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Background

+ How do infants acquire phonological categories and features from speech?
+ No explicit supervision
+ Poor lexical and phonotactic knowledge

+ Possible answer: By trying to remember what they perceive.
+ Limited memory→ compression pressure (Baddeley and Hitch 1974)
+ Might favor language-like representations (Baddeley et al. 1998; Elsner and Shain 2017)
+ Percept modeling can provide immediate training signal
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+ Decompresses code into original inputs
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+ Research question: Do the optimized representations look like infants’ knowledge of
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Model

+ Deep neural binary stochastic autoencoder network

+ Compresses auditory features of speech segments into discrete 8-bit code

+ Decompresses code into original inputs

+ 256 categories with which to describe perceptual world

+ Model optimizes fidelity

+ Research question: Do the optimized representations look like infants’ knowledge of
language?



Model

+ Deep neural binary stochastic autoencoder network

+ Compresses auditory features of speech segments into discrete 8-bit code

+ Decompresses code into original inputs

+ 256 categories with which to describe perceptual world

+ Model optimizes fidelity

+ Research question: Do the optimized representations look like infants’ knowledge of
language?



Model

+ Deep neural binary stochastic autoencoder network

+ Compresses auditory features of speech segments into discrete 8-bit code

+ Decompresses code into original inputs

+ 256 categories with which to describe perceptual world

+ Model optimizes fidelity

+ Research question: Do the optimized representations look like infants’ knowledge of
language?



Model

+ Deep neural binary stochastic autoencoder network

+ Compresses auditory features of speech segments into discrete 8-bit code

+ Decompresses code into original inputs

+ 256 categories with which to describe perceptual world

+ Model optimizes fidelity

+ Research question: Do the optimized representations look like infants’ knowledge of
language?



Model

+ Deep neural binary stochastic autoencoder network

+ Compresses auditory features of speech segments into discrete 8-bit code

+ Decompresses code into original inputs

+ 256 categories with which to describe perceptual world

+ Model optimizes fidelity

+ Research question: Do the optimized representations look like infants’ knowledge of
language?



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel Spectrogram

Speaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder

Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

Example:

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

Example:

-voice

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

Example:

-voice +strident

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

Example:

-voice +strident

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Running Speech

· · · · · ·

Phoneme

Mel SpectrogramSpeaker Embedding

E1

E2

. . .

Ee

Encoder Segment Encoding
1 2 3 4 5 6 7 8

OR
+strident = (1

∧
2
∧
¬3)
∨
(7
∧
¬4)

Decoder

D1

D2

. . .

Dd



Prior work

+ Zerospeech challenge on unsupervised speech processing (Versteegh et al. 2015)

+ Unsupervised phone discovery (Vallabha et al. 2007; Lee and Glass 2012; Feldman et al.
2013; Antetomaso et al. 2017)

+ Word-level modeling

+ Not featural (phonemes are atomic)



Prior work

+ Zerospeech challenge on unsupervised speech processing (Versteegh et al. 2015)

+ Unsupervised phone discovery (Vallabha et al. 2007; Lee and Glass 2012; Feldman et al.
2013; Antetomaso et al. 2017)

+ Word-level modeling

+ Not featural (phonemes are atomic)



Prior work

+ Zerospeech challenge on unsupervised speech processing (Versteegh et al. 2015)

+ Unsupervised phone discovery (Vallabha et al. 2007; Lee and Glass 2012; Feldman et al.
2013; Antetomaso et al. 2017)

+ Word-level modeling

+ Not featural (phonemes are atomic)



Prior work

+ Zerospeech challenge on unsupervised speech processing (Versteegh et al. 2015)

+ Unsupervised phone discovery (Vallabha et al. 2007; Lee and Glass 2012; Feldman et al.
2013; Antetomaso et al. 2017)

+ Word-level modeling

+ Not featural (phonemes are atomic)



Data

+ Zerospeech 2015 challenge datasets
+ Xitsonga: ∼2.5 hrs read speech, 24 speakers
+ English: ∼5 hrs spontaneous speech, 12 speakers



Data

+ Zerospeech 2015 challenge datasets
+ Xitsonga: ∼2.5 hrs read speech, 24 speakers
+ English: ∼5 hrs spontaneous speech, 12 speakers



Data

+ Zerospeech 2015 challenge datasets
+ Xitsonga: ∼2.5 hrs read speech, 24 speakers
+ English: ∼5 hrs spontaneous speech, 12 speakers



Results: Unsupervised Phoneme Classification

+ Homogeneity (H), Completeness (C), V-measure (V) (Rosenberg and Hirschberg 2007)
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Thank you!
Code:

https://github.com/coryshain/dnnseg
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