Localizing incremental linguistic prediction in the mind

Cory Shain, 5/7/2019

*co-first author
Human sentence processing is incremental and predictive

- Visual world (Tanenhaus et al., 1995)
- Electrophysiological (Kutas & Hillyard, 1984)
- Reading (Smith & Levy, 2013)
Human sentence processing is incremental and predictive

- What is being predicted?
- What purpose does prediction serve?
- What neural mechanisms support linguistic prediction?
Is linguistic prediction domain-specific or domain-general?

- (Primarily) domain-specific (DS):
 - We know some predictive coding is local (Singer et al., 2018)
 - Predictive coding for language might also be implemented by domain-specific circuits
Is linguistic prediction domain-specific or domain-general?

- **(Primarily) domain-general (DG):**
 - Many have argued that linguistic prediction is carried out by domain-general executive resources (Smith & Levy, 2013; Huettig & Mani, 2016; Pickering & Gambi, 2018)
 - Prediction effects modulated by individual and group level differences in executive function (Federmeier et al., 2002; Martin et al., 2013, Gambi et al., 2018, inter alia)
 - Cf. Ryskin et al. (under review)
 - Domain-general executive involvement in language processing (Kaan & Swaab, 2002; January et al., 2009)
 - Prediction effects across tasks and species (Smith & Levy, 2013)
Is linguistic prediction domain-specific or domain-general?

- Both DS and DG hypotheses rely on notion of *generality*
 - **DG:** Predictive mechanism is domain-general
 - Unified mechanism predicts, specialized mechanisms query it
 - **DS:** Learning mechanism is domain-general
 - Specialized mechanisms predict, and learn to do so under general plasticity rules
Measuring predictive coding via surprisal

- Predictive coding should evoke a predictability response
 - Greater effort for less predictable stimuli
- Predictability can be quantified via *surprisal* (Shannon, 1948; Hale, 2001)
 - Negative log probability of events given context
- Search for networks where surprisal modulates neural response
Measuring predictive coding via surprisal

- Surprisal by what model?
- Previous fMRI studies have used “syntactic” surprisal (Henderson et al., 2016) or unlexicalized (PoS) n-gram surprisal (Brennan et al., 2016)
- Best-attested behavioral effects are for lexicalized n-gram surprisal (Frank & Bod, 2011; Smith & Levy, 2013)
 - Surprise broadly construed, abstracting away from structure
- **This study:** Lexicalized n-grams (5-grams)
Localizing surprisal effects in the brain

- Domain-specific:
 - **LANG**: Fronto-temporal language network (Fedorenko et al., 2010)
 - Prediction: Surprisal effects should primarily reside in LANG

- Domain-general:
 - **MD**: Fronto-parietal multiple-demand network (Duncan, 2010)
 - Supports top-down executive functions
 - Response modulated by cognitive effort (Duncan & Owen, 2000)
 - Argued to relay predictive signals to other regions (Strange et al., 2005)
 - Prediction: Surprisal effects should primarily reside in MD
Localizing surprisal effects in the brain

- Not possible with behavioral or EEG studies
- Subject to task artifacts from constructed stimuli (Miller & Cohen, 2001; Hasson & Honey, 2012; Campbell & Tyler, 2018)
- Best studied using Naturalistic fMRI
 - Few fMRI studies of naturalistic language processing
 - Even fewer that explore lexicalized surprisal (Brennan et al., 2016; Willems et al., 2015; Lopopolo et al., 2017)
 - Mixed evidence for (1) existence and (2) location of lexicalized n-gram surprisal
This study: Test DS vs. DG by comparing surprisal effects in LANG vs. MD in fMRI measures of subjects listening to natural language.
Methods: Data

- Stimuli from the Natural Stories corpus (Futrell et al., 2018)
- Auditory presentation (1 female speaker, 1 male)
- 78 subjects (30 males)
Methods: Defining LANG and MD

- LANG and MD defined with by-participant functional localization (Fedorenko et al., 2010)
- Independent localizer task (passive or probe)
- Sentence vs. non-word list conditions
- Functional regions of interest (fROIs) selected by
 - Masking
 - Selecting top 10% voxels within each mask
(A) Group-based masks

(B) Overlap: localizer contrast effect

(C) Overlap: fROIs

(D) Examples of participant-specific fROIs:
Methods: Defining LANG and MD

- LANG contrast: Sent > Nonword (Fedorenko & Thompson-Schill, 2014)
- MD contrast: Nonword > Sent (Fedorenko et al., 2013; Mineroff et al., 2018)
Methods: Defining LANG and MD

- 6 LANG fROIs (left hemisphere only):
 - Inferior frontal gyrus (IFG)
 - Orbital part of inferior frontal gyrus (IFGorb)
 - Middle frontal gyrus (MFG)
 - Anterior temporal cortex (AntTemp)
 - Posterior temporal cortex (PostTemp)
 - Angular gyrus (AngG)
Methods: Defining LANG and MD

- 10 MD fROIs (each hemisphere):
 - Posterior parietal cortex (PostPar)
 - Middle parietal cortex (MidPar)
 - Anterior parietal cortex (AntPar)
 - Precentral gyrus (PrecG)
 - Superior frontal gyrus (SFG)
 - Middle frontal gyrus (MFG)
 - Orbital part of middle frontal gyrus (MFGorb)
 - Opercular part of inferior frontal gyrus (IFGop)
 - Anterior cingulate cortex and pre-supplementary motor cortex (ACC/pSMA)
 - Insula
Methods: Naturalistic fMRI modeling

- Naturalistic language stimuli are a problem for event-based stats methods in fMRI
 - Events (words) are variably spaced, don't align with scan times
Methods: Naturalistic fMRI modeling

- Established solutions are problematic
 - Canonical HRF (Brennan et al., 2016)
 - Inflexible
 - Can’t account for regional variation (Handwerker et al., 2004)
 - Binned averaging (Wehbe et al., in prep)
 - Distorts event timestamps
 - Low-resolution filter
 - Interpolation (Huth et al., 2016)
 - Treats word properties as underlyingly continuous
 - Non-causal
 - Low-resolution filter
Our solution: Deconvolutional time series regression (DTSR, Shain & Schuler, 2018)
- Uses ML to estimate continuous response shape
- Like a canonical HRF that adapts to the data
- No distortion of stimulus structure (temporal or featural)
<table>
<thead>
<tr>
<th>Method</th>
<th>Train Mean Squared Error</th>
<th>Test Mean Squared Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canonical HRF</td>
<td>11.3548</td>
<td>11.8263</td>
</tr>
<tr>
<td>Binned Averaging</td>
<td>11.3478</td>
<td>11.9280</td>
</tr>
<tr>
<td>Linear Interpolation</td>
<td>11.4236</td>
<td>11.9888</td>
</tr>
<tr>
<td>Lanczos Interpolation</td>
<td>11.3536</td>
<td>11.9059</td>
</tr>
<tr>
<td>DTSR</td>
<td>11.2749</td>
<td>11.6389</td>
</tr>
</tbody>
</table>
Methods: Naturalistic fMRI modeling

- Predictors:
 - Rate (convolved intercept)
 - Unigram logprob
 - KenLM (Heafield et al., 2013) on Gigaword 3 (Graff et al., 2007)
 - 5-gram surprisal
 - Same as unigram
 - HRF params are tied between predictors within fROIs, by-predictor coefficients
 - Sound power (canonical HRF convolved)
 - TR number (linear)

- By-fROI random intercepts, slopes, HRF params
- By-participant random intercepts
Methods: Naturalistic fMRI modeling

- Ablative non-parametric out-of-sample hypothesis tests
 - Common in ML
- 50% train, 50% test
- Separate models for LANG and MD test surprisal effects in each
- Combined model tests difference in surprisal between LANG and MD
 - Ablation: Surprisal:Network (0 = MD, 1 = LANG)
Results

![Graphs showing 5-gram surprisal, Rate, and Unigram logprob for LANG and MD.](image)
Results

<table>
<thead>
<tr>
<th>Comparison</th>
<th>p</th>
<th>LL Improvement</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surprisal (LANG)</td>
<td>0.0001^{***}</td>
<td>108.33</td>
<td>0.256</td>
</tr>
<tr>
<td>Surprisal (MD)</td>
<td>1.0</td>
<td>-3.23</td>
<td>-0.008</td>
</tr>
<tr>
<td>Surprisal by Network (combined)</td>
<td>0.0001^{***}</td>
<td>86.69</td>
<td>0.231</td>
</tr>
</tbody>
</table>

Hypothesis tests
Surp in LANG, no surp in MD, significant difference between networks
Results

<table>
<thead>
<tr>
<th></th>
<th>LANG</th>
<th></th>
<th>MD</th>
<th></th>
<th>COMBINED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Tot</td>
<td>% Rel</td>
<td>% Tot</td>
<td>% Rel</td>
<td>% Tot</td>
<td>% Rel</td>
</tr>
<tr>
<td>Ceiling</td>
<td>6.18%</td>
<td>100%</td>
<td>1.34%</td>
<td>100%</td>
<td>2.63%</td>
<td>100%</td>
</tr>
<tr>
<td>Model (train)</td>
<td>3.21%</td>
<td>51.9%</td>
<td>0.68%</td>
<td>50.7%</td>
<td>1.06%</td>
<td>40.3%</td>
</tr>
<tr>
<td>Model (test)</td>
<td>1.66%</td>
<td>26.9%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.52%</td>
<td>19.8%</td>
</tr>
</tbody>
</table>

% variance explained
Results

- LANG surprisal effects
 - Large magnitude
 - Positive
 - Significant
 - Generalize well (large out-of-sample relative % variance explained)

- MD surprisal effects
 - Small magnitude
 - Negative
 - Non-significant
 - Generalize poorly (no out-of-sample variance explained)

- Significant difference in effect size
Conclusion

- Results support a domain-specific implementation of prediction:
 - Predictive coding for language, locally implemented in language-specialized circuits
- Prediction effect is over and above lexical frequency
- In line with patterns found in low-level sensory circuits (Singer et al., 2018)
Future directions

- What is the structure of the predictive model?
- Is there functional differentiation \textit{within} LANG wrt linguistic prediction?
- What is the relationship between predictive and integrative computation?
Thank you!

Thanks to:

Funders: NIH awards R00-HD-057522 and R01-DC-016607 (E.F.), a grant from the Simons Foundation via the Simons Center for the Social Brain at MIT (E.F.), and NSF grant #1816891 (W.S.)

Reviewers and participants at CUNY 2019

All of you!