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1 INTRODUCTION: H-bond disorder and H-bond topology
in water ices

Figure 1: Phase diagram of ice, modified
from a figure in Petrenko and Whitworth.1

The hydrogen bond pattern of defect-free water ice is governed
by what are called the Bernal-Fowler ice rules:2 Each water
must donate a hydrogen bond (H-bond) to two neighboring wa-
ters, and accept an H-bond from two other neighbors. These
rules are followed in water ices up to pressures in the 15GPa
range, by which point protons begin to tunnel across H-bonds.

The phases of ice adjacent to the liquid phase – ice Ih, III, V,
VI, and VII – shown as shaded in Fig. 1, all exhibit H-bond
disorder. A very large number of H-bond arrangements con-
sistent with the ice rules is possible, and they are explored in
all of these phases. With the exception of ice VI, a phase trans-
formation has been observed for these phases which transform
into an H-bond ordered counterpart at low temperatures. Ice
Ih transforms to ice XI, ice III to ice IX (not shown in Fig. 1
because ice IX is metastable with respect to ice II), and ice VII
to ice VIII. The observation of ice XIII, an ordered form of ice
V, has just recently been reported.3–5

Figure 2: Abstraction from detailed crystal configuration to H-bond topology.

When we speak of an H-bond configuration, we are abstracting from the detailed crystal geometry,
i.e. x, y, z coordinates for all atoms of the crystal, to the topology or connectivity of the H-bond
pattern (Fig. 2). Each H-bond is directional, so the H-bond connectivity is captured by a directed
graph in which vertices, representing oxygen atoms in ice, are connected by a single, directed
bond. Physically, each directed graph containing only two outgoing and two incoming bonds at
each vertex represents a deep local minimum of the potential surface of defect-free ice. Of course,
defects which break the ice rules are exceedingly important and interesting. They can also be
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represented and usefully described by directed graphs.

The H-bond configuration can be described by bond variables br that take the values ±1 depending
whether H-bond r points with or against some previously defined direction. Obviously there are
2N bond configurations before enforcing the ice rules. After the ice rules are taken into account,
Pauling estimated that for ice Ih (and it turns out many other ices) the number of configurations
falls to roughly

(
3
2

)N
,6 very close to the exact result.7

For theoretically studying the ordered and disordered ice phases, it is most useful to have an enu-
meration of the symmetry-distinct H-bond configurations of relatively small unit cells. These are
unit cells small enough either for electronic structure calculations, or (not as small) suitable for sta-
tistical simulations. This is one of the tasks accomplished by the programs MkInvar and GrEnum.
Nominally, finding symmetry-distinct H-bond configurations for N water molecules is an O(N2)
process since it involves comparison of pairs of configurations and eliminating one member of the
pair if a space group symmetry operation brings it into coincidence with the other member. We
have shown that this process can be reduced to an O(N ln N) calculation using invariant polyno-
mials in the bond variables.8 We use the name graph invariants for these polynomials.8, 9 Since
graph invariants are useful in the enumeration problems, and have other uses as well, we pause to
explain them more fully.

Graph invariants are linear combinations of bond variables
∑

r

drbr , (1)

(first-order invariants), bilinear combinations of bond variables
∑

rs

drsbrbs , (2)

(second-order invariants), trilinear combinations . . ., and so on.8, 9 The graph invariant polynomials
are unchanged under a permutation of the bond variables according to a space group operation gα,
br → gα(br). All graph invariants must evaluate to the same value for two configurations that are
symmetry-related. By evaluating a series of graph invariants for a series of H-bond configurations,
an O(N) process, we obtain a symmetry “fingerprint” of each configuration. Let’s say there are
P invariants evaluated for each H-bond configuration. The configurations are sorted into groups
according to the value of the first invariants. Then those groups are subdivided into smaller groups
according to the second invariant. The process goes on until the configurations in each group falls
below a threshold or all P sorting invariants are exhausted. At this point, the expensive O(N2)
symmetry testing is applied to the small groups of configurations that have the same fingerprint.
Those with different fingerprints cannot possibly be symmetry-related. Assuming some reasonable
effectiveness in breaking down the original list into smaller groups, this makes elimination of
symmetry-related configurations an O(N ln N) process.8

Graph invariants have other applications besides making enumeration more efficient. If scalar
physical properties, most notably but not exclusively the energy, of each of the H-bond isomers
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can be linked with H-bond topology, then graph invariants provide a useful hierarchy of basis
functions for describing this linkage. For example, energy as a function of H-bond topology can
be expressed as follows.

E(b1, b2, . . .) = E0 +
∑

r

arIr(b1, b2, . . .) +
∑

rs

arsIrs(b1, b2, . . .) + . . . (3)

First-order Ir and second-order Irs invariant functions are shown explicitly in Eq. (3). Essentially,
Eq. (3) is a spin-lattice Hamiltonian for H-bond fluctuations in ice. In practice the expansion can
be continued to higher-order invariants, but in practice we have found that stopping at second-order
gives a good account of H-bond energetics. In most cases, the first-order invariants are identically
zero, leading to a very compact expression for the energy. The few coefficients appearing in Eq. (3)
can be established from electronic structure calculations on small unit cells. We then rely on a
theorem which states that invariants for small cells are automatically invariants for larger unit cells
that are multiples of the small cells. This provides a bootstrap procedure by which the coefficients
in Eq. (3) can be extracted from electronic structure calculations on small unit cells and then
statistical simulations can be performed on cells large enough to approximate the bulk limit. Our
group has used graph invariants to link the energy of H-bond arrangements in various phases of
ice to the H-bond topology. With this linkage in hand, we were able to construct a statistical
mechanical model of H-bond fluctuations and predict the properties of the ice Ih-XI,10, 11 VII-
VIII,10, 11 III-IX,12 and V-XIII13 phase transitions.

The MkInvar program is a Fortran program which takes as input information on the coordinates
and symmetry of the system and generates as output coordinates of atoms in large simulations
cells and graph invariants. Also generated is output for a second Fortran program, GrEnum, which
enumerates all symmetry-distinct H-bond configurations allowed by the ice rules. This manual
discusses the background information, use of the codes, and a detailed description of the algorithms
used.
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2 Definition of cell vectors

(0,0) a(  ,0)

of crystal system
unit cell standard primitive cell

Figure 3: Primitive and larger unit cell
of a tetragonal system.

We will use several sets of vectors that may be called “lattice” or
“basis” vectors, and it is best to clearly define them at the out-
set. First, there are the standard basis vectors associated with the
7 crystal systems. These are not input because they are standard
for each of the crystal systems. For example, it is standard to
take (a, 0, 0), (0, a, 0) and (0, 0, c) as the basis vectors for a tetrag-
onal system and (a, 0, 0), ( a

2 ,
√

3a
2 , 0) and (0, 0, c) for a hexagonal

system. This set of vectors uses the traditional standard lattice
parameters, a, b, c, α, β, γ, or fewer with symmetry.

The MkInvar code generates graph invariants for a small unit cell,
hereafter known simply as “the unit cell”, and larger cells ob-
tained by replicating that small cell an integer number of times
along each of the cell vectors. This may or may not coincide with the standard primitive cell of
the crystal system. For example, it may be convenient to take the unit cell for calculations on a
tetragonal system as one rotated 45◦ from the standard cell as shown in Fig. 3. We might make this
choice if we want to examine H-bond arrangements in a cell modestly larger than the standard unit
cell without, say, doubling the tetragonal a lattice constant.

The vectors that define “the unit cell” in the figure are linear combinations of the standard basis
vectors [l1 = (a, 0, 0), l2 = (0, a, 0), l3 = (0, 0, c)] of the tetragonal system,

Lk =

3∑

j=1

ck jl j , (4)

where the coefficients ck j are summarized below in matrix form.

c =


1 1 0
−1 1 0

0 0 1

 (5)

The ck j coefficients are always integers or rational fractions. The rows of the matrix in Eq. (5) will
be known as the cell vectors, c1, c2, c3.

The user has the freedom to make the actual cell under consideration the unit cell replicated an
integral numbers of times in each direction defined by cell vectors m1L1,m2L2,m3L3. This is
useful when an orderly sequence of cells of increasing size is needed. When the integers m1,m2,m3

are sufficiently large, the cell is large enough to be considered a simulation cell. We will always
refer to the larger cell defined by m1,m2,m3 as the “simulation cell” to distinguish it from the basic
unit cell, defined by the c jk coefficients in Eqs. (4-5), even when the larger cell is not really large
enough to approximate the thermodynamic limit.
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3 MkInvar

3.1 Compilation

The MkInvar program is written in Fortran 77 and thus any of the commonly available Fortran
compilers should be sufficient. To compile the code, one simply goes to the source directory and
types “make” on the command line. This should generate an executable named “MkInvar.”

3.2 Running MkInvar

The following command is used to run the program.

MkInvar

In total, there are a minimum of three input files necessary to run the program. The first input file
that the code reads is a file named “MkInvar.inp” which contains all commands necessary to run
a calculation. The second file contains information regarding the space group to be used in the
calculation. The third file contains either the vertices or H-bond definitions for the system. Output
of the code is written to a number of different files. We discuss the contents and format of each of
these files in turn.

3.3 Input Files

At the very least, there are three input files necessary to run the MkInvar program: “MkInvar.inp”,
a space group file, and “VertDef.txt” or “HBondsDef.txt”. With these input files, it is possible
to generate an H-bond structure for an arbitrary simulation cell as well as construct all possible
first- and second-order graph invariants. For large simulation cells, an additional input file, “Bond-
PairsDef.txt”, is used to construct only those invariants that the user chooses. These are typically
invariants also found in small unit cells.

3.3.1 MkInvar.inp

This input file contains information regarding the dimensions and symmetry of the system, param-
eters to control the generation of the H-bond lattice, and which graph invariants will be generated.
Below is a example of an input file for calculations on the unit cell of ice VII.
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1 1 1 (Simulation cell dimensions)

1 1 0 0 0 0 (Matrix of cell vectors as row vectors)

0 0 1 1 0 0

0 0 0 0 1 1

224 1 (Space Group Index)

../../SpaceGroups (Path to space group database)

3.337 3.337 3.337 90 90 90 (Lattice Parameters: a,b,c,alpha,beta,gamma)

0.1 (Minimum allowed OO distance)

2.50 3.13 (Min/Max allowed OO distance for H-Bonds)

1 (0: Generate H-bonds / 1: Read H-bonds)

1 (0: No Invar / 1: All / 2: Some)

1 (0: User specified covering cell / 1: Auto.)

All text following the numbers, contained in parentheses, is ignored by the program. The first line
contains three non-negative integers, the m j’s in section 2, page 7, which defines the dimensions
of the simulation cell in terms of the number of unit cells along each lattice vector L j.

1 1 1 (Cell dimensions)

Here, we are performing calculations on a simulation cell measuring 1 × 1 × 1 unit cells on each
side, i.e. the unit cell. The next three lines, which each contain six integers, define the components
of the cell vectors for the simulation, the c matrix. For the case of a primitive unit cell, the matrix
of cell vectors would simply be the identity matrix.

1 1 0 0 0 0 (Matrix of cell vectors as row vectors)

0 0 1 1 0 0

0 0 0 0 1 1

Each component of a cell vector is given as a pair of integers, a numerator and denominator. These
components are then stored internally as the ratio of the two integers. Whenever the numerator is
zero, the denominator is stored as a real number. For example, there are two ways define the same
cell vector.

1 3 1 1 3 2 (Cell vector using integers)

0 0.333 0 1 0 1.5 (Cell vector using reals)

The next two lines define the space group to be used in calculations and the path to the directory
containing the necessary space group file.

224 1 (Space Group Index)

../../SpaceGroups (Path to space group database)
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In this example, the space group is #224 (Pn-3m). For this space group, there are two possible
origin choices. The number one which follows the space group index indicates we are using the
first origin choice. We say more about the possible convention choices below when we discuss
the space group files. The file containing the required symmetry elements is contained in the
“SpaceGroups” directory which is found two directories above the current working directory. The
format of the space group file will be described below. The next line of the input file contains the
six lattice parameters which define the unit cell lattice vectors for the crystal system.

3.337 3.337 3.337 90 90 90 (Lattice Parameters: a,b,c,alpha,beta,gamma)

The first three numbers, read as reals, indicate the length of each lattice vector in units of Ångström.
Actually, the units used are arbitrary as long as the units of all input parameters are consistent. All
output files will be written in terms of this unit of length. The last three numbers, also reals, are
the angles between lattice vectors. These numbers must be in units of degrees.

When there are fewer than 6 lattice parameters, as for the example of a cubic lattice system given
above, all 6 parameters must still be input. The program exits if the input parameters are not
compatible with lattice symmetry, e.g. a , b for a cubic system. The next line contains a distance
criterion for the minimum allowed OO distance. When generating the oxygen positions, if the
distance between two oxygen atoms falls below the allowed distance, then the code will exit with
a message stating so.

0.1 (Minimum allowed OO distance)

The user has the option of providing a list of H-bonded vertices in the unit cell, or else allowing
the program to determine the H-bonded vertices based on a distance criterion. If the latter is
selected, the next line contains two parameters that control the generation of the H-bond structure
by providing an allowed range of H-bonded oxygen-oxygen distances.

2.50 3.13 (Min/Max allowed OO distance for H-Bonds)

Even if the user furnishes a list of H-bonded vertices, this input is still required because the program
will check that input for consistency. The units used for these two distances must be consistent with
the units of length used in the lattice parameters. When identifying possible H-bonds, only those
with distances within the allowed values will be kept.

The next line controls how the unit cell H-bond structure is generated.

1 (0: Generate H-bonds / 1: Read H-bonds)

The structure can be generated in one of two ways.

0. Use positions of oxygen vertices in asymmetric unit, employing the distance criteria input
on the previous line.
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1. Use H-bond definitions for entire unit cell.

In the first case, the input file “VertDef.txt” is required while in the second case, the file “HBonds-
Def.txt” is required. The format and use of these files will be discussed in more detail below.

Once the H-bonded structure has been generated, one is then ready to calculate graph invariants.
The options available for calculating graph invariants follow.

0. Do not calculate invariants.

1. Calculate all possible first- and second-order invariants.

2. Only calculate those graph invariants for which the generating bond pairs have been listed in
the input file “BondPairsDef.txt.”

The user specifies the desired option on the following line.

1 (0: No Invar / 1: All / 2: Some)

The last line of this input file is specific to the case for when a covering cell is to be used. For those
cases when a covering cell is necessary and the user wants to specify the dimensions and shape
of the covering cell (as opposed to having the MkInvar code do this), this option can be given the
value of zero.

0. User specified covering cell. The simulation cell dimensions and cell vectors read at the start
of the input file define the covering cell. The cell vectors for the system of interest are given
immediately after this line of input. See examples below in the tutorial.

1. Automatic generation of covering cell. If not necessary, then no action will be performed.

A covering cell is not necessary for this system and so we choose a value of 1.

1 (0: User specified covering cell / 1: Auto.)

Those cases for when a covering cell is required is when the simulation cell does not have the same
symmetry as the crystal lattice for the space group. A covering cell would be used if one wanted
to do calculations on a simulation cell measuring 2 × 2 × 1 unit cells along each side. Another
example, as discussed earlier in section 2, is the case of constructing a tetragonal cell from a cubic
unit cell. We will discuss the cases for when a covering cell is necessary in the tutorial below, in
sections 4.5 and 4.6.
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3.3.2 Space Group File

The space group file contains the symmetry elements which generate the group. In the “Space-
Groups” directory, one can find files for all 230 space groups named “###.n” where ### is the
corresponding space group index. The “n” in the space group file name indicates which conven-
tion for the space group is used. We are indebted to Xianlong Wang for placing space group
information in a Mathematica14 notebook,15 a format that was convenient for us to generate the
files given in the “SpaceGroups” directory. Dr. Wang obtained the space group information from
the Bilbao Crystallographic Server.16–18

The suffix on space group file names is included to allow for more than one space group con-
vention, whether it be the choice of origin or unique axis. For the space group files located in
the “SpaceGroups” directory, we have taken the following convention for file naming. For space
groups with multiple origin choices, files named “###.1” correspond to the first origin choice while
files named “###.2” are for the second origin choice. For those space groups with conventions that
differ in their choice of unique axis, files named “###.1” and “###.2” correspond to choosing the b
or c axis as the unique axis respectively. For space groups which can have rhombohedral or hexag-
onal axes, the files are named “###.1” and “###.2” respectively. For those space groups with only
a single convention, the files are named “###.1.” New space group definitions are implemented
by simply creating a new space group file and placing that file in the directory specified as input
in the “MkInvar.inp” file. The space group index and convention choice can currently take any
integer value between 0 and 999. Below is the space group file for #224 Pn3̄m for the first origin
in standard tables.

224 (Pn-3m)

6 48

cub

1 0 0 0 1 0 0 0 1

0 1 0 1 0 1

-1 0 0 0 -1 0 0 0 1

0 1 0 1 0 1

-1 0 0 0 1 0 0 0 -1

0 1 0 1 0 1

0 0 1 1 0 0 0 1 0

0 1 0 1 0 1

0 1 0 1 0 0 0 0 -1

1 2 1 2 1 2

-1 0 0 0 -1 0 0 0 -1

1 2 1 2 1 2

The first line contains the space group index and name. Only the index is read by the program
and it must match that given in the input file. The second line contains two integers, the number
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of generators and the order of the space group, or more accurately, the number of coset represen-
tatives. For group 224, there are 6 symmetry operations that are used to generate the full group
and these will be read below. When the full group has been generated by the program, it should
contain 48 symmetry elements. If the number of symmetry elements generated in the full group
does not match 48, the program aborts with a warning message. The third line contains a three
letter abbreviation for the lattice type of this space group:

• Cubic: cub

• Tetragonal: tet

• Orthorhombic: ort

• Trigonal: trg

• Hexagonal: hex

• Monoclinic: mon

• Triclinic: tri

This lattice type must agree with the lattice parameters supplied in the input file. The rest of the
space group file contains the symmetry operations used to generate the group. Symmetry elements
in space groups, affine transformations, are described by a 3×3 rotation matrix and a 3-dimensional
translation vector. To describe point groups used in cluster calculations, the translation vectors
would simply be zero vectors. Each symmetry operation is defined by two lines of integers.

1 0 0 0 1 0 0 0 1

0 1 0 1 0 1

The first line, a list of nine integers(0,±1) defines the 3×3 rotation matrix row-by-row. The second
line, a list of six integers, contains the translation vector. Each component of this vector is given
as the ratio of two integers. Unlike the “MkInvar.inp” input file, both numbers in each pair must
be integers and the second number can not be zero.

line #1 = g11 g12 g13 g21 g22 g23 g31 g32 g33 (6)
line #2 g14a g14b g24a g24b g34a g34b (7)

g j =




g11 g12 g13

g21 g22 g23

g31 g32 g33

 ,


g14a/g14b

g24a/g24b

g34a/g34b



 (8)
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Applying the 6 generators of group 224 given above on an arbitrary point in space yields the
following:

g1{x, y, z} = {x, y, z} (9)
g2{x, y, z} = {−x,−y, z} (10)
g3{x, y, z} = {−x, y,−z} (11)
g4{x, y, z} = {z, x, y} (12)
g5{x, y, z} = {y + 1/2, x + 1/2,−z + 1/2} (13)
g6{x, y, z} = {−x + 1/2,−y + 1/2,−z + 1/2}. (14)

3.3.3 VertDef.txt

The text file “VertDef.txt” contains a list of coordinates for the oxygen atoms (vertices) in the
system. At the very least, this list must contain coordinates for atoms in the asymmetric unit for
MkInvar to generate the full structure. To generate the full structure, MkInvar applies all symme-
try operations of the full group and identifies all unique vertices (to within some tolerance). This
distance tolerance is the value of 1.0 assigned to the minimum allowed H-bond distance in the “Mk-
Invar.inp” file above. This list can contain as many vertices as the user likes. All duplicate vertices
generated from application of the symmetry group are removed. Below is an example of “Vert-
Def.txt” for the ice III system, the primitive unit cell of which contains twelve water molecules.

2 # of vertices in asymmetric unit

2 5 1 5 1 3

1 10 1 10 0 1

The first line contains the number of oxygen atoms to be read from the file. The remaining text on
the line is ignored. The asymmetric unit of the ice III unit cell only contains two oxygen atoms. The
coordinates for each vertex are given as fractions of the unit cell lattice vectors, the Lk in section 2.
The coordinates for each oxygen atom are given as a list of six integers. Each pair of integers
corresponds to the numerator and denominator of an x, y, or z component. For example, these
two oxygen atoms have the following fractional coordinates respectively: (0.400, 0.200, 0.333)
and (0.100, 0.100, 0.00).

3.3.4 HBondsDef.txt

The text file “HBondsDef.txt” contains a list coordinates for all H-bonds contained in the unit cell.
If any H-bonds are missing from this list that are related by symmetry, then the code will write to
the “MkInvar.log” file any newly generated H-bonds and exit with error. The user can then inspect
this list and add or remove H-bonds as found appropriate. The code will exit whenever some
oxygens are not four coordinated. H-bonds are defined by coordinates for the two oxygen atoms
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involved in hydrogen bonding. It is not yet possible to supply a list of H-bonds in the asymmetric
unit and have MkInvar generate the full set of H-bonds. The ice III unit cell contains twelve water
molecules and thus there are twenty-four H-bonds. Below is portion of “HBondsDef.txt” used for
this system.

24 # of bonds in unit cell

1 10 1 10 0 1 1 5 2 5 -1 3

1 10 1 10 0 1 2 5 1 5 1 3

2 5 3 5 1 4 1 10 7 10 -1 12

2 5 3 5 1 4 3 10 9 10 7 12

3 5 2 5 3 4 7 10 1 10 13 12

3 5 2 5 3 4 9 10 3 10 5 12

9 10 9 10 1 2 3 5 4 5 5 6

...

The first line contains the number of H-bonds to be read from the file. The remaining text on the
line is ignored. On each of the following lines, the coordinates for each of the two vertices of an
H-bond are listed. In total, there are twelve integers on each line that define the H-bonds. Each
pair of integers corresponds to the numerator and denominator of an x, y, or z component of a
vertex. Eventually, output configurations will be generated that enumerate the symmetry-distinct
H-bond arrangements that satisfy the ice rules. In the output, the convention is taken that H-bonds
in a configuration pointing from the first vertex on a line in “HBondsDef.txt” towards the second
vertex will be assigned a value of “1”, while H-bonds pointing from the second entry to the first
entry will be assigned “−1”.

3.3.5 BondPairsDef.txt

As specified on page 11, calculation of none, some, or all graph invariants can be requested. When
some are requested, the graph invariants to be calculated are specified in this file. It is conveniently
constructed by modifying the output file “BondPairs.txt” generated when MkInvar calculates graph
invariants. It would be common practice to generate this file from a small cell calculation and then
use it as input to generate small cell invariants for a large simulation cell. This input file can be
used on any simulation cell size.

Recall that graph invariants are invariant polynomials in the bond variables br, that is, variables
that take the values ±1 to describe the direction of H-bonds. Space group operations map bond
variables into other bond variables, sometimes with a change of sign. Graph invariant polynomials
are unchanged by such a mapping.8, 9 Linear, quadratic, cubic, . . . polynomials are term first,
second, third . . . order graph invariants. They are generated by applying the group theoretical
projection operator for the totally symmetric representation to bond variables Ĝ(br), products of
two bond variables Ĝ(brbs), products of three bond variables Ĝ(brbsbt), . . . When dealing with
impurities, it is useful to assign a different “color” to H-bonds that involve an impurity.19, 20
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An example “BondPairsDef.txt” file is given below from the ice III system.

4 # of invariants

0 : Type

1 10 1 10 0 1 1 5 2 5 -1 3

0 : Type

1 10 7 10 11 12 -1 5 3 5 7 6

0 : Type

1 10 7 10 11 12 1 10 11 10 1 1

2 : Type

1 10 1 10 0 1 1 5 2 5 -1 3

1 10 1 10 0 1 1 5 2 5 -1 3

In this case, we are choosing to construct the three first-order graph invariants plus a single second-
order graph invariant. The first line indicates the number of graph invariants we would like con-
structed. For each invariant, there is one line of descriptive information indicating the type of
invariant to be generated. The convention taken by the code is the following:

0. Ĝ(br) (first-order invariant)

1. Ĝ(brbs) (second-order invariant)

2. Ĝ(brcs) (second-order invariant, two bond “colors”)

Invariants beyond second order are not yet implemented. For first- and second-order invariants,
respectively, there will be one and two additional lines for each invariant. These lines give the
vertices for the generating H-bonds. Again, each H-bond is given as a pair of vertices and each
component of the vertices is given as the ratio of two integers.

3.4 Output Files

Certain types of output files are generated for each cell size required by a particular calculation.
For other output files, only a single version is generated. Output files for the unit cell are always
generated and distinguished from the others by the suffix “ Unit” in the file name. Using the
notation in section 2, this corresponds to the case when the m j’s all equal 1 independent of the
form of the matrix of cell vectors, c. For larger cells where at least one of the m j’s is larger
than one, the corresponding output files have the suffix “ Sim”. (The mnemonic is that cells with
larger m j values, used to describe the thermodynamic limit, are “simulation” cells.) When a large
covering cell is necessary, as described below, files associated with this cell have the suffix “ Cov”.
For each of the output files, we will indicate whether or not corresponding files are generated for
each cell size used in the calculation.
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3.4.1 MkInvar.log

Output showing progress of the code and debugging info are written to the file named “MkIn-
var.log.” The contents of this file will be discussed in detail below.

3.4.2 Group Unit.txt

This file contains all elements of the full symmetry group generated from the symmetry elements
contained in the space group file. Below is an example output file generated for the ice III system
using space group #92(P41212).

8 # of symmetry elements in group

1 0 0 0 1 0 0 0 1 0 1 0 1 0 1

-1 0 0 0 -1 0 0 0 1 0 1 0 1 1 2

0 -1 0 1 0 0 0 0 1 1 2 1 2 1 4

-1 0 0 0 1 0 0 0 -1 1 2 1 2 1 4

0 1 0 -1 0 0 0 0 1 1 2 1 2 3 4

1 0 0 0 -1 0 0 0 -1 1 2 1 2 3 4

0 -1 0 -1 0 0 0 0 -1 0 1 0 1 1 2

0 1 0 1 0 0 0 0 -1 0 1 0 1 0 1

The first line contains the number of symmetry elements in the group. Each line after that contains
a symmetry operator where the elements of the rotation matrix and translation vector are given.
The first nine integers make up the row vectors of the rotation matrix. The last six integers make
up the components of the translation vector.

each line (15)
= g11 g12 g13 g21 g22 g23 g31 g32 g33 g14a g14b g24a g24b g34a g34b

g j =




g11 g12 g13

g21 g22 g23

g31 g32 g33

 ,


g14a/g14b

g24a/g24b

g34a/g34b



 (16)

For larger cells, the symmetry group is written to the file “Group Sim.txt”. When a covering cell
is used, the symmetry group for the covering cell also written to “Group Sim.txt”.

3.4.3 Structure Unit.txt

This file contains lattice vectors, L j’s, and fractional coordinates for the vertices and H-bonds of
the unit cell. Below is an example from running calculations on the ice III unit cell.
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6.666000 0.000000 0.000000 Primitive Unit Cell Lattice Vectors

0.000000 6.666000 0.000000

0.000000 0.000000 6.936000

6.666000 0.000000 0.000000 Lattice Vectors

0.000000 6.666000 0.000000

0.000000 0.000000 6.936000

12 # of vertices

1 10 1 10 0 1

2 5 3 5 1 4

3 5 2 5 3 4

9 10 9 10 1 2

1 10 7 10 11 12

1 5 2 5 2 3

...

24 # of HBonds

1 10 1 10 0 1 1 5 2 5 -1 3 1 6

1 10 1 10 0 1 2 5 1 5 1 3 1 8

2 5 3 5 1 4 1 10 7 10 -1 12 2 5

2 5 3 5 1 4 3 10 9 10 7 12 2 7

...

The first three lines contain the lattice vectors for the primitive unit cell in the same units used
in the input file. It is these vectors combined with the fractional coordinates that generate the
physical coordinates to be found in the output files discussed next. The next three lines contain
the lattice vectors for this cell. These vectors are used to apply periodic boundary conditions.
For this small cell, both sets of lattice vectors are the same. They will differ for cells larger than
the unit cell and for the case of non-primitive lattice vectors. The next line states the number
of vertices in the unit cell and is followed by fractional coordinates for each vertex. After the
vertices, the number of H-bonds found is given. This is then followed by the fractional coordinates
for each H-bond. For each H-bond, the last two integers on each line are the indices corresponding
to each vertex. For example, the first H-bond is defined as pointing from vertex #1 to vertex
#6. H-bond definitions follow the convention that the first vertex is always contained within the
cell boundaries while the second vertex may lie outside. For example, the second vertex of H-
bond #1 is related to vertex #6 by a lattice translation along the c−axis. Similar files for the
simulation and covering cells, “Structure Sim.txt” and “Structure Cov.txt” respectively, will be
written if warranted. For those cases when a covering cell calculation is performed, triggered by
the last option in the “MkInvar.inp” file, a “StructureC.txt” file is generated containing vertices and
H-bonds for the cell of interest(not the covering cell).
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3.4.4 Vert Unit.xyz

This file contains the xyz coordinates of the vertices suitable to be read as input by a visualization
program. The coordinates are generated using the lattice vectors and fractional coordinates found
in the output file “Structure Unit.txt.” Vertices are labeled with “O” as they correspond to the
oxygen atoms in ice. Also, dummy atoms, “X,” are placed at the corners of the unit cell.

20

Unit Cell: Oxy

O 0.666600 0.666600 0.000000

O 2.666400 3.999600 1.734000

O 3.999600 2.666400 5.202000

O 5.999400 5.999400 3.468000

O 0.666600 4.666200 6.358000

O 1.333200 2.666400 4.624000

O 1.999800 5.999400 4.046000

O 2.666400 1.333200 2.312000

O 3.999600 5.332800 5.780000

O 4.666200 0.666600 0.578000

O 5.332800 3.999600 1.156000

O 5.999400 1.999800 2.890000

X 0.000000 0.000000 0.000000

X 0.000000 0.000000 6.936000

X 0.000000 6.666000 0.000000

X 0.000000 6.666000 6.936000

X 6.666000 0.000000 0.000000

X 6.666000 0.000000 6.936000

X 6.666000 6.666000 0.000000

X 6.666000 6.666000 6.936000

The first line contains the number of vertices plus eight(number of corners). The second line is a
title giving a short description. All lines that follow contain an atom type and the xyz coordinates
in the same units as given in the input file. Similar files are also generated for the simulation cell,
“Vert Sim.xyz,” and covering cell, “Vert Cov.xyz,” if warranted. When a covering cell calculation
is requested, a file name “VertC.xyz” is generated.

3.4.5 Bond Unit.xyz

This file contains the xyz coordinates of the vertices and H-bonds suitable to be read as input
by a visualization program. The coordinates are generated using the lattice vectors and fractional
coordinates in the output file “Structure Unit.txt.” Vertices are labeled with “O” as they correspond
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to the oxygen atoms in ice. Using the H-bond definitions, hydrogen atoms, “H,” are placed at the
midpoints of the H-bonds. Also, dummy atoms, “X,” are placed at the corners of the cell.

44

Unit Cell: Oxy + Hyd at midpoints

O 0.666600 0.666600 0.000000

...

O 5.999400 1.999800 2.890000

H 0.999900 1.666500 -1.156000

H 1.666500 0.999900 1.156000

H 1.666500 4.332900 0.578000

H 2.333100 4.999500 2.890000

H 4.332900 1.666500 6.358000

...

H 3.999600 3.999600 5.491000

H 5.999400 0.666600 0.289000

H 3.999600 3.999600 1.445000

H 5.999400 0.666600 3.179000

X 0.000000 0.000000 0.000000

X 0.000000 0.000000 6.936000

...

The first line contains the number of vertices and H-bonds plus eight(number of corners). The
second line is a title giving a short description. All lines that follow contain an atom type and the
xyz coordinates in the same units as given in the input file. A similar file is also generated for
the simulation cell, “Bond Sim.xyz,” and covering cell, “Bond Cov.xyz,” if warranted. When a
covering cell calculation is requested, a file name “BondC.xyz” is generated.

3.4.6 Bond Unit Wrap.xyz

This is the same as “Bond Unit.xyz” except that hydrogen atoms which lie outside of the cell
boundary are translated back into the cell. A similar file is also generated for the simulation cell,
“Bond Sim Wrap.xyz,” and, if need be, covering cell, “Bond Cov Wrap.xyz,”. When a covering
cell calculation is requested, a file name “BondC Wrap.xyz” is generated.

3.4.7 GraphInvar.txt

This file contains all requested graph invariants constructed for the cell with lattice vectors m jL j.
The first line contains the total number of graph invariants contained in the file. For each graph
invariant, there are two lines of descriptive information followed by a line for each term of the
invariant. For example, here is the initial portion of the “GraphInvar.txt” file generated for the ice
III unit cell.
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120 (# of Invariants)

0 (0: b[j], 1:b[j]b[k], 2:b[j]c[k])

1 0 8 8 (Bond Pair, # of Terms & Normalization)

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

1 6 0

1 7 0

1 8 0

0 (0: b[j], 1:b[j]b[k], 2:b[j]c[k])

9 0 8 8 (Bond Pair, # of Terms & Normalization)

1 9 0

1 10 0

1 11 0

1 12 0

1 13 0

1 14 0

1 15 0

1 16 0

...

We can see that 120 graph invariants were generated for this unit cell. This number includes all
first- and second-order graph invariants:Ĝ(br), Ĝ(brbs) and Ĝ(brcs). For each graph invariant, the
first line contains an integer indicating the graph-invariant type (see page 16). The second line
includes a total of four integers. The first two numbers are the indices of the generating bond pairs.
These are then followed by the number of terms contained in the invariant and the normalization
constant. In the case of first-order invariants, where a single bond generates the invariant, the
index for the second bond is taken to be zero. For every term in the invariant, there is a line which
contains the coefficient and bond indices. Again, by default, the second bond index is set to zero for
first-order graph invariants. The two first-order graph invariants shown above take the following
form:

Ĝ(b1) =
1
8

(b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8) (17)

Ĝ(b9) =
1
8

(b9 + b10 + b11 + b12 + b13 + b14 + b15 + b16). (18)

From the same file, here are examples of second-order graph invariants
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...

2 0: b[j], 1:b[j]b[k], 2:b[j]c[k]

17 24 8 8 Bond Pair, # of Terms & Normalization

1 17 24

1 18 23

1 19 22

1 20 21

1 21 20

1 22 19

1 23 18

1 24 17

...

1 0: b[j], 1:b[j]b[k], 2:b[j]c[k]

1 3 8 8 Bond Pair, # of Terms & Normalization

1 1 3

1 1 6

1 2 4

1 2 5

1 3 8

1 4 7

1 5 7

1 6 8

and their corresponding mathematical form:

Ĝ(b17c24) =
1
8

(b17c24 + b18c23 + b19c22 + b20c21 + b21c20 + b22c19 + b23c18 + b24c17) (19)

Ĝ(b1b3) =
1
8

(b1b3 + b1b6 + b2b4 + b2b5 + b3b8 + b4b7 + b5b7 + b6b8) (20)

When a covering cell calculation is requested, a file name “GraphInvarC.txt” is also generated
which contains the graph invariants for the cell of interest.

3.4.8 GenBondPair.txt

For every graph invariant listed in the file “GraphInvar.txt,” this file contains the H-bond definitions
for all bond pairs which generate each invariant. Actually, there is a variable “nBondPairsMax” in
the “param.inc” file which controls how many bond pairs for each invariant are stored. For each
invariant, the first bond pair given is also written to a separate file, “BondPairs.txt,” which can
be used as input for additional calculations, particularly when one seeks to take invariants from a
smaller unit cell and generate the corresponding invariant for a much larger “simulation” cell.

The top portion of this file generated for the ice III unit cell, which begins with first order invariants,
is given below.
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Total # of invariants generated: 120

# of 1st order invariants: 3

=========================================

Invariant: 1, Type: 0

Generating Bonds:

1 : 1 1 10 1 10 0 1 1 5 2 5 -1 3

2 : 2 1 10 1 10 0 1 2 5 1 5 1 3

3 : 3 2 5 3 5 1 4 1 10 7 10 -1 12

4 : 4 2 5 3 5 1 4 3 10 9 10 7 12

5 : 5 3 5 2 5 3 4 7 10 1 10 13 12

6 : 6 3 5 2 5 3 4 9 10 3 10 5 12

7 : 7 9 10 9 10 1 2 3 5 4 5 5 6

8 : 8 9 10 9 10 1 2 4 5 3 5 1 6

Invariant: 2, Type: 0

Generating Bonds:

1 : 9 1 10 7 10 11 12 -1 5 3 5 7 6

2 : 10 1 5 2 5 2 3 1 10 7 10 11 12

3 : 11 3 10 9 10 7 12 2 5 6 5 1 3

4 : 12 2 5 1 5 1 3 7 10 1 10 1 12

5 : 13 3 5 4 5 5 6 3 10 9 10 7 12

6 : 14 7 10 1 10 1 12 3 5 -1 5 -1 6

7 : 15 4 5 3 5 1 6 9 10 3 10 5 12

8 : 16 9 10 3 10 5 12 6 5 2 5 2 3

...

We can see that a total of 120 graph invariants were generated for this system. Three of those
invariants are first-order. For each of the first two invariants, there happen to be eight generating
bonds, specified on each line following the text “Generating Bonds:”. The first integer on those
lines is an index counting the number of generating bonds for each invariant. After the colon on
each line, there is an index for the generating bond, after that the corresponding H-bond definition.
From the data given above, application of the group theoretical projection operator to bonds 1-8
generate invariant 1, while application of the projection operator to bonds 9-16 generate invariant
2.

The format for second order graph invariants is similar as seen in the example below.
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...

Invariant: 8, Type: 2

Minimum Distance Generating Bond Pairs:

1 : 2 2.728 1 10 1 10 0 1 2 5 1 5 1 3

3 2 5 3 5 1 4 1 10 7 10 -1 12

2 : 3 2.728 2 5 3 5 1 4 1 10 7 10 -1 12

2 1 10 1 10 0 1 2 5 1 5 1 3

3 : 4 2.728 2 5 3 5 1 4 3 10 9 10 7 12

8 9 10 9 10 1 2 4 5 3 5 1 6

4 : 6 2.728 3 5 2 5 3 4 9 10 3 10 5 12

7 9 10 9 10 1 2 3 5 4 5 5 6

5 : 7 2.728 9 10 9 10 1 2 3 5 4 5 5 6

6 3 5 2 5 3 4 9 10 3 10 5 12

6 : 8 2.728 9 10 9 10 1 2 4 5 3 5 1 6

4 2 5 3 5 1 4 3 10 9 10 7 12

...

For each generating product of two bond variables, there are now two lines of descriptive infor-
mation, one for each H-bond of a product which the group theoretical projection operator converts
into a second order invariant. We only show output for the first six generating bond pairs above.
“Type : 2” indicates that is a second-order defect-type invariant (page 11). The first generating
bond product is b2c3. For second-order invariants, the program calculates the distance between
the two H-bonds. Here distance between H-bonds is defined as the shortest of the four possible
distances that can be formed between one of the vertices from one H-bond and one from the other
H-bond. If the two H-bonds of the product generating the invariant share a common vertex, the
distance is zero. When a covering cell calculation is requested, a file name “GenBondPairC.txt” is
also generated.

Most readers may safely skip this paragraph, which describes a fine point that may only concern
true graph invariant aficionados: Of course, all bond pairs generating a particular invariant should
be symmetry related and be characterized by the same distance. Recall that, by convention, we
assign H-bonds to unit cells according to the location of their first vertex. Sometimes according
to this convention the members of a generating bond pair lie in different unit cells. However, the
program always tabulates the representatives of those bonds that lie in the same unit cell. When
it comes to calculating distances between generating bond pairs, those pairs with members that
straddle two unit cells will have an apparently longer distance between them. Such pairs are
simply deleted from the list given in “GenBondPair.txt.” Only those invariants generated by bond
pairs separated by the minimum apparent separation distance are written to the file. Hence, not all
possible generating pairs are listed in “GenBondPair.txt.” Instead, only those pairs that lie close
to each other in a unit cell and are most conveniently visualized are listed. In this example, the
minimum apparent distance between these two bonds is 2.728Å. As mentioned above, the units of
length is determined from the input file.
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3.4.9 BondPairs.txt

This file contains a list of bonds used to generate each of the graph invariants. It can be considered
an abridged version of “GenBondPair.txt” in which only the first instance of generating bond(s) is
listed for each invariant. This file can be renamed “BondPairsDef.txt” and read as input by MkInvar
for a new calculation. (See discussion in section 3.3.5.) Typically, this file would be generated for
a small cell and then used as input to generate small-cell invariants for a large simulation cell.
Below is an portion of the “BondPairs.txt” file generated for the ice III unit cell.

120 # of invariants

0 : Type

1 10 1 10 0 1 1 5 2 5 -1 3

0 : Type

1 10 7 10 11 12 -1 5 3 5 7 6

0 : Type

1 10 7 10 11 12 1 10 11 10 1 1

2 : Type

1 10 1 10 0 1 1 5 2 5 -1 3

1 10 1 10 0 1 1 5 2 5 -1 3

2 : Type

1 10 1 10 0 1 1 5 2 5 -1 3

1 10 1 10 0 1 2 5 1 5 1 3

...

The first line contains the number of graph invariants for which generating bonds are given. For
each invariant, there is one line of descriptive information indicating the type of invariant. Then
follows one (two) lines giving the vertices of the generating bond(s). A “BondPairsC.txt” file
should be generated when a covering cell calculation is requested.

3.4.10 Output for Enumeration

The following is a list of files generated as output from MkInvar that are used as input for the enu-
meration code, GrEnum. The format of these files and use of this code are discussed in section 5.4.

• Gv

• Bonds

• BondsC(Generated when a covering cell is used.)

• Gbonds

• Invar
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4 MkInvar Tutorial

This tutorial will walk a user through a typical calculation, using the MkInvar code for the ice VII
system. The tasks to be accomplished are:

1. Build the structure of the unit cell and calculate all graph invariants.

2. Repeat the procedure for two larger cells containing 16 and 32 water molecules respectively.

3. Using graph invariants from the 16-water cell, we generate invariants for a large simulation
cell containing 1024 water molecules.

We will then consider a couple of other cases, including a disscussion on covering cell calculations,
in an attempt to explore all possibilities that can currently be handled with the MkInvar program.

4.1 Unit cell of ice VII

We begin by constructing the three input files to perform calculations on the ice VII system.

• The unit cell of ice VII is cubic with space group #224(Pn3̄m) and contains two water
molecules. All symmetry elements of this space group can be generated from six symmetry
operations. The full group contains a total of 48 symmetry elements which will be generated
by MkInvar. We use the first origin choice and construct the space group file “224.1” like so.
This file can be found in the “SpaceGroups” directory.

224 (Pn-3m)

6 48

cub

1 0 0 0 1 0 0 0 1

0 1 0 1 0 1

-1 0 0 0 -1 0 0 0 1

0 1 0 1 0 1

-1 0 0 0 1 0 0 0 -1

0 1 0 1 0 1

0 0 1 1 0 0 0 1 0

0 1 0 1 0 1

0 1 0 1 0 0 0 0 -1

1 2 1 2 1 2

-1 0 0 0 -1 0 0 0 -1

1 2 1 2 1 2

• We name the main input file “MkInvar.inp” just as we have been doing all along. We will
first perform calculations on the primitive unit cell and so we set all of the m j’s equal to
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one. The matrix of cell vectors, c is equal to the identity matrix. We will (arbitrarily) place
the space group file in the directory just above where we are currently working. The lattice
parameters for this cubic system are in units of Ångström and taken from the literature.21 We
will be asking MkInvar to generate H-bonds so that we only need to give a list of vertices
for the asymmetric unit, supplied in the “VertDef.txt” input file. We will generate all graph
invariants possible for this small unit cell. A covering cell will not be necessary for this
calculation.

1 1 1 (Simulation cell dimensions)

1 1 0 0 0 0 (Matrix of cell vectors as row vectors)

0 0 1 1 0 0

0 0 0 0 1 1

224 1 (Space Group Index)

../../SpaceGroups (Path to space group database)

3.337 3.337 3.337 90 90 90 (Lattice Parameters: a,b,c,alpha,beta,gamma)

0.1 (Minimum allowed OO distance)

2.50 3.13 (Min/Max allowed OO distance for H-Bonds)

0 (0: Generate H-bonds / 1: Read H-bonds)

1 (0: No Invar / 1: All / 2: Some)

1 (0: User specified covering cell / 1: Auto.)

• The final input file is “VertDef.txt” which contains the vertices of the asymmetric unit for
the ice VII unit cell. In this case, there is only one oxygen which is located at the origin.

1 # of vertices in asymmetric unit

0 1 0 1 0 1

MkInvar

Upon successful completion of a calculation six files will be generated as output:

1. Group Unit.txt

2. Structure Unit.txt

3. Vert Unit.xyz

4. Bond Unit.xyz

5. Bond Unit Wrap.xyz

6. MkInvar.log: Note that this file is only written to if verbose output is turned on. Any error
messages generated during the calculation are also written to this file.
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The first two files contain information on the symmetry group and structure generated by the code
before it exits. The next three files contain the coordinates for vertices and H-bonds to visualize
with another program. The last file is a log file which contains information about errors the program
encountered while running.

With the two input files in our current directory and the location of the space group file specified,
we are ready to run the code. An extra line is needed at the end of each of the input files in order for
the program to run successfully. With the executable in the same directory,simply type “MkInvar”
to run the code. With the current input files, the MkInvar code will exit without successfully
calculating the structure and invariants. This is an expected result because we have not supplied
enough information to properly construct the structure of the ice VII unit cell, as we will soon
discuss.

Viewing the file “Bond Unit Wrap.xyz”, shown below in Figure 4 (page 37), and reading the end
of the “MkInvar.log” file should make it obvious why the program terminated, but we’ll get to that
in a little bit. The last file, if generated, contains all output generated by the MkInvar program.
If we look through the file “MkInvar.log,” we can follow what the MkInvar code is doing at each
stage.

1. Read input files and initialize.

2. Generate full symmetry group.

3. Generate all possible vertices.

4. Use vertices to generate all possible H-bonds.

5. Recognize problem with structure, write coordinates to .xyz files, and terminate.

6. Analyze structure and create “HBondsDef.txt”.

7. Run MkInvar a second time.

8. Generate graph invariants.

When the program terminates after step 5, we will have to create a new input file using output
generated by the code. We will then have to run a second calculation to successfully generate
graph invariants. We’ll discuss each of these steps in detail below.

4.1.1 Read input files and initialize

In the “MkInvar.log” file, we will see the following output, most of which is simply restating what
was given in the input files.
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+++ Entering Subroutine ( ReadInput ) ***

Simulation Cell: 1 1 1

--This is a unit cell

Matrix of Cell Vectors:

1.00 0.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00

Primitive Cell? T

Inverse of Matrix of Cell Vectors:

1.00 0.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00

The simulation cell dimensions were read which in this case corresponds to the unit cell. The
matrix of cell vectors was read where it was determined that this is a primitive cell, i.e. the matrix
c from section 2 is the identity matrix. The inverse of the matrix of cell vectors was then calculated.

Next, information about the space group is reported.

SpaceGroup Index: 224

SpaceGroup Convention: 1

+++ Entering Subroutine ( Get_SpaceGroup_FileName ) ***

Path to SpaceGroup database: ../../SpaceGroups

Space Group read from file: 224.1

Full path to file: ../../SpaceGroups/224.1

--- Exiting Subroutine ( Get_SpaceGroup_FileName ) ***

Reading space group file...

Successful

Unique denominators of Trans. Vectors: 1 2

Lowest Common Denominator of Trans. Vectors: 2

The space group index was read from the input file and this will be used to compare against
the index given in the space group file, the location of which should be the directory above the
current directory. The contents of the space group file were then successfully read. Next, the
lowest common denominator(LCD) for components of the translation vectors of the symmetry
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operations was determined. Use of this quantity will allow MkInvar to use integer arithmetic for the
construction of the symmetry group, structure, and graph invariants. Next, the lattice parameters
are read and the symmetry is compared to that given in the space group file, in this case cubic.

+++ Entering Subroutine ( Check_LatticeParam ) ***

Lattice Constants

Length of vector 1(a): 3.337000

Length of vector 2(b): 3.337000

Length of vector 3(c): 3.337000

Angle between vectors 2 & 3(Alpha): 90.000000

Angle between vectors 1 & 3(Beta): 90.000000

Angle between vectors 1 & 2(Gamma): 90.000000

a == b? T

a == c? T

b == c? T

a == b == c? T

Alpha == 90? T

Beta == 90? T

Gamma == 90? T

Gamma == 60? F

Gamma == 120? F

Alpha == Beta == 90? T

Alpha == Gamma == 90? T

Alpha == Beta == Gamma? T

Alpha == Beta == Gamma == 90? T

Cell Type Found: cub

ORTHOGONAL(ORTHOG)? T

--- Exiting Subroutine ( Check_LatticeParam ) ***

The lattice constants were read from “MkInvar.inp” and the lattice type is determined to be cubic
which must agree with the lattice type contained in the space group file. As a note, the test of
whether two real numbers are equivalent involves testing if the two numbers differ by some toler-
ance. The value for this tolerance is initialized in the “param.inc” file at compile time. The current
value for “TOL ZERO” is 1 × 10−10. In this crystal system, the lattice vectors are orthogonal and
this permits the use of some optimized routines.
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+++ Entering Subroutine ( Generate_LatticeVector ) ***

Angles(Radians):

Alpha: 1.570796

Beta: 1.570796

Gamma: 1.570796

Cos(alpha): 0.000000

Sin(beta): 1.000000

Cos(beta): 0.000000

Sin(gamma): 1.000000

Cos(gamma): 0.000000

Tan(gamma): 0.222734E+11

--- Exiting Subroutine ( Generate_LatticeVector ) ***

Matrix of Unit Cell Lattice Vectors:

3.33700 0.00000 0.00000

0.00000 3.33700 0.00000

0.00000 0.00000 3.33700

Inverse of Unit Cell Lattice Vectors:

0.29967 0.00000 0.00000

0.00000 0.29967 0.00000

0.00000 0.00000 0.29967

Using the lattice parameters, lattice vectors, L j’s in section 2, for the unit cell are constructed.
These lattice vectors will used with the fractional coordinates to generate atomic coordinates for
the .xyz files.

Minimum allowed OO distance: 0.100000

Minimum allowed H-bonded OO distance: 2.500000

Maximum allowed H-bonded OO distance: 3.130000

This portion is simply repeating what was present in the input file. Since the lattice parameters
were given in Ångström, these distances must also be in units of Ångström. If when generating the
structure, the program finds that the minimum image distance between any two oxygen atoms less
than 0.1Å, then the program will terminate with a warning message. We only search for H-bonds
where the oxygen atoms are separated by 2.50 − 3.13Å.
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Method to determine H-bonds(jobHBONDS): 0

0: Read vertices from VertDef.txt.

1: Read H-bonds from HBondsDef.txt.

Method to generate invariants(jobGENINVAR): 1

0: Do not generate invariants

1: Generate all invariants.

2: Read bond pairs from BondPairDef.txt.

We have asked for the program to generate H-bond definitions and so it will be expecting to find
the file “VertDef.txt.” We have also asked that all graph invariants for this cell be calculated.

+++ Entering Subroutine ( Read_Asym ) ***

LCD for vertices, bonds, symmetry operations: 2

# of vertices in asymmetric unit: 1

Vertices(real*8)

0.00000 0.00000 0.00000

--- Exiting Subroutine ( Read_Asym ) ***

The file “VertDef.txt” was successfully read. The LCD from the vertex coordinates is compared
with that from the symmetry elements. The LCD for all vertices, bonds, and symmetry elements
will be used to scale all coordinates so integer arithmetic can be used. The fractional coordinates of
the vertices in the asymmetric unit are written to output as real numbers. The user should confirm
these coordinates are correct.

Generators of symmetry group:

# of generators: 6

1 0 0 0 1 0 0 0 1 0 1 0 1 0 1

-1 0 0 0 -1 0 0 0 1 0 1 0 1 0 1

-1 0 0 0 1 0 0 0 -1 0 1 0 1 0 1

0 0 1 1 0 0 0 1 0 0 1 0 1 0 1

0 1 0 1 0 0 0 0 -1 1 2 1 2 1 2

-1 0 0 0 -1 0 0 0 -1 1 2 1 2 1 2

--- Exiting Subroutine ( ReadInput ) ***

After the generators are scaled, as a test, we undo the scaling and write them to output to see if we
get back the original symmetry elements. The program has just finished reading all of the input
files and will proceed with generating the full symmetry group.
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4.1.2 Generate Group

+++ Entering Subroutine ( GenGroup_Unit ) ***

Current Size of Group: 6

Current Size of Group: 20

Current Size of Group: 48

Current Size of Group: 48

Group has stopped growing.

# of symmetry elements expected: 48

# of symmetry elements found: 48

Group written to Group_Unit.txt.

--- Exiting Subroutine ( GenGroup_Unit ) ***

Repeated multiplication of the symmetry elements is performed until the total number of elements
in the group is a constant. We can see that by the third iteration, the size of the group has converged
to 48 which agrees with the number read from the space group file. The symmetry elements for
the group were successfully written to output in the file “Group Unit.txt.”

4.1.3 Generate all possible vertices

+++ Entering Subroutine ( Generate_Vertices_Asym ) ***

Asym Vert: 1 # of vertices: 2

# of unique vertices in unit cell: 2

--- Exiting Subroutine ( Generate_Vertices_Asym ) ***

For every vertex given in “VertDef.txt,” symmetry operations of the full group are applied and all
unique vertices generated are saved. In this system, application of the symmetry group generated
two unique vertices. This is what is expected since the unit cell of ice VII contains only two water
molecules.

4.1.4 Use vertices to generate all possible H-bonds

After generation of all vertices in the unit cell, MkInvar uses the distance criterion from the input
file “MkInvar.inp” to identify all possible H-bonds. Again, there are two unique vertices in this
system, one at the origin and one at the center of the cube.
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+++ Entering Subroutine ( Generate_HBonds_Asym ) ***

Min H-Bond Distance Tolerance: 2.5

Max H-Bond Distance Tolerance: 3.13

# of oxygens: 2

Index x y z Coord.

-----------------------------------------------

1 0.00000 0.00000 0.00000 8

2 0.50000 0.50000 0.50000 8

# of H-Bonds: 8

Vertex 1 Vertex 2 Oxygen

Index x y z x y z Indices

--------------------------------------------------------------

1 0.00 0.00 0.00 -0.50 -0.50 -0.50 1 2

2 0.00 0.00 0.00 -0.50 -0.50 0.50 1 2

3 0.00 0.00 0.00 -0.50 0.50 -0.50 1 2

4 0.00 0.00 0.00 -0.50 0.50 0.50 1 2

5 0.00 0.00 0.00 0.50 -0.50 -0.50 1 2

6 0.00 0.00 0.00 0.50 -0.50 0.50 1 2

7 0.00 0.00 0.00 0.50 0.50 -0.50 1 2

8 0.00 0.00 0.00 0.50 0.50 0.50 1 2

--- Exiting Subroutine ( Generate_HBonds_Asym ) ***

TERMINATE: T

Using the distance criteria, eight possible H-bonds were identified. For each H-bond, the fractional
coordinates of the oxygen atoms as well as the corresponding vertex indices are given. In our first
attempt to run the code, because we used a distance criterion to identify H-bonds for the ice VII
system, the H-bond coordination for each of the oxygens came out to be eight, more H-bonds than
allowed. If any of the vertices are not four coordinated, the program terminates before attempting
to calculate graph invariants. This is not always the case but in ice VII non-H-bonded oxygens
are just as close as H-bonded vertices. We purposely chose an example where this problem would
occur, so we could illustrate how the output generated to this point can be used to recover.

4.1.5 Recognize problem and terminate

Before terminating, the structure and atomic coordinates of the system in its present state is written
to file.
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Writing Vert_Unit.xyz

Writing Bond_Unit.xyz

Writing Bond_Unit_Wrap.xyz

+++ Entering Subroutine ( Write_Structure ) ***

Writing structure to file: Structure_Unit.txt

--- Exiting Subroutine ( Write_Structure ) ***

The program will be terminated because some

oxygens are not four coordinated. Using the

file Structure_Unit.txt and the various .xyz

files, one should be able to construct a file

named HBondsDef.txt in which all oxygens are

four coordinated.

The file “Structure Unit.txt” as well as .xyz files for visualization are written as output. We can see
the warning message that not all oxygens were four coordinated. At this point, we see a warning
message that the program will soon be terminated.
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+++ Entering Subroutine ( Orbit_Vertices ) ***

Vertex: Symmetry Related Vertices

1: 1 2

2: 1 2

--- Exiting Subroutine ( Orbit_Vertices ) ***

+++ Entering Subroutine ( Orbit_HBonds ) ***

Bond : Symmetry Related Bonds

1: 1 4 6 7

2: 2 3 5 8

3: 2 3 5 8

4: 1 4 6 7

5: 2 3 5 8

6: 1 4 6 7

7: 1 4 6 7

8: 2 3 5 8

# of New H-bonds: 0

--- Exiting Subroutine ( Orbit_HBonds ) ***

The program will be terminated because vertices &

bonds did not form complete orbits or oxygen atoms

were not four coordinated.

Vertices and H-bonds were grouped together in orbits. An orbit is a group of objects all related
by symmetry. We can see that all vertices in this system are related to one another by symmetry.
From the eight H-bonds found, we see that there are two orbits. The first orbit contains H-bonds
1, 4, 6, and 7 while the second orbit contains H-bonds 2, 3, 5, and 8. This information along with
the coordinate files generated should give us enough information to identify those H-bonds which
do not belong.

4.1.6 Analyze structure and create “HBondsDef.txt”

By analyzing the structures generated by the code at the point, shown in Figure 4, we can identify
those H-bonds which do not belong. In this case, we need to remove H-bonds 1, 4, 6, and 7.
We can use the H-bond definitions for H-bonds 2, 3, 5, and 8 in “Structure Unit.txt” to create a
“HBondsDef.txt” input file.
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Figure 4: The structure of the ice VII unit cell generated from MkInvar. a) and b) are the structures
contained in the files “Bond Unit.xyz” and “Bond Unit Wrap.xyz” respectively. The red and blue
numbers indicate the indices of the oxygen (red spheres) and hydrogen (yellow spheres) atoms,
respectively. H-bonds 1, 4, 6, and 7, a complete orbit, will be removed to generate the correct
structure for the ice VII unit cell.

4 # of HBonds

0 1 0 1 0 1 -1 2 -1 2 1 2 1 2

0 1 0 1 0 1 -1 2 1 2 -1 2 1 2

0 1 0 1 0 1 1 2 -1 2 -1 2 1 2

0 1 0 1 0 1 1 2 1 2 1 2 1 2

We can then use this input file to run the MkInvar program a second time. It should be pointed out
that this step and the next are not necessary when the distance criterion is sufficient to correctly
generate the H-bond structure.

4.1.7 Run MkInvar a second time

Now, we make the following change to line 10 of the input file “MkInvar.inp” so that we now use
the H-bond definitions in “HBondsDef.txt” to generate the structure.

1 0: Generate H-bonds / 1: Read H-bonds

We use the same command as before to run the program a second time.

MkInvar

This time, we will find that the code successfully completes all tasks. In addition to the previously
written output files, which were just overwritten, the following additional files are generated:

1. GraphInvar.txt
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2. GenBondPair.txt

3. BondPairs.txt

as well as input for the enumeration code, GrEnum:

1. Bonds

2. Gbonds

3. Gv

4. Invar

If we look through the new “MkInvar.log” file, we will see differences when the code begins to
generate the structure.

+++ Entering Subroutine ( Generate_Vertices_HBonds ) ***

Using H-Bonds to identify unique vertices

Physical Oxygen Coordinates

1 0.00 0.00 0.00

2 1.67 1.67 1.67

Using the H-bond definitions, the MkInvar program has identified two unique vertices, consistent
with the previous calculation. These are the physical coordinates in the same units as the lattice
parameters. The vertices and H-bond definitions are given a second time in terms of fractional
coordinates.
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Min H-Bond Distance Tolerance: 2.5

Max H-Bond Distance Tolerance: 3.13

# of oxygens: 2

Index x y z Coord.

----------------------------------------

1 0.00 0.00 0.00 4

2 0.50 0.50 0.50 4

# of H-Bonds Found: 4

Vertex 1 Vertex 2 Oxygen

Index x y z x y z Indices

------------------------------------------------------------------

1 0.00 0.00 0.00 -0.50 -0.50 0.50 1 2

2 0.00 0.00 0.00 -0.50 0.50 -0.50 1 2

3 0.00 0.00 0.00 0.50 -0.50 -0.50 1 2

4 0.00 0.00 0.00 0.50 0.50 0.50 1 2

--- Exiting Subroutine ( Generate_Vertices_HBonds ) ***

TERMINATE: F

Writing Vert_Unit.xyz

Writing Bond_Unit.xyz

Writing Bond_Unit_Wrap.xyz

+++ Entering Subroutine ( Write_Structure ) ***

Writing structure to file: Structure_Unit.txt

--- Exiting Subroutine ( Write_Structure ) ***

We can see that the two vertices are now four coordinated as expected. At this point, application
of the symmetry elements to vertices and H-bonds in the cell should not generate any new vertices
or H-bonds. The orbits for vertices and H-bonds are identified where we can confirm that no new
vertices or H-bonds are generated by symmetry elements of the space group. Now that the structure
has been successfully generated, symmetry properties of the H-bonds can be determined.
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+++ Entering Subroutine ( Orbit_Vertices ) ***

Vertex: Symmetry Related Vertices

1: 1 2

2: 1 2

--- Exiting Subroutine ( Orbit_Vertices ) ***

+++ Entering Subroutine ( Orbit_HBonds ) ***

Bond : Symmetry Related Bonds

1: 1 2 3 4

2: 1 2 3 4

3: 1 2 3 4

4: 1 2 3 4

# of New H-bonds: 0

--- Exiting Subroutine ( Orbit_HBonds ) ***

4.1.8 Generate graph invariants

At this point, we have all of the information necessary to calculate graph invariants. In the input
file, “MkInvar.inp”, we specified that we wanted all possible invariants to be generated.

+++ Entering Subroutine ( GenInvariant ) ***

Copying bonds from unit cell

+++ Entering Subroutine ( GenInvar_ALL ) ***

+++ Entering Subroutine ( Invar_Gen_ALL_B ) ***

Generating 1st order invariants: b[j]

# of invariants: 0

--- Exiting Subroutine ( Invar_Gen_ALL_B ) ***

The first set of invariants that are generated are the first-order invariants, Ĝ(br). For this system, we
find that all first-order invariants are identically zero. Next, second-order invariants are generated.

40



+++ Entering Subroutine ( Invar_Gen_ALL_BC ) ***

Generating 2nd order invariants: b[j]c[k]

# of invariants: 2

--- Exiting Subroutine ( Invar_Gen_ALL_BC ) ***

The code first generates second-order graph invariants of the type Ĝ(brcs), for which there are two
in this small unit cell. Next, invariants of the type Ĝ(brbs) are constructed.

+++ Entering Subroutine ( Invar_Gen_ALL_BB_from_BC ) ***

Generating 2nd order invariants: b[j]b[k]

Range of indices for b[j]c[k] invariants: 1 2

# of invariants: 2

--- Exiting Subroutine ( Invar_Gen_ALL_BB_from_BC ) ***

--- Exiting Subroutine ( GenInvar_ALL ) ***

Graph Invariants written to GraphInvar.txt.

Writing generating bond pair info to BondPairs.txt.

--- Exiting Subroutine ( GenInvariant ) ***

Again, due to the small size and high symmetry of the system, there are only two second-order
graph invariants. All first- and second-order invariants have now been generated and written to
file, “GraphInvar.txt”. Generating bond pairs for these invariants are also written to file. The
file “GenBondPair.txt” contains all generating bond pairs for each invariant. For second-order
invariants, only generating bond pairs with the shortest distance between them are reported for
each invariant. The first generating bond pair for each invariant is also reported in a second file,
“BondPairs.txt”. This file can immediately be used for additional calculations on other cell sizes.
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4.1.9 Write Input for GrEnum

+++ Entering Subroutine ( Write_Enumeration_Input ) ***

Writing file Bonds...

Writing file Gv...

Writing file Gbonds...

Writing file Invar...

--- Exiting Subroutine ( Write_Enumeration_Input ) ***

The last portion of the output file says that the MkInvar code generated the input files necessary to
run the GrEnum code on this system.

4.2 2 × 2 × 2 simulation cell of ice VII

In the previous section, we went through a step-by-step discussion of how to use the MkInvar
program to correctly generate the structure and graph invariants for the ice VII unit cell. In this
section, we will use some of those output files to perform calculations on a slightly larger cell
size. We will generate the structure and graph invariants for a 16-water cell measuring 2 × 2 × 2
unit cells along each side. To do this calculation, we only need to make one small change to the
“MkInvar.inp” file regarding the simulation cell dimensions.

2 2 2 (Simulation cell dimensions)

That is the only change we need to make! We will use the same “HBondsDef.txt” that we used in
the previous calculation to correctly generate the ice VII structure. We use the same command as
before

MkInvar

and will find that the calculation successfully finishes relatively quickly. Looking through the
“MkInvar.log” file, we see essentially the same thing that we saw in the previous calculation with
a few additions.
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+++ Entering Subroutine ( GenGroup_Unit ) ***

Current Size of Group: 6

Current Size of Group: 20

Current Size of Group: 48

Current Size of Group: 48

Group has stopped growing.

# of symmetry elements expected: 48

# of symmetry elements found: 48

Group written to Group_Unit.txt.

--- Exiting Subroutine ( GenGroup_Unit ) ***

+++ Entering Subroutine ( GenGroup_Sim ) ***

Cell Dimensions: 2 2 2

Expected size of group in simulation cell: 384

-- Not accurate for unit cells that do not

possess the full symmetry of the lattice.

Exactly as in the previous calculation, the full symmetry group is generated for the unit cell defined
by the ck j coefficients, as in Eqs. (4-5). Then, using the number of symmetry elements in the group
and the simulation cell dimensions (specified by m1,m2,m3), an estimate for the number of coset
representatives in the group for the simulation cell is given. When the unit cell does not have the
full symmetry of the lattice (that is, some of the coset representatives can move a vertex out of the
unit cell), special complications arise. As noted in the output, this estimate may not be accurate.
When the c matrix [Eq. (5)] is the identity matrix or a multiple of the identity matrix, the estimate
of the number of coset representatives for the simulation cell is accurate.
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Matrix of Lattice Vectors for Simulation Cell:

2.00 0.00 0.00

0.00 2.00 0.00

0.00 0.00 2.00

Inverse of Matrix of Lattice Vectors:

0.50 0.00 0.00

0.00 0.50 0.00

0.00 0.00 0.50

Size of Group: 384

Group written to Group_Sim.txt

--- Exiting Subroutine ( GenGroup_Sim ) ***

The matrix of cell vectors for the simulation cell is calculated. Operating the translation group
from the simulation cell on the full symmetry group from the unit cell generates the symmetry
group for the simulation cell. The unit cell calculation is repeated and then using that information,
the structure and symmetry group are constructed for the simulation cell. The MkInvar program
finds 384 symmetry elements in the group which is eight times larger than the size of the group in
the unit cell. This is expected since the simulation cell is eight times larger.

+++ Entering Subroutine ( Generate_Vertices_HBonds_Sim ) ***

# of vertices in Simulation Cell: 16

# of bonds in Simulation Cell: 32

Constructing BondListSim...

--- Exiting Subroutine ( Generate_Vertices_HBonds_Sim ) ***

Using the translation group from the simulation cell and H-bonds from the unit cell, the structure
for the simulation cell can be generated. Again, we find that the number of vertices and H-bonds
is eight times larger than in the unit cell. With the structure correctly generated, the code proceeds
to calculate all possible graph invariants as instructed in the “MkInvar.inp” file. Again, first-order
invariants are identically zero in this system and now there are eight invariants for each of the
second-order invariant types. In addition to those files generated from the previous calculation,
new output files are written containing information specific to the symmetry group and structure
of the simulation cell.

1. Group Sim.txt

2. Structure Sim.txt

3. Vert Sim.xyz
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4. Bond Sim.xyz

5. Bond Sim Wrap.xyz

As a side note, we could have performed this same calculation on the 2× 2× 2 cell using a slightly
different input file. Instead of changing the simulation cell dimensions, we could have changed the
matrix of cell vectors like so.

1 1 1 (Simulation cell dimensions)

2 1 0 0 0 0 (Matrix of cell vectors as row vectors)

0 0 2 1 0 0

0 0 0 0 2 1

The code will generate exactly the same output as before, but without taking advantage of the
translational symmetry. The MkInvar program will treat this system as if it were a unit cell ignoring
the fact that this cell consists of 2 × 2 × 2 unit cells. It is advantageous to use the translational
symmetry of the system and only change the simulation cell dimensions in this case.

4.3 5 × 5 × 5 simulation cell of ice VII

In this example, we will again use information from calculations on smaller cells to generate the
structure and invariants for a larger cell. This time, instead of calculating all possible invariants,
we’ll only generate those invariants that were present in the 2 × 2 × 2 cell. Again, only a couple of
changes to “MkInvar.inp” are necessary.

5 5 5 (Simulation cell dimensions)

We specify that the simulation cell consists of 5 × 5 × 5 unit cells along each side. We also select
that we only want some of the graph invariants to be generated, not all of them.

2 (0: No Invar / 1: All / 2: Some)

To only generate invariants from the 2 × 2 × 2 cell, we just use the “BondPairs.txt” file that we
created in the previous section. We rename this file as “BondPairsDef.txt.” When only calculating
some invariants, this is a necessary input file. Executing the code just like before generates output,
similar to what we saw in the previous section, for this large simulation cell. Remember that any
files created by the MkInvar program will overwrite any files that already exist. When the MkInvar
program is ready to calculate invariants, we see the following in the “MkInvar.log” file.
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+++ Entering Subroutine ( GenInvar_BP ) ***

Generating Bond Pairs:

# of 1st order invariants, b[j]: 0

# of 2nd order invariants, b[k]b[k]: 8

# of 2nd order invariants, b[k]c[k]: 8

Invariants Generated:

# of 1st order invariants, b[j]: 0

# of 2nd order invariants, b[k]b[k]: 8

# of 2nd order invariants, b[k]c[k]: 8

--- Exiting Subroutine ( GenInvar_BP ) ***

There were a total of sixteen invariants for which the generating bond pairs were read from the
file “BondPairsDef.txt”. The simulation cell invariants, using these generating bond pairs, were
constructed and written to the “GraphInvar.txt” output file.
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4.4 Note on the Use of Covering Cells

Before moving on to the next couple of examples in this tutorial, we will first say a few things
about the use of covering cells. For those cases where the simulation cell of interest does not
have the full symmetry of the crystal lattice for the spacegroup, a covering cell must be used. The
covering cell, which does have the full symmetry of the crystal lattice, consists of the simulation
cell and its images, i.e. exact copies of the simulation cell related by translations. If an H-bond in
the simulation cell takes a particular orientation, then that same H-bond in all of the images will
be found in the same orientation. These constraints between the simulation cell and its images will
be used to construct graph invariants and enumerate symmetry-distinct H-bond configurations.

When a covering cell is used, additional output files will be created. The letter ’C’ will be appended
to end of the filenames so as not to overwrite the corresponding files for the covering cell. One
example is the “GraphInvar.txt” file. When a covering cell is requested, this file will contain graph
invariants for the covering cell. The graph invariants for the smaller simulation cell will be found
in the file “GraphInvarC.txt” indicating that a covering cell was used to generate this file.

4.5 2 × 2 × 1 simulation cell of ice VII

Structures and graph invariants can be generated for simulation cells that do not have the same
symmetry as the unit cell. For these calculations, a covering cell, 2 × 2 × 2, is first constructed
which does have the same symmetry as the unit cell. Then, using the symmetry group and structure
from this covering cell, graph invariants for the 2 × 2 × 1 cell are calculated. An example of an
input file for this calculation follows. (The “HBondsDef.txt” file created previously needs to be
used)

2 2 1 (Simulation cell dimensions)

1 1 0 0 0 0 (Matrix of cell vectors as row vectors)

0 0 1 1 0 0

0 0 0 0 1 1

224 1 (Space Group Index)

../../SpaceGroups (Path to space group database)

3.337 3.337 3.337 90 90 90 (Lattice Parameters: a,b,c,alpha,beta,gamma)

0.1 (Minimum allowed OO distance)

2.50 3.13 (Min/Max allowed OO distance for H-Bonds)

1 (0: Generate H-bonds / 1: Read H-bonds)

1 (0: No Invar / 1: All / 2: Some)

1 (0: User specified covering cell / 1: Auto.)

For those cases where we only alter the simulation cell dimensions and not the matrix of cell vec-
tors, the MkInvar code will automatically detect that a covering cell is necessary. A covering cell
will be used anytime the simulation cell dimensions are not all identical. The code will automati-
cally determine the size of the covering cell. We do not need to specify “0” to use a covering cell
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for this case. Examining the output file “MkInvar.log,” we notice some comments regarding the
use of a covering cell.

+++ Entering Subroutine ( ReadInput ) ***

Simulation Cell: 2 2 1

A covering cell used for this calculation.

Covering Cell Dimensions: 2 2 2

The MkInvar code automatically determined that the dimensions of the covering cell were 2×2×2
unit cells along each side.

+++ Entering Subroutine ( GenGroup_Sim ) ***

Cell Dimensions: 2 2 2

The covering cell is the cell for which the symmetry group is generated. The vertices and H-bonds
for the 2 × 2 × 1 system, the simulation cell, are generated and cartesian coordinates are written to
file. We see that since the simulation cell is four times larger than the unit cell, there are four times
as many vertices and H-bonds than present in the unit cell.

+++ Entering Subroutine ( Generate_Vertices_HBonds_Sim ) ***

# of vertices in Simulation Cell: 8

# of bonds in Simulation Cell: 16

Constructing BondListSim...

--- Exiting Subroutine ( Generate_Vertices_HBonds_Sim ) ***

Writing Vert_Sim.xyz

Writing Bond_Sim.xyz

Writing Bond_Sim_Wrap.xyz

+++ Entering Subroutine ( Write_Structure ) ***

Writing structure to file: Structure_Sim.txt

--- Exiting Subroutine ( Write_Structure ) ***

The same is also done for the covering cell and we see that there are eight times as many vertices
and H-bonds than present in the unit cell.
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+++ Entering Subroutine ( Generate_Vertices_HBonds_Cov ) ***

# of vertices in Covering Cell: 16

# of bonds in Covering Cell: 32

Constructing BondListCov...

--- Exiting Subroutine ( Generate_Vertices_HBonds_Cov ) ***

Writing Vert_Cov.xyz

Writing Bond_Cov.xyz

Writing Bond_Cov_Wrap.xyz

+++ Entering Subroutine ( Write_Structure ) ***

Writing structure to file: Structure_Cov.txt

--- Exiting Subroutine ( Write_Structure ) ***

If we were to inspect the next portion of the output file, we would find that the graph invariants
were generated for the covering cell. Just as in the previous section, we would find that all first-
order invariants are identically zero and there would be eight second-order invariants for each type.
The MkInvar code then generates output for the GrEnum program.

+++ Entering Subroutine ( Write_Enumeration_Input ) ***

Writing file Bonds...

Writing file Gv...

Writing file Gbonds...

Writing file Invar...

Writing file BondsC...

--- Exiting Subroutine ( Write_Enumeration_Input ) ***

We see an additional output file was written. The “BondsC” file was generated because a covering
cell was used. The contents of this file are discussed in more detail below, in section 5.4. As
discussed below, the use of this file currently requires running the enumeration code GrEnumC.
The final portion of the output file shows the generation of graph invariants for the simulation cell.
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+++ Entering Subroutine ( GenInvariantCover ) ***

+++ Entering Subroutine ( GenInvar_Sim_from_Cover ) ***

# of 1st order invariants, b[j]: 0

# of 2nd order invariants, b[k]b[k]: 8

# of 2nd order invariants, b[k]c[k]: 8

# of invariants in simulation cell: 16

These invariants may have algebraic linear dependencies.

--- Exiting Subroutine ( GenInvar_Sim_from_Cover ) ***

Graph Invariants written to GraphInvarC.txt.

Writing generating bond pair info to BondPairsC.txt.

--- Exiting Subroutine ( GenInvariantCover ) ***

Applying the H-bond constraints, discussed in the previous section, to graph invariants in the
covering cell generates graph invariants for the simulation cell. Since all first-order invariants were
identically zero in the covering cell, there are no first-order invariants in the simulation cell. We
also find eight unique second-order invariants for each type in the simulation cell. As the note
states, unlike the covering cell, the graph invariants for the simulation cell are not necessarily
linearly independent.

Notice that the graph invariants and their generating bond pairs were written to the files “GraphIn-
varC.txt” and “BondPairsC.txt” respectively, as discussed in the previous section.

Instead of letting the MkInvar code automatically choose the covering cell for this calculation,
we could have specified the covering cell of our choosing. The following input file would have
accomplished the same task. Although these two input files generate different sets of output files,
the same information for the 2 × 2 × 1 cell is generated.
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2 2 2 (Simulation cell dimensions)

1 1 0 0 0 0 (Matrix of cell vectors as row vectors)

0 0 1 1 0 0

0 0 0 0 1 1

224 1 (Space Group Index)

../../SpaceGroups (Path to space group database)

3.337 3.337 3.337 90 90 90 (Lattice Parameters: a,b,c,alpha,beta,gamma)

0.1 (Minimum allowed OO distance)

2.50 3.13 (Min/Max allowed OO distance for H-Bonds)

0 (0: Generate H-bonds / 1: Read H-bonds)

1 (0: No Invar / 1: All / 2: Some)

0 (0: User specified covering cell / 1: Auto.)

2 1 0 0 0 0 (Matrix of cell vectors for covering cell )

0 0 2 1 0 0

0 0 0 0 1 1
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4.6 2
√

2 × 2
√

2 × 2 simulation cell of ice VII

As described briefly above, calculations on non-primitive cells is also possible. In this example,
calculations on an ice VII cell measuring 2

√
2× 2

√
2× 2 unit cells on each side would be possible

using the following input file:

4 4 4 (Simulation cell dimensions)

1 1 0 0 0 0 (Matrix of lattice vectors as row vectors)

0 0 1 1 0 0

0 0 0 0 1 1

224 1 (Space Group Index)

../../SpaceGroups (Path to space group database)

3.337 3.337 3.337 90 90 90 (Lattice Parameters: a,b,c,alpha,beta,gamma)

0.1 (Minimum allowed OO distance)

2.50 3.13 (Min/Max allowed OO distance for H-Bonds)

0 (0: Generate H-bonds / 1: Read H-bonds)

1 (0: No Invar / 1: All / 2: Some)

0 (0: User specified covering cell / 1: Auto.)

2 1 -2 1 0 0 (Matrix of cell vectors for covering cell )

2 1 2 1 0 0

0 0 0 0 1 1

We are using a 4 × 4 × 4 covering cell to do calculation on this tetragonal system.

An input file that doesn’t use a covering cell follows.

2 2 2 (Simulation cell dimensions)

1 1 -1 1 0 0 (Matrix of lattice vectors as row vectors)

1 1 1 1 0 0

0 0 0 0 1 1

224 1 (Space Group Index)

../../SpaceGroups (Path to space group database)

3.337 3.337 3.337 90 90 90 (Lattice Parameters: a,b,c,alpha,beta,gamma)

0.1 (Minimum allowed OO distance)

2.50 3.13 (Min/Max allowed OO distance for H-Bonds)

0 (0: Generate H-bonds / 1: Read H-bonds)

1 (0: No Invar / 1: All / 2: Some)

1 (0: User specified covering cell / 1: Auto.)

4.7 Common Error Messages

• There should be at least one new line at the end of each input file. Error messages, like the
one that follows, can be remedied by simply placing a new line at the end of the file, in this
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case, the “HBondsDef.txt” file.

At line 661 of file ReadWrite.f (unit = 1, file = ’HBondsDef.txt’)

Fortran runtime error: End of file
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5 GrEnum

5.1 Compilation

The GrEnum program is written in a Fortran 77/90 mix. We have found that commonly available
Fortran 90 compilers are sufficient. Also necessary is a set of math libraries, such as LAPACK and
BLAS, to call the DPOSVX subroutine to solve a system of linear equations. To compile the code,
one simply goes to the source directory and types “make” on the command line making sure that
the correct path to the math libraries is used. This should generate an executable named “GrEnum.”

5.2 Running GrEnum

The following command is used to run the program.

GrEnum

In total, there is a minimum of five input files necessary to run the program. Most of these input files
contain information on the H-bonds, symmetry operations, and graph invariants and are generated
as output from the MkInvar program. We discuss the contents and format of each of these files in
turn. All output related to the progress of the GrEnum program is written to the “Log” file.

At any point during the calculation, the program will stop if it detects the presence of a text file
named “EXIT” in the working directory. This will cause the program to exit in a controlled fashion
after finishing the current symmetry comparison. Note that no temporary files will not be removed
by the program in this case.

5.3 GrEnumC

The GrEnumC code is a modified version of the GrEnum code to handle covering cell calculations.
It is compiled in the same directory as the GrEnum code by using the following command:

make GrEnumC

This code runs in exactly the same way as the GrEnum code except that it requires one extra input
file.

5.4 Input Files

With the exception of “GrEnum.inp”, all of these input files are generated as output from the
MkInvar code. All of these files essentially contain lists of integers used to define the mapping of
vertices and H-bonds when acted on by symmetry operations.
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5.4.1 GrEnum.inp

This input file initializes a number of parameters and controls the volume of output written to the
output file “Log.”

6 nInvForDeal

300 InvariantThreshold0

300 InvariantThreshold

20000 maxInvariantSampleSize

.true. UseInvariants

.false. VERBOSE

.false. DEBUG

.true. Reorder H-bonds

Only the first entry on each line is read by the GrEnum code while all text that follows is ignored.
The first three lines contain integers while the last four contain logical statements. A description
for each line of the input file follows.

1. The maximum number of graph invariants used to sort H-bond configurations.

2. The minimum number of configurations required to implement the invariant procedure in
order to eliinate symmetry-equivalent configurations.

3. The maximum number of H-bond configurations allowed in a temporary “XX###” file before
symmetry comparison. Note that symmetry comparison on files containing more configura-
tions than this threshold is possible if nInvForDeal invariants is not sufficient to meet the
threshold requirement.

4. The maximum number of H-bond configurations used to sample graph invariants.

5. This controls whether graph invariants are used to sort configurations.

6. This increases the amount of output written to the “Log” file. When this option is turned
on, verbose output regarding the input files and initialization is written to file. Information
regarding the sampling of invariants is also written.

7. This further increases the level of output written to the “Log” file. This option controls
whether detailed output related to the dealing of H-bond configurations is written to output.

8. This is an option to rearrange the order in which H-bonds are added during the enumera-
tion. The current algorithm adds H-bonds to maximize the number of vertices that are four-
coordinated at each step. The order in which H-bonds are added during the enumeration has
a significant impact on the efficiency of the calculation.
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5.4.2 Bonds

For each of the H-bonds in the cell, the indices of the vertices are given. The convention is taken
that H-bonds point from the first oxygen towards the second oxygen. This orientation is assigned
the bond variable +1. The bond variable for the opposite orientation is assigned the value −1. The
following is an example from the ice III unit cell.

1 2

1 3

4 5

4 6

7 8

7 9

10 11

10 12

5 12

...

This is exactly the same information given in the file “Structure Unit.txt” for the H-bond defini-
tions. In this example, the first H-bond is taken to point from vertex 1 towards vertex 2.

5.4.3 Gv

This file contains the indices for the vertices permuted by the symmetry operations. Each line
corresponds to a symmetry operation and each column is associated with a vertex. The following
is an example from the ice III unit cell.

1 2 3 4 5 6 7 8 9 10 11 12

10 12 11 7 9 8 4 6 5 1 3 2

4 5 6 10 12 11 1 3 2 7 8 9

4 6 5 1 3 2 10 12 11 7 9 8

7 9 8 1 2 3 10 11 12 4 6 5

7 8 9 10 11 12 1 2 3 4 5 6

10 11 12 4 6 5 7 9 8 1 2 3

1 3 2 7 8 9 4 5 6 10 12 11

In this example, there are eight symmetry elements (more precisely, coset representative) in the
space group for the ice III unit cell which contains twelve water molecules. By inspection, we can
see that the first symmetry element corresponds to the identity operation.
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5.4.4 Gbonds

This file is similar to the file “Gv” except it contains the indices of H-bonds generated when acted
upon by symmetry operations.

5.4.5 Invar

This file contains the coefficients and bond indices for second-order graph invariants of the type
Ĝ(brbs). The first line contains two integers, the number of invariants and the total number of
terms that will be read from this file. In the example, from the ice III unit cell, there are forty-five
second-order graph invariants and 300 terms in total.

45 300

8

1 1 1

2 2 1

3 3 1

4 4 1

5 5 1

6 6 1

7 7 1

8 8 1

4

1 2 1

3 4 1

5 6 1

7 8 1

...

For each invariant, the first line indicates the number of terms. For every term, there is a line which
gives the bond indices and coefficient. In this example, the first invariant contains eight terms
while the second invariant has four. For each term in the invariant, the first two integers are the
bond indices and the third integer is the coefficient. In mathematical form, these two invariants are
written as:

Ĝ(b1b1) = b1b1 + b2b2 + b3b3 + b4b4 + b5b5 + b6b6 + b7b7 + b8b8 (21)
Ĝ(b1b2) = b1b2 + b3b4 + b5b6 + b7b8 (22)

The normalization of invariants is not necessary for the enumeration algorithm.
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5.4.6 RESTART

This file contains a single integer specifying which of the restart files will be read to restart an
enumeration. At the beginning of a calculation, the GrEnum code checks for the presence of this
file. If the file is found, the integer is read, and the H-bond configurations from the corresponding
“XFile.##.rst” file is read. The calculation then proceeds as normal. For example, if we wanted
to restart a calculation starting on the 50th H-bond, the “RESTART” file would simply contain the
number “50” followed by a blank line.

5.4.7 BondsC

This is the one additional input file required for the enumeration of a system when a covering cell
is used. This file contains the bond constraints that were discussed in

section 4.6. The following is a portion of the “BondsC” file.

32 # of Groups

8 # of bonds in Group 1

1

5

9

13

161

165

169

173

8 # of bonds in Group 2

2

6

10

14

162

166

170

174

...

For each H-bond in the cell of interest, there is a group of H-bonds constrained to be similarly
oriented. In the cell of interest, there are 32 H-bonds and thus 32 groups of H-bond constraints.
For this system, the covering cell contains eight replicas of the cell of interest. For each group,
the first line indicates the number of H-bond constraints. This is then followed by the indices for
H-bonds constrained to be similarly oriented.
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5.5 Output Files

5.5.1 Log

This file contains all output generated as the enumeration calculation proceeds. The amount of
output is controlled by the VERBOSE and DEBUG variables initialized in the “GrEnum.inp” file.

5.5.2 XFile

This output file contains the bond variables for all symmetry-distinct H-bond configurations. This
file is only generated after successful completion of the program. For every configuration, there
is a line of bond variables, one for each H-bond. Below is an example for the unit cell of ice Ic
containing eight water molecules. There are only four symmetry-distinct configurations.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 -1 1 -1 -1 1 -1 1

1 1 1 1 1 1 1 -1 -1 1 1 -1 1 1 -1 1

1 1 1 1 1 -1 1 -1 -1 1 -1 1 1 1 1 1

5.5.3 XFile.##.rst

After the successful completion of adding an H-bond and performing the symmetry comparison,
the current version of “XFile” is copied to “XFile.##.rst” to assist in restarting the enumeration. For
example, before the eighth H-bond is added, “XFile” is copied to “XFile.7.rst.” This file contains
all configurations enumerated up to and including the seventh H-bond.

5.5.4 Temporary Files

During the course of the enumeration calculation, there are a large number of temporary files
generated. All of these temporary files are written as binary and are not human-readable. They are
all removed automatically by the GrEnum program after successful completion. Two of those files
are named “XFile” and “XFile1.” The other files, potentially thousands of them, all have names
starting with “XX” followed by a sequence of numbers. In the event that the GrEnum program is
terminated before a successful calculation, a short script named “job RemoveXX” is available in
the /tools directory to assist in removing all of these temporary files.
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6 GrEnum Tutorial

In this section, we will walk through a typical use of the GrEnum code as applied to the ice III
system.

6.1 Running the code

We begin by constructing the four input files necessary to perform the enumeration calculation on
an arbitrary ice system: “Bonds”, “Gv”, “Gbonds”, and “Invar.” We can easily generate these files
by using the MkInvar program described above. They are standard output files for the unit cell of
a system.

6.2 MkInvar input files

We begin by constructing the three input files needed by “MkInvar” for ice III.

• Create a file named “MkInvar.inp” with the following information;

1 1 1 (Simulation cell dimensions)

1 1 0 0 0 0 (Matrix of cell vectors as row vectors)

0 0 1 1 0 0

0 0 0 0 1 1

92 1 (Space Group Index)

../../SpaceGroups (Path to space group database)

6.666 6.666 6.936 90 90 90 (Lattice Parameters: a,b,c,alpha,beta,gamma)

0.1 (Minimum allowed OO distance)

2.50 3.13 (Min/Max allowed OO distance for H-Bonds)

1 (0: Generate H-bonds / 1: Read H-bonds)

1 (0: No Invar / 1: All / 2: Some)

1 (0: User specified covering cell / 1: Auto.)

• Create a file named “VertDef.txt” with the following information;

2 # of vertices in assymmetric unit

2 5 1 5 1 3

1 10 1 10 0 1

• Create a file named “HBondsDef.txt” with the following information;
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24 # of bonds in unit cell

1 10 1 10 0 1 1 5 2 5 -1 3

1 10 1 10 0 1 2 5 1 5 1 3

2 5 3 5 1 4 1 10 7 10 -1 12

2 5 3 5 1 4 3 10 9 10 7 12

3 5 2 5 3 4 7 10 1 10 13 12

3 5 2 5 3 4 9 10 3 10 5 12

9 10 9 10 1 2 3 5 4 5 5 6

9 10 9 10 1 2 4 5 3 5 1 6

1 10 7 10 11 12 -1 5 3 5 7 6

1 5 2 5 2 3 1 10 7 10 11 12

3 10 9 10 7 12 2 5 6 5 1 3

2 5 1 5 1 3 7 10 1 10 1 12

3 5 4 5 5 6 3 10 9 10 7 12

7 10 1 10 1 12 3 5 -1 5 -1 6

4 5 3 5 1 6 9 10 3 10 5 12

9 10 3 10 5 12 6 5 2 5 2 3

1 10 7 10 11 12 1 10 11 10 1 1

1 5 2 5 2 3 3 5 2 5 3 4

3 10 9 10 7 12 -1 10 9 10 1 2

2 5 1 5 1 3 2 5 3 5 1 4

3 5 4 5 5 6 3 5 2 5 3 4

7 10 1 10 1 12 11 10 1 10 0 1

4 5 3 5 1 6 2 5 3 5 1 4

9 10 3 10 5 12 9 10 -1 10 1 2

Running the MkInvar executable with these three files will generate the necessary input for “GrEnum”.
Place “Bonds” , ”Gv” , “Gbonds” and “Invar” in a working directory. It is recommended that this
directory should be some type of local scratch space. The algorithm that GrEnum uses to make
enumeration an O(N ln N) process can potentially involve the reading and writing of thousands
of scratch files. These files are created and removed by the program, provided the program exits
successfully. Assuming the GrEnum executable is in the same directory with the VEBOSE option
turned on, we type the following command to run the program.

./GrEnum

Checking the contents of the directory, one should be able to see the presence of the “Log”,
“XFile”, “XFile1”, and several “XFile.##.rst” files as well as a number of scratch files with names
starting with “XX”. It is best not to alter any of these temporary files while the program is running.

In the current version of the code, here are typical timings seen for enumerating configurations in
phases of ice.
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• For systems containing 10−20 water molecules, typical running times can range from sec-
onds to several minutes.

• The enumeration of systems containing >30 water molecules can last from a few hours to a
couple days.

These timings are typical for the linux workstations in our group with Intel or AMD processors. Of
course, the exact timings depend on available hardware and values for the adjustable parameters
within the code, which are discussed below in section 6.5. Progress is being made to develop an
internal optimization strategy that determines the best values for the adjustable parameters “on the
fly.”

6.3 The Log file

In this section, we will go through and explain the output found in the “Log” file that one will see
in a typical use of the GrEnum program. We will be examining the enumeration of the ice III unit
cell which contains 12 water molecules. We will find that there are 102 symmetry-distinct H-bond
configurations in this system.

6.3.1 Read input and initialize

The initial portion of the “Log” file lists the type of integers being used in the current version of
the code.

Log File

Short integer is kind 2.

Invariant values have kind 4.

These values are probably not of interest to a typical user, but as the upper limits of system size
that can be handled by the code increases, these values may need to be changed. The first thing
that the GrEnum program does is read each of the input files. We can see that the first input file
read was the “Bonds” file.

24 bonds read, 12 vertices identified.

( 1, 2)( 1, 3)( 4, 5)( 4, 6)( 7, 8)( 7, 9)( 10, 11)

( 10, 12)( 5, 12)( 2, 5)( 6, 3)( 3, 8)( 11, 6)( 8, 11)

( 12, 9)( 9, 2)( 5, 1)( 2, 7)( 6, 10)( 3, 4)( 11, 7)

( 8, 1)( 12, 4)( 9, 10)(
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We can see that the first H-bond is between vertices 1 and 2. The next input file that is read is the
“Gv” file. In this file, the permutation of the vertices by the symmetry operations of the full group
are given.

8 group elements read.

1 2 3 4 5 6 7 8 9 10 11 12

10 12 11 7 9 8 4 6 5 1 3 2

4 5 6 10 12 11 1 3 2 7 8 9

4 6 5 1 3 2 10 12 11 7 9 8

7 9 8 1 2 3 10 11 12 4 6 5

7 8 9 10 11 12 1 2 3 4 5 6

10 11 12 4 6 5 7 9 8 1 2 3

1 3 2 7 8 9 4 5 6 10 12 11

In this system, there are only eight symmetry operations in the space group for the ice III unit cell.
Next, we see the model that will be used to determine allowed H-bond configurations.

Constraints on H-bonds

max max min

vertex in-bonds out-bonds out-bonds

1 2 2 2

2 2 2 2

3 2 2 2

4 2 2 2

5 2 2 2

6 2 2 2

7 2 2 2

8 2 2 2

9 2 2 2

10 2 2 2

11 2 2 2

12 2 2 2

In this model for ice, the “ice rules” are strictly enforced. This means that in every H-bond config-
uration, all water molecules will donate and accept two H-bonds. Any configurations that violate
these rules are rejected by program. When using the GrEnum program to enumerate clusters of
water molecules, a different model will be used. (We plan to clean up our code for finite water
clusters and make it public as well.)

The next input file, “Invar”, contains the graph invariants.
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45 invariants read

inv bonds coef

1 1 1 1

1 2 2 1

1 3 3 1

1 4 4 1

1 5 5 1

1 6 6 1

1 7 7 1

1 8 8 1

2 1 2 1

2 3 4 1

...

For the ice III unit cell, there are 45 unique second-order invariants of the type Ĝ(brbs). This is
the only type of graph invariant that is currently used to enumerate H-bond configurations. The
MkInvar program only includes this type of invariant in the “Invar” file. The four numbers on each
line indicate the invariant index, H-bond indices, and the coefficient for each term.

Next, the program defines the convention that will be taken for defining the bond variables.

Bond look-up table

vertices bond (sign) vertices bond (sign)

2 1 1 (-1) 1 2 1 ( 1)

3 1 2 (-1) 1 3 2 ( 1)

4 3 20 (-1) 3 4 20 ( 1)

5 1 17 ( 1) 1 5 17 (-1)

5 2 10 (-1) 2 5 10 ( 1)

...

Each line contains the vertices, bond index, and value of the bond variable for both orientations of
the H-bond. The H-bond definitions read from the file “Bonds” will be taken as the orientations
which define bond variables equal to +1. This orientation of H-bonds will be referred to as the
canonical orientation of H-bonds. Those H-bonds in an orientation opposite to this definition are
assigned bond variable equal to −1. Next, the GrEnum program identifies those pairs of oxygen
atoms that should not form H-bonds with one another.

These vertices should not be connected

vertices bond (sign) vertices bond (sign)

1 1 0 ( 0) 1 1 0 ( 0)

2 2 0 ( 0) 2 2 0 ( 0)

3 2 0 ( 0) 2 3 0 ( 0)

...
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The last input file read is “Gbonds” which contains the permutations on the H-bonds due to the
symmetry operations of the space group.

Permutation group on bonds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 24 23 22 21 20 19 18 17

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

...

For each symmetry operation, there are two lines of output. The first line indicates the index of the
H-bond after application of the symmetry operation. The second line indications the orientation
of the H-bond relative to the canonical orientation. From inspection, we can see that the first
symmetry element corresponds to the identity operation.

CPU time: 0.0089980 setup

After the GrEnum program has finished reading input files and initializing, it reports the amount
of time that has passed since the program started. The timings for various operations during the
calculation will be reported and explained below.

6.4 Enumeration

In this section, we will explain the output found in the “Log” file during the enumeration of H-
bonds configurations. Similar output will be seen for every H-bond in the system. We start by
looking at the output generated after the first H-bond was added to the system.

---------- 1 ----------

1 configurations from previous bond

Before checking for distinct configs 2 configs enumerated for bond 1

CPU time: 0.0000000 add bonds at bond 1

To start the enumeration process, we insert the the first H-bond in each of the two orientations into
all previous configurations. In this case, there is only a single configuration which has no H-bonds.
This generates two different H-bonds configurations. At this point, any H-bond configurations that
violated the model, in this case the “ice rules,” would have been eliminated. Since both H-bond
configurations are do not violate the model, they will both be included in the next step. This stage
of the enumeration calculation is so quick, we can ignore the output from the timing routines.

CPU time: 0.0000000 symmetry search w/o invariants at bond 1

Bond 1: 2 -> 2 by elimination of symmetry-related configs.

total CPU time: 0.0000000 bond 1
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At this stage, H-bond configurations will be sorted into groups using graph invariants only if there
are enough configurations present. It would be common to only use the sorting algorithm when
there are more than 1000 H-bond configurations, when the O(N2) symmetry comparison starts to
become costly. The parameter that controls when configurations are sorted is discussed in more
detail below in section 6.5 At this early stage of the calculation, there are not enough configurations
present to take advantage of the sorting algorithm. Using the symmetry comparison algorithm on
these two configurations, we find that they are not related by symmetry, thus at this stage they are
symmetry-distinct. Having generated all symmetry-distinct configurations possible after adding
the first H-bond, we now add the second H-bond.

---------- 2 ----------

2 configurations from previous bond

Before checking for distinct configs 4 configs enumerated for bond 2

CPU time: 0.0000000 add bonds at bond 2

CPU time: 0.0010000 symmetry search w/o invariants at bond 2

Bond 2: 4 -> 3 by elimination of symmetry-related configs.

total CPU time: 0.0010000 bond 2

Initially, there were two H-bond configurations from the previous step of the calculation. We add
the second H-bond to each of these configurations in each of the two possible orientation. Af-
ter checking to see if any configurations violate the imposed model, we find that there are now
four H-bond configurations. This number is still too small to use the sorting algorithm and so
all configurations will be used in the symmetry comparison. After eliminating symmetry equiva-
lent configuration, we see that there are now three symmetry-distinct H-bond configurations after
adding two H-bonds. We continue on by adding the third H-bond.

---------- 3 ----------

3 configurations from previous bond

Before checking for distinct configs 6 configs enumerated for bond 3

CPU time: 0.0010000 add bonds at bond 3

CPU time: 0.0000000 symmetry search w/o invariants at bond 3

Bond 3: 6 -> 6 by elimination of symmetry-related configs.

total CPU time: 0.0010000 bond 3

After adding the third bond and eliminating symmetry-equivalent configurations, we see that there
are six symmetry-distinct H-bond configurations. This process of adding H-bonds, removing con-
figurations that violate the model, and then removing configurations that are related by symmetry
will continue until all H-bonds have been added to the system.

We now skip ahead to the point where 16th H-bond is being added to the system.
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---------- 16 ----------

897 configurations from previous bond

Before checking for distinct configs 1059 configs enumerated for bond 16

CPU time: 0.0079990 add bonds at bond 16

We see that after adding the 16th H-bond and removing those configurations which violate the “ice
rules,” 1059 H-bond configurations remain. Due to the large number of H-bond configurations,
the sorting algorithm is now used. H-bond configurations will be sorted into groups depending
on what values the graph invariants take. Configurations with similar values for invariants will be
grouped together. Of all the graph invariants given as input, only the “best” ones will be used for
the sorting algorithm. A graph invariant is useful for speeding up the identification of symmetry-
distinct configurations if it breaks the H-bond configurations into several groups of roughly equal
size, each having a different value of that invariant. If a graph invariant evaluates to the same value
for all H-bond configurations, then that invariant would place configurations in the same group
(not very efficient!). If a large number of H-bond configurations, let’s say one million, separate
into one group of 999,998 and two groups of 1, then that invariant is nearly as useless. Hence,
the program selects invariants that break the set of H-bond configurations into as many roughly
equal-sized groups as possible.

The next portion of the output follows the calculation of the best invariants for the configurations
generated thus far.

-- Invariant characteristics --

Sample of 1059 out of total 1059 configs. tol = 0.10E-03

inv. norm actv? #vals values/population

1 no 1 8

1059

...

For each of the 1059 H-bond configurations, the first invariant is evaluated. The number of unique
invariant values and the number of H-bond configurations that generated each value is recorded.
For the first invariant, the value of the graph invariant was the same for all 1059 configurations.
There is one unique value and it is eight. This invariant is not considered to be good and will not
be included in the group used to sort configurations.

Moving on to the second graph invariant, we see that there are five unique values that this invariant
takes.

...

2 0.21E+05 yes 5 8 4 0 -4 -8

[ 5.6119] 130 210 411 210 98

...

There are 130 configurations with an invariant value of 8, there are 210 configurations with an
invariant value of 4, and so on. Using these statistics a score is calculated, the number in square
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brackets, and this will be used later to decide which are the best invariants to use for sorting. After
all invariants have been evaluated for all configurations sampled, the graph invariants are then
sorted by the scored they received and ones with the highest scores are used for sorting.

Best active invariants

10 9 8 0 -8 6 4 2 -2 -4 -6

[ 9.7460] 11 269 11 42 122 214 218 127 45

8 9 8 0 -8 6 4 -2 -4 2 -6

[ 9.7365] 9 279 7 43 152 182 93 264 30

...

CPU time: 0.0199970 invariant sample at bond 16

The number of invariants used for sorting is an adjustable parameter discussed in section 6.5. In
this case, the 10th graph invariant had the highest score yielding nine unique values when evaluated
for the sampling of H-bond configurations. For each of the nine unique values, the value of the
invariant and number of configurations with that value are listed.

The GrEnum program will now loop through each of the best invariants sorting configurations ac-
cording to their value for the invariants. Only configurations with identical values for all invariants
will be found in the same groupings.

11 configs written to XX001

269 configs written to XX002

11 configs written to XX003

42 configs written to XX004

122 configs written to XX005

214 configs written to XX006

218 configs written to XX007

127 configs written to XX008

45 configs written to XX009

1059 configs read at sorting level 1

1059 configs written at sorting level 1

Using the first invariant, the configurations were sorted into nine different groups. These groups
are stored in temporary scratch files names “XX###”. As a consistency check, the number of
configurations sorted into files is checked against the number of configurations written. If there
were more than 1000 configurations in the first file, “XX001”, those configurations would then be
sorted using the next invariant into temporary files, “XX001###”. This procedure is repeated until
all of the best invariants have been used or groups no longer contain more than 1000 configurations.
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skipped XX001

skipped XX002

skipped XX003

skipped XX004

skipped XX005

skipped XX006

skipped XX007

skipped XX008

skipped XX009

1059 configs sorted into 9 files

file configs file name

1 11 XX001

2 269 XX002

3 11 XX003

4 42 XX004

5 122 XX005

6 214 XX006

7 218 XX007

8 127 XX008

9 45 XX009

In this case, since no files contain more than 1000 configurations, the sorting algorithm is stopped
here and the symmetry comparison is done only for configurations within the same file.

CPU time: 0.0299950 deal configs at bond 16

CPU time: 0.0219980 symmetry search at bond 16

Bond 16: 1059 -> 898 by elimination of symmetry-related configs.

total CPU time: 0.0789890 bond 16

After the symmetry comparison, we see that there are now 898 symmetry-distinct configurations
after adding the 16th H-bond. This procedure of adding bonds will continue until the very last
H-bond has been added.

---------- 24 ----------

102 configurations from previous bond

Before checking for distinct configs 102 configs enumerated for bond 24

CPU time: 0.0000000 add bonds at bond 24

CPU time: 0.0019990 symmetry search w/o invariants at bond 24

Bond 24: 102 -> 102 by elimination of symmetry-related configs.

total CPU time: 0.0019990 bond 24
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We see that there were 102 symmetry-distinct configurations after adding the 23rd H-bond. Adding
the 24th and final H-bond did not generate any additional structures. Symmetry comparison after
adding the 24th H-bond yields a total of 102 symmetry-distinct H-bond configurations for the ice
III unit cell.

6.5 Adjustable parameters for efficient enumeration

For the present state of the code, there are two adjustable parameters that can have a impact on the
efficiency of the enumeration calculation. The values of these parameters are currently determined
at compile time.

• InvariantThreshold: The number of configurations present before sorting algorithm is used.
In the example above, this was set at 1000.

• nInvForDeal: The maximum number of invariants used to sort configurations. In the example
above, this was set to 6.

One can adjust these parameters to find an optimal set for a particular problem and computing
environment. Increasing the number of files, by decreasing “InvariantThreshold” and increasing
“nInvForDeal”, involved in the sorting process reduces the time spent during the symmetry com-
parison. However, one can run into a disk access bottleneck when reading and writing too many
files.
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7 Additional Small Programs

7.1 HBondConfigXYZ

This small program reads vertices, H-bonds, and bond variables as input and generates cartesian
coordinates for H-bond configurations. This program, found in the /Tools directory, is written in
Fortran 70. Using the GNU Fortran compiler, the program can be compiled with the following
command:

g77 HBondConfigXYZ.f -I HBondConfigXYZ.inc -o HBondConfigXYZ

This program reads two input files, one generated by each of the MkInvar and GrEnum codes.
Information about vertices and H-bonds is supplied using one of the “Structure.txt” files generated
as output from the MkInvar code. The bond variables for the H-bond configurations are contained
in the file “XFile” generated by the GrEnum code, the ASCII version generated after a successful
completion. The following command will generate an output file containing the cartesian coordi-
nates of oxygen and hydrogen atoms for all H-bond configurations given in the file “XFile.”

HBondConfigXYZ < Structure.txt

The program assumes that the file “XFile” is located in the same directory as the command was
executed.

An example of a portion of the output file, “HBondConfigXYZ.xyz,” is shown below.

48

Config: 1

O 0.000000 0.000000 0.000000

O 1.668500 1.668500 1.668500

O 0.000000 0.000000 3.337000

O 1.668500 1.668500 5.005500

...

H 0.556167 0.556167 0.556167

H 1.112333 2.224667 2.224667

H 2.224667 1.112333 2.224667

H 2.780833 2.780833 0.556167

...

H -0.556167 -0.556167 3.893167

48

Config: 2

O 0.000000 0.000000 0.000000
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In this example, there are 16 oxygen atoms and 32 hydrogen atoms making a total of 48 atoms.
For each H-bond configuration, there will be 48+2=50 lines of text. The first two lines for each
H-bond configuration contain the total number of atoms and descriptive information respectively.
These two lines are then followed by a line for each of the atoms. Each line contains four entries:
atomic type, x, y, and z coordinates. Again, the units of length are whatever were used for the
lattice parameters in the MkInvar code.
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