating IRFs
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Hypothesis Testing

So how do | test a claim using DTSR?
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Hypothesis Testing

-+ DTSR stochastically optimizes over a non-convex likelihood surface
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Hypothesis Testing

-+ DTSR stochastically optimizes over a non-convex likelihood surface
-+ Nearly ubiquitous property of modern machine learning algorithms
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Hypothesis Testing

-+ DTSR stochastically optimizes over a non-convex likelihood surface

-+ Nearly ubiquitous property of modern machine learning algorithms
+ Introduces possibility of estimation noise
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Hypothesis Testing

+ DTSR stochastically optimizes over a non-convex likelihood surface

-+ Nearly ubiquitous property of modern machine learning algorithms
+ Introduces possibility of estimation noise

+ Convergence to a non-global optimum
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Hypothesis Testing

-+ DTSR stochastically optimizes over a non-convex likelihood surface

-+ Nearly ubiquitous property of modern machine learning algorithms
+ Introduces possibility of estimation noise

+ Convergence to a non-global optimum
+ Imperfect convergence to an optimum
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Hypothesis Testing

DTSR stochastically optimizes over a non-convex likelihood surface

Nearly ubiquitous property of modern machine learning algorithms
Introduces possibility of estimation noise

Convergence to a non-global optimum

Imperfect convergence to an optimum

Evaluation using Monte Carlo sampling (Bayesian only)
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Hypothesis Testing

DTSR stochastically optimizes over a non-convex likelihood surface

Nearly ubiquitous property of modern machine learning algorithms
Introduces possibility of estimation noise

Convergence to a non-global optimum
Imperfect convergence to an optimum
Evaluation using Monte Carlo sampling (Bayesian only)

Estimates and training predictions/likelihoods are not guaranteed to be globally optimal
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Hypothesis Testing

DTSR stochastically optimizes over a non-convex likelihood surface

Nearly ubiquitous property of modern machine learning algorithms
Introduces possibility of estimation noise

Convergence to a non-global optimum
Imperfect convergence to an optimum
Evaluation using Monte Carlo sampling (Bayesian only)

Estimates and training predictions/likelihoods are not guaranteed to be globally optimal
Differences between models may be influenced artifacts of fitting procedure
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Hypothesis Testing

+ Despite not being provably optimal
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Hypothesis Testing

+ Despite not being provably optimal
-+ Synthetic results suggest DTSR does recover model near-optimally
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Hypothesis Testing

+ Despite not being provably optimal

-+ Synthetic results suggest DTSR does recover model near-optimally
-+ We want to understand a non-linear and non-convex world
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Hypothesis Testing

+ Three frameworks for using DTSR in hypothesis tests

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,



Hypothesis Testing

+ Three frameworks for using DTSR in hypothesis tests
-+ Directly compare DTSR models (permutation test)
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Hypothesis Testing

+ Three frameworks for using DTSR in hypothesis tests

-+ Directly compare DTSR models (permutation test)
-+ Use DTSR to transform predictors as inputs to linear models (2-step test)
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Hypothesis Testing

Three frameworks for using DTSR in hypothesis tests

Directly compare DTSR models (permutation test)
Use DTSR to transform predictors as inputs to linear models (2-step test)
Use DTSR to (1) compute a Rate predictor and (2) motivate spillover structure
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Hypothesis Testing

Three frameworks for using DTSR in hypothesis tests
Directly compare DTSR models (permutation test)
Spirit: Machine learning “bakeoff”
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Hypothesis Testing

Three frameworks for using DTSR in hypothesis tests
Directly compare DTSR models (permutation test)
Spirit: Machine learning “bakeoff”
Use DTSR to transform predictors as inputs to linear models (2-step test)
Spirit: Pre-convolution with canonical HRF in fMRI
Use DTSR to (1) compute a Rate predictor and (2) motivate spillover structure
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Hypothesis Testing

Three frameworks for using DTSR in hypothesis tests
Directly compare DTSR models (permutation test)
Spirit: Machine learning “bakeoff”
Use DTSR to transform predictors as inputs to linear models (2-step test)
Spirit: Pre-convolution with canonical HRF in fMRI
Use DTSR to (1) compute a Rate predictor and (2) motivate spillover structure
Spirit: Exploratory data analysis
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Hypothesis Testing: Example

Test | p-value
Permutation | 9.99e-05"**
o-Step | TBD

In-sample test for effect of Surprisal in Natural Stories
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Other applications of DTSR

-+ Other response measures: E.g. HRF deconvolution with naturalistic stimuli
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Other applications of DTSR

t Other response measures: E.g. HRF deconvolution with naturalistic stimuli
+ 2D predictors: E.g. effects of word cosine similarities
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Other applications of DTSR

Other response measures: E.g. HRF deconvolution with naturalistic stimuli
2D predictors: E.g. effects of word cosine similarities
Composed IRFs: E.g. separating neural and hemodynamic responses in fMRI
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Other applications of DTSR

Other response measures: E.g. HRF deconvolution with naturalistic stimuli
2D predictors: E.g. effects of word cosine similarities

Composed IRFs: E.g. separating neural and hemodynamic responses in fMRI
Spline kernels: E.g. response shape discovery
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Other applications of DTSR

Other response measures: E.g. HRF deconvolution with naturalistic stimuli
2D predictors: E.g. effects of word cosine similarities

Composed IRFs: E.g. separating neural and hemodynamic responses in fMRI
Spline kernels: E.g. response shape discovery

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,



You too can DTSR!

Demo...
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Conclusion

+ DTSR
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Conclusion

+ DTSR
+ Provides plausible, replicable, and high resolution estimates of temporal dynamics
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+ Affords new insights into the temporal dynamics of reading behavior

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,



Conclusion

DTSR

Provides plausible, replicable, and high resolution estimates of temporal dynamics
Affords new insights into the temporal dynamics of reading behavior
Recovers known ground-truth IRFs with high fidelity

Shain & Schuler (2018). Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018.,



Conclusion
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Provides plausible, replicable, and high resolution estimates of temporal dynamics

Affords new insights into the temporal dynamics of reading behavior
Recovers known ground-truth IRFs with high fidelity
Applies to variably-spaced time series
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Conclusion

DTSR
Provides plausible, replicable, and high resolution estimates of temporal dynamics
Affords new insights into the temporal dynamics of reading behavior
Recovers known ground-truth IRFs with high fidelity
Applies to variably-spaced time series
Can help avoid spurious findings due to poor control of temporal diffusion
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Conclusion

DTSR
Provides plausible, replicable, and high resolution estimates of temporal dynamics
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Recovers known ground-truth IRFs with high fidelity
Applies to variably-spaced time series
Can help avoid spurious findings due to poor control of temporal diffusion
Can be integrated into various hypothesis testing frameworks
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Conclusion

DTSR
Provides plausible, replicable, and high resolution estimates of temporal dynamics
Affords new insights into the temporal dynamics of reading behavior
Recovers known ground-truth IRFs with high fidelity
Applies to variably-spaced time series
Can help avoid spurious findings due to poor control of temporal diffusion
Can be integrated into various hypothesis testing frameworks
Is supported by documented open-source software
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Thank you!
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Appendix: Synthetic data generation procedure

10,000 data points 100ms apart
20 randomly sampled covariates ~ N(0, 1)
20 unique coefficients U(-50,50)
20 unique IRF
- k~U(1,6)
+ 0~U(0,5)
1+ 6 ~U0,1)
+ Noise added ~ N(0,202)
+ DTSR history window clipped at 128 observations

+ 4+ + +
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Appendix: Reading time experiments

Natural Stories (Futrell et al. 2018)
Constructed narratives, self-paced reading, 181 subjects, 485 sentences, 10,245 tokens,
848,768 fixation events
Post-processing: Removed sentence boundaries, events for which subjects missed 4+
comprehension questions and fixations < 100 ms or > 3000 ms.

Dundee (Kennedy, Pynte, and Hill 2003)
Newspaper editorials, eye-tracking, 10 subjects, 2,368 sentences, 51,502 tokens, 260,065
fixation events
Post-processing: Removed document, screen, sentence, and line boundaries

UCL (Frank et al. 2013)
Sentences from novels presented in isolation, eye-tracking, 42 subjects, 205 sentences,
1,931 tokens, 53,070 fixation events
Post-processing: Removed sentence boundaries
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Appendix: Reading time experiments

-+ Baselines

+ LME (1me4) and GAM (mgcv)
-+ By-subject intercepts and slopes
-+ Spillover variants

-+ No predictors spilled over
+ Spillover 0-3 for each predictor (-S)
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Appendix: Reading time experiments

+ Data split
+ Train (50%)
+ Dev (25%)
+ Test (25%)
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