
Optimal Sliced Latin Hypercube Designs
Shan BA, William R. MYERS, and William A. BRENNEMAN

The Procter and Gamble Company,
Mason, OH 45040

(ba.s@pg.com; myers.wr@pg.com; brenneman.wa@pg.com)

Sliced Latin hypercube designs (SLHDs) have important applications in designing computer experiments
with continuous and categorical factors. However, a randomly generated SLHD can be poor in terms of
space-filling, and based on the existing construction method that generates the SLHD column by column
using sliced permutation matrices, it is also difficult to search for the optimal SLHD. In this article, we
develop a new construction approach that first generates the small Latin hypercube design in each slice and
then arranges them together to form the SLHD. The new approach is intuitive and can be easily adapted
to generate orthogonal SLHDs and orthogonal array-based SLHDs. More importantly, it enables us to
develop general algorithms that can search for the optimal SLHD efficiently.

KEY WORDS: Computer experiment; Continuous and categorical factors; Maximin distance criterion;
Space-filling design.

1. INTRODUCTION

Computer experiments, which simulate real-world phenom-
ena using computational methods such as finite element analysis
or computational fluid dynamics, are becoming widely used in
almost every field of scientific research and product develop-
ment. Different from conducting experiments physically, com-
puter simulations are usually deterministic (not subject to ran-
dom error) and are often characterized by a large number of
input factors whereas only few of them are important. As a re-
sult, replication is unnecessary in computer experiments and a
good design should be noncollapsing, in the sense that when the
design points are projected onto the subspace of these few im-
portant factors, replications can be avoided (Santner, Williams,
and Notz 2003; Fang, Li, and Sudjianto 2005). These require-
ments are perfectly met by the Latin hypercube designs (LHDs;
McKay, Beckman, and Conover 1979), which are most pop-
ularly used in designing computer experiments with contin-
uous (quantitative) inputs and possess the desirable property
that when projecting an n-run LHD onto any factor, it always
achieves n different levels for that variable. Suppose we de-
note the n levels of a factor by 1, . . . , n, then an n-run LHD in
p factors can be generated by using a random permutation of
{1, . . . , n} for each column of its (n × p) design matrix.

The motivation of this work originates from two computer ex-
periments from The Procter & Gamble Company, whose inputs
not only contain continuous variables but also include one or
more categorical (qualitative) variables. Examples of categori-
cal variables are the type or shape of equipment, the presence or
absence of a part or when a continuous variable is restricted to
two or three discrete levels. The presence of such categorical in-
puts makes it quite challenging to design computer experiments
because the categorical factor usually cannot accommodate as
many as n different levels and consequently the LHD structure
cannot be directly applied.

For computer experiments with both continuous and cate-
gorical inputs, Qian (2012) proposed generating a sliced Latin

hypercube design (SLHD) for the p continuous factors. An n-
run SLHD is a special type of LHD that can be partitioned
into t slices (blocks), each of which is also an LHD containing
n/t runs, and then each slice can be used under one of the t dif-
ferent level combinations of categorical factors. This structure
guarantees the maximum one-dimension uniformity of contin-
uous factors in the whole design as well as in each slice. For
example, with two continuous variables (p = 2) and one cate-
gorical variable with three levels (t = 3), a 12-run SLHD X for
the two continuous factors is shown (in transpose) in (1), where
the solid lines divide X into three slices X1, X2, and X3. Obvi-
ously, X itself is an LHD with 12 different levels and for each
c = 1, . . . , 3, ⌈Xc/3⌉ is a smaller LHD with four levels, where
⌈ ⌉ denotes the ceiling function such that ⌈a⌉ equals the smallest
integer no less than a. After assigning each slice to one level
of the categorical variable, the full design for both the contin-
uous and categorical inputs can be easily obtained as [X ,C].
The benefit of using an SLHD is manifest. For instance, even
if the categorical factor turns out to be insignificant, the design
projected onto the remaining continuous factors still forms a
12-run LHD with no projection redundancy.

XT =
[

7 12 1 6 9 2 10 5 3 4 11 8
4 9 3 11 1 6 12 7 10 2 5 8

]
,

CT =
[

1 1 1 1 2 2 2 2 3 3 3 3
]
. (1)

A construction method was provided by Qian (2012) to ran-
domly generate an n-run SLHD in t slices with each slice con-
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Figure 1. Several random SLHDs (n = 12, p = 2, m = 4, t = 3), where symbols (◦, !, △) represent points belonging to the three different
slices.

sisting of m points (n = mt). To impose the sliced structure,
Qian (2012) proposed determining the p random permutations
of {1, . . . , n} for each column of the SLHD by p-independent
sliced permutation matrices (SPMs) H1, . . . , Hp. In this way,
the construction effort of SLHD goes into the generation of p
such SPMs, where each Hj is defined to be an (m × t) ma-
trix containing {1, . . . , n} as its elements and each column of
⌈Hj /t⌉ forms a permutation of {1, . . . , m}. Qian (2012) pro-
posed randomly generating each SPM in three steps: (i) fill in the
ith (i = 1, . . . , m) row of SPM with {a ∈ {1, . . . , n}|⌈a/t⌉ =
i}; (ii) randomly permute the entries in each row of SPM; (iii)
randomly permute the entries in each column of SPM. After
stacking the columns of each Hj into a single vector, Qian
(2012) showed that it can be used as the jth column in the
SLHD design matrix.

Figure 1(a) depicts the 12-run two-dimensional SLHD matrix
X in (1), whose two columns correspond to the following two
SPMs:

H1 =

⎡

⎢⎢⎣

7 9 3
12 2 4
1 10 11
6 5 8

⎤

⎥⎥⎦ , H2 =

⎡

⎢⎢⎣

4 1 10
9 6 2
3 12 5
11 7 8

⎤

⎥⎥⎦ . (2)

In Figure 1(b)–1(d), we also provide three other random SL-
HDs of the same size that are produced by different random
SPMs. Although they also achieve maximum one-dimensional
uniformity, all of them are inferior to the design in Figure 1(a)
for various reasons. In Figure 1(b), the two factors are perfectly
correlated in the whole design as well as in each slice. If this

design was used, the effects of the two factors would become
indistinguishable. In Figure 1(c), although overall the points
have been spread out in the design region, in one slice (denoted
by symbol !) the two factors are still highly correlated. This
design is undesirable because if the responses across different
categories (slices) have very weak correlation, then the model
cannot borrow too much information among the data from dif-
ferent categories resulting in poor predictions based mainly on
this slice. When it comes to Figure 1(d), the small design in each
slice is desirable, but the design points for the whole SLHD get
clustered together, which leaves a large area of the design region
unexplored. This design would be very inefficient if the categor-
ical variable turns out to be insignificant and the design points
need to be projected onto the subspace of continuous variables.
In general, a desirable SLHD for computer experiments should
have its design points well spread out for the whole design as
well as for each slice. However, for an n-run design consist-
ing of t slices with each slice containing m points in p factors,
there can be as many as ((m!)t (t!)m)p different SLHDs. How to
avoid the undesirable ones such as in Figure 1(b)–1(d) and how
to efficiently find the optimal SLHD is the main focus of this
article.

Extensive work has been done in the literature on finding
“good” LHDs. Due to the huge combinatorial nature of such
a problem, a popular strategy is to use an exchange algorithm
to iteratively search in the design space and optimize the LHD
based on some criteria. For example, in a simulated annealing
algorithm proposed by Morris and Mitchell (1995), two ran-
domly chosen elements within a randomly selected column are
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OPTIMAL SLHDS 481

exchanged in each step to find a new design. Other exchange
algorithms have been discussed by Jin, Chen, and Sudjianto
(2005) and Joseph and Hung (2008). Extending these algorithms
to find optimal SLHDs, however, is not straightforward. This is
because in the construction method proposed in Qian (2012),
permuting elements in any row of an SPM must precede the
random shuffling of its column elements. After elements in any
column of an SPM are permuted, the elements in its rows can no
longer be freely exchanged. This constraint on the order of per-
mutations creates obstacles for freely generating new designs
in the neighborhood of an existing SLHD, which prohibits the
implementation of exchange algorithms for combinatorial opti-
mization. For example, suppose we want to further improve the
current SLHD shown in Figure 1(a). If we choose to search in
the neighboring design region by exchanging elements “7” and
“3” in the first row of H1 in (2), it would immediately violate
the definition of SPM and thus cannot generate a valid candidate
of the SLHD.

In this work, we develop a new construction method for the
SLHD that is not based on the SPMs. Unlike in Qian (2012)
that generates the whole design column by column, we propose
to first construct the small LHD for each slice and then arrange
their levels to form an overall SLHD. This new construction
method is intuitive and it can be used to generate SLHDs with
many desirable properties. The rest of this article is organized
as follows. In Section 2, we present the new construction ap-
proach for the SLHD and also point out two of its interesting
variants that can generate SLHDs with orthogonal columns or
with higher-dimensional uniformity. In Section 3, a general al-
gorithm for searching for the optimal SLHD is proposed, and
we also develop strategies to substantially improve its efficiency.
Two examples for designing computer experiments at The Proc-
ter & Gamble Company are provided in Section 4, and finally
we give some concluding remarks in Section 5.

2. A NEW CONSTRUCTION METHOD

In this section, we present a simple and intuitive method
to construct an n-run SLHD with t slices, where each slice
contains m points in p factors (p, n, t,m are positive integers
and n = mt). This construction method consists of only two
steps:

Step 1. Independently generate t small LHDs X1, . . . , X t for the
t slices, where each LHD contains m points in p factors.
Denote their factor levels by 1, . . . , m and stack them to
form an (n × p) matrix X =

⋃t
i=1 X i .

Step 2. Independently in each column of the matrix X , replace
the t entries of level l (l = 1, . . . , m) with a random
permutation !l of elements {(l − 1)t + 1, . . . , lt}.

It is quite obvious that the design matrix X constructed above
is an n-run SLHD with t slices. Unlike the procedure introduced
by Qian (2012) that generates the whole design column by
column, we first construct the small design in each slice and
then arrange them together. As a result, we will refer to this
new method as slice-wise construction method. An example is
provided below to illustrate the proposed procedure, where we
generate three small LHDs X1, X2, X3 and arrange their levels
to form a 12-run SLHD:

Comparing this design with Figure 1(a), it can be seen that this
SLHD is the same as the one generated by the SPMs in (2)
using the procedure proposed by Qian (2012). In general, the
statistical equivalency of the two methods in generating random
SLHDs can be established by recognizing the following facts.
For any SLHD generated by the proposed slice-wise method,
we can construct p SPMs by assigning the jth column of the
constructed design matrix in slice X i to the ith column of the
SPM Hj . Then permuting elements in the jth column of the ith
small LHD in our Step 1 is equivalent to permuting entries in
the ith column of the jth SPM Hj in Qian (2012). In addition,
permuting the t elements in each !i in our Step 2 is equivalent
to permuting elements in each row of the (initial) SPMs in Qian
(2012). Due to this equivalency, all the sampling properties
of the SLHD discussed in Qian (2012) are also true for the
SLHDs generated with the new method. Unlike the procedure
introduced by Qian (2012), the proposed slice-wise construction
has no constraint on the order of its two steps. After completing
Step 2, we can still go back to Step 1 to modify the design in any
slice and then use the same permutations !l (l = 1, . . . , m) in
Step 2 to generate new SLHDs in the neighborhood of the
previous SLHD. This property is very important in applying the
exchange algorithms for finding optimal SLHDs, which will be
discussed in detail in Section 3.2. In addition, by envisioning the
slice-wise construction method as a two-stage sampling process,
we can further develop strategies to substantially improve the
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efficiency of generating space-filling SLHDs, and this topic will
be exploited in Section 3.3.

Before concluding this section, we briefly point out two inter-
esting variants of the proposed slice-wise construction method,
which can produce some random SLHDs with improved prop-
erties. (1) As an improvement on random LHDs that only strat-
ify univariate margins, Owen (1992) and Tang (1993) inde-
pendently proposed to use orthogonal arrays (OAs; Hedayat,
Sloane, and Stufken 1999; Wu and Hamada 2009) to generate
OA-based LHDs, which can achieve uniformity in more than
one dimensions. Because concatenating several OAs row by row
together leads to a larger OA with similar strength, by using t
OA-based LHDs (constructed as in Tang 1993) for the t slices
in Step 1, the proposed slice-wise construction method can pro-
duce an OA-based SLHD in which the whole design as well as
each of its slices can all achieve two- or higher-dimensional uni-
formities. (2) Another type of improvement over a random LHD
is to construct the orthogonal LHD (Ye 1998) in which every
pair of its columns is required to have zero correlation and/or
the second-order orthogonal LHD in which the element-wise
product of every two columns also need to be orthogonal to all
the columns in the design (Sun, Liu, and Lin 2009). By choos-
ing some second-order orthogonal LHDs for the t slices in Step
1 and transforming their levels wisely in Step 2, the proposed
slice-wise construction method can also be adapted to produce
the second-order orthogonal SLHDs in which the small LHD
in each slice as well as the whole LHD are all second-order or-
thogonal. Designs generated by this approach can achieve more
flexible run sizes and accommodate larger number of columns
than the existing ones in the literature (Yang et al. 2013). Since
the orthogonal SLHD may not necessarily be space-filling, we
only give a brief description of their construction in the ap-
pendix. We next study how to improve the space-filling property
of an SLHD, which is more important in designing computer
experiments.

3. OPTIMAL SLHD

For any given m, t, p values, the slice-wise construction
method proposed in Section 2 can generate ((m!)t (t!)m)p possi-
ble SLHDs in total. Among them, we define the optimal SLHD
as the one that optimizes a particular design optimality criterion.
In this section, we first discuss how to develop performance
measures for evaluating the goodness of an SLHD, and then in
Section 3.2, we propose an algorithm that can generally be ap-
plied for finding the optimal SLHD with respect to any criteria.
In Section 3.3, we further develop a very efficient algorithm for
finding the optimal space-filling SLHDs.

3.1 Optimality Criteria for SLHD

For designing computer experiments, one of the most pop-
ularly used criteria is the maximin distance criteria (Johnson,
Moore, and Ylvisaker 1990). By definition, this space-filling
criterion tries to spread out the points in the design region in
such a way that the minimum distance among the design points
is maximized. Suppose we denote the distance between any two
design points xi and xj as d(xi , xj ) = {

∑p
k=1 |xik − xjk|q}1/q ,

in which q = 1 and q = 2 correspond to the rectangular and Eu-

clidean distances, respectively. Because many different designs
may have the same minimum interpoint distance, an extension
of this criterion is to minimize the average reciprocal interpoint
distance of the design X = {x1, . . . , xn} (Morris and Mitchell
1995; Jin, Chen, and Sudjianto 2005), given by

φr (X) =

⎛

⎝ 2
n(n − 1)

∑

1≤i<j≤n

1
d(xi , xj )r

⎞

⎠

1
r

.

It can be seen that in a special case when r → ∞, minimizing
the above φr is equivalent to maximizing the minimum distance
among the design points.

When extending the maximin distance criterion for evaluat-
ing the goodness of an SLHD X = (XT

1 , . . . , XT
t )T , we need to

consider both the space-filling properties of the whole design
as well as that of the small design in each slice. As a result, the
maximin distance SLHD not only should minimize the φr (X) for
all the design points, but it should also minimize the φr (X i) for
each slice (i = 1, . . . , t). To solve this multi-objective optimiza-
tion problem, we propose a single objective function that takes
a weighted average of all the above individual measures as
follows:

φMm(X) = 1
2

(

φr (X) + 1
t

t∑

i=1

φr (X i)

)

. (3)

Here, more weights are given to φr (X) because the whole design
matrix X contains t times as many points as each X i does
and thus its space-filling property is more important. Based on
this combined measure, we can define the maximin distance
SLHD as the one that minimizes the above φMm(X). Similar
structure of the objective function has also appeared in Jones
and Nachtsheim (2011).

Other popular criteria for designing computer experiments
can be extended for selecting the SLHD in a similar way. For ex-
ample, we can define a uniform SLHD as the one that minimizes
φunif(X) = (φCD(X) +

∑t
i=1 φCD(X i)/t)/2, where φCD repre-

sents the centered L2-discrepancy measure proposed by Hicker-
nell (1998). In the next section, we develop a general algorithm
to construct the optimal SLHD with respect to any criterion
defined above.

3.2 A General Algorithm

In the literature, a version of the simulated annealing algo-
rithm proposed by Morris and Mitchell (1995) has been widely
used for constructing optimal LHDs. It uses an exchange algo-
rithm to iteratively search in the design space in such a way
that in each step two randomly chosen elements within a ran-
domly selected column in the design matrix are interchanged.
When it comes to the SLHDs, the construction process be-
comes more complex. In the slice-wise construction method
proposed in the beginning of Section 2, we can see that the
randomness in generating an SLHD comes from two sources:
(i) the random permutation of elements in each column of the
X i (i = 1, . . . , t) in Step 1; (ii) the random permutation of ele-
ments in each !l (l = 1, . . . , m) in Step 2. In this section, we
present a general algorithm to search for the optimal SLHDs,
which uses an exchange algorithm to randomly perturb both of
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OPTIMAL SLHDS 483

these two types of permutations. Suppose we want to minimize
a prescribed performance measure φ(X) for the SLHD and let
p0 = 0.5. Our algorithm starts with a randomly chosen SLHD
and then examines a sequence of new designs, each generated
as a perturbation of the preceding one:

Step (i). Denote the current SLHD as X . Draw a random variate
z ∼ Uniform(0, 1).

Step (ii). If z ≤ p0, randomly select a slice in X , and inter-
change two randomly chosen elements within a ran-
domly selected column in this slice. Denote the new
SLHD as X try and go to Step (iv).

Step (iii). If z > p0, randomly choose a column in X , and in-
terchange two randomly chosen elements within a
randomly selected !l (l ∈ {1, . . . , m}) for this col-
umn. Denote the resulting SLHD as X try and go to
Step (iv).

Step (iv). If φ(X try) < φ(X), replace the current X with X try;
otherwise, replace X with X try with probability π =
exp{−[φ(X try) − φ(X)]/T }, where T is a preset pa-
rameter known as “temperature.”

Step (v). Repeat Steps (i) to (iv) until some convergence re-
quirements are met.

All the parameters in the above algorithm are set to be the same
as those in a standard simulated annealing algorithm for which
the convergence is already established (Lundy and Mees 1986).
As a result, this proposed algorithm is guaranteed to ultimately
converge to the global optimum. In the end, the SLHD with the
smallest φ(X) value found by the algorithm is reported as our
optimal design.

We note that since each iteration of the above algorithm only
interchanges two elements within a column, its objective func-
tion φ(X) can usually be efficiently updated without recalcu-
lating all of its components at each step of the algorithm. Jin,
Chen, and Sudjianto (2005) discussed the computational effi-
ciency of evaluating several design optimality criteria. As an
illustration, now we derive the updating formula of the most
commonly used maximin distance measure φMm(X) for our al-
gorithm. As defined in (3), the value of φMm(X) depends on
the n(n − 1)/2 interpoint distances d(xi , xj ) (1 ≤ i < j ≤ n)
among the n design points {x1, . . . , xn}. Whenever two ele-
ments xwh and xvh are interchanged within the hth column of
the design matrix, only the interpoint distances that are related
with the points xw and xv need to be updated:

d∗(xw, xk) = ([d(xw, xk)]q + s(w, v, h, k))1/q ,

for 1 ≤ k ≤ n, k ̸= w, v (4)
d∗(xv, xk) = ([d(xv, xk)]q − s(w, v, h, k))1/q,

for 1 ≤ k ≤ n, k ̸= w, v, (5)

where d∗(·) represents the new distance and d(·) represents the
distance from the previous step, s(w, v, h, k) = |xvh − xkh|q −
|xwh − xkh|q and all the other interpoint distances remain un-
changed. Based on this observation, it can be shown that the
new φ∗

Mm(X) can be efficiently calculated using the previous
φr (X) and φr (X i) values as follows:

φ∗
Mm(X) = 1

2

(

φ∗
r (X) + 1

t

t∑

i=1

φ∗
r (X i)

)

, (6)

in which

φ∗
r (X) =

(
2

n(n − 1)

[
n(n − 1)

2
[φr (X)]r

+
∑

1≤k≤n,k ̸=w,v

[
d∗(xw, xk)−r − d(xw, xk)−r

]

+
∑

1≤k≤n,k ̸=w,v

[
d∗(xv, xk)−r − d(xv, xk)−r

]
⎤

⎦

⎞

⎠
1/r

, (7)

and (i) when z ≤ p1, suppose the two points xw and xv belong
to the cth slice (c ∈ {1, . . . , t}). Then we have: w, v ∈ Ic =
{(c − 1)m + 1, (c − 1)m + 2, . . . , cm}, and

φ∗
r (X i)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φr (X i), if i ̸= c,(
2

m(m−1)

[
m(m−1)

2 [φr (X i)]r

+
∑

k∈Ic,k ̸=w,v

[
d∗(xw, xk)−r − d(xw, xk)−r

]

+
∑

k∈Ic,k ̸=w,v

[
d∗(xv, xk)−r − d(xv, xk)−r

]])1/r

, if i = c.

(8)

(ii) When z > p2, suppose xw belongs to slice c
and xv belongs to slice c′ (c, c′ ∈ {1, . . . , t}). Then
we have w ∈ Ic = {(c − 1)m + 1, (c − 1)m + 2, . . . , cm}, v ∈
Ic′ = {(c′ − 1)m + 1, (c′ − 1)m + 2, . . . , c′m}, and

φ∗
r (X i)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φr (X i), if i ̸= c, c′
(

2
m(m−1)

[
m(m−1)

2 [φr (X i)]r

+
∑

k∈Ic,k ̸=w

[
d∗(xw, xk)−r − d(xw, xk)−r

]])1/r

, if i = c,
(

2
m(m−1)

[
m(m−1)

2 [φr (X i)]r

+
∑

k∈I ′
c,k ̸=v

[
d∗(xv, xk)−r − d(xv, xk)−r

]])1/r

, if i = c′.

(9)

By using the above updating formulas, considerable computa-
tion can be saved in evaluating the objective functions in each
iteration of our proposed algorithm.

3.3 Efficient Two-Stage Algorithm for Generating
Space-Filling SLHDs

In the algorithm presented in Section 3.2, the performance
measure φ(X) actually is very generally defined and may not
necessarily be restricted to the space-filling measures. When n or
p is large, however, the convergence may be slow due to the enor-
mous number of candidate designs. In this section, we show that
when our interest focuses on finding the optimal space-filling
SLHDs, we can modify the algorithm to significantly reduce the
required computation and improve its efficiency. The relevant
design criteria include, for example, the maximin distance cri-
terion φMm(X) or the uniformity criterion φunif(X), which are
most commonly used in designing computer experiments.

The key to improving the efficiency of our algorithm is to per-
ceive the proposed construction method for SLHD as a two-stage
sampling process. Particularly, the two steps in our slice-wise
construction method (described in the beginning of Section 2)
can be envisioned as follows: Step 1 partitions the p-dimensional
input region into mp cells using an (m × · · · × m︸ ︷︷ ︸

p

) coarser grid. To
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484 SHAN BA, WILLIAM R. MYERS, AND WILLIAM A. BRENNEMAN

generate an m-run LHD, a set of m cells are sampled from the
mp population of cells in such a way that the projections of
these m cells onto any axis fall into m equally spaced intervals.
Such m cells are sampled repeatedly (with replacement) from
the coarser grid for t times to form t independent m-run LHDs.
In total, a sample of n = mt cells are chosen in this step, and
some of them may be the same. In Step 2, the input region is
partitioned using a much finer (n × · · · × n)

︸ ︷︷ ︸
p

grid, which further di-

vides each large cell in Step 1 into tp small subcells. One small
subcell is sampled within each of the n sampled large cells from
Step 1 in such a way that the projections of these n selected small
subcells onto any axis fall into n equally spaced small intervals.
Overall, these n selected subcells eliminate the one-dimensional
projection redundancy and constitute a random SLHD. Figure 2
illustrates this two-stage sampling process using a coarser grid
and a finer grid, respectively. It can be seen that since the sam-
pling of subcells in Step 2 only takes place locally within the
previously selected large cells, it has a much smaller impact on
the overall space-filling property of the SLHD. In addition, to
obtain n space-filling subcells in Step 2, its n mother cells from
Step 1 must be well spread out. When n < mp, this means that
these n sampled large cells in Step 1 must be space-filling and
different slices cannot sample the same cell from the coarser
grid.

The above observations motivate the development of an ef-
ficient two-stage algorithm that optimizes the two steps of
the slice-wise construction method sequentially (instead of
simultaneously) for finding the space-filling SLHDs. In the
Stage-I algorithm, we focus on how to construct the t small
LHDs X1, . . . , X t so that their combined design matrix X =⋃t

i=1 X i is optimal with respect to a chosen space-filling mea-
sure φ(X). After fixing these optimal small LHDs, we can
run a Stage-II algorithm that only optimizes the permutations
!l (l = 1, . . . , m) for each of the p columns in X . Through this
way, the candidate SLHDs that we need to search have been
greatly reduced from ((m!)t (t!)m)p into a much smaller sub-
set of only (m!)tp + (t!)mp designs. This can lead to substantial
savings in the computation.

A simple way to implement the above two-stage algorithm
is to run the general algorithm presented in Section 3.2 twice:
we first start with a randomly generated SLHD and run the

algorithm with parameter p0 fixed as 1; after obtaining the “op-
timized” SLHD, we use it as the starting design and run the
algorithm again in which we fix the parameter p0 as 0. It can
easily be seen that the first stage of this procedure optimizes the
small LHDs in the t slices and then in the second stage it only
improves the !l permutations.

When mp > n, the above Stage-I algorithm can be further
sped up by cutting out a significant amount of undesirable de-
signs from its candidate set. Note that the assumption mp > n is
quite general since it can easily be met when the input dimension
p is moderate or large. Because computer experiments are usu-
ally characterized by a large number of inputs, it is quite a stan-
dard for us to have mp ≫ n in practice. As we have discussed
earlier, since the sample of n cells chosen by the Stage-I algo-
rithm needs to be space-filling, no cell from the (m × · · · × m︸ ︷︷ ︸

p

) grid

can be sampled more than once for different slices. In other
words, an efficient Stage-I algorithm should quickly eliminate
all the undesirable designs that contain replicated rows in the
combined design matrix X =

⋃t
i=1 X i . In light of this, the im-

proved two-stage algorithm can be stated as follows:

Stage-I algorithm. The algorithm starts with an (n × p) de-
sign matrix, which is comprised of t randomly chosen (m ×
p) LHDs. In each step, suppose the current combined design
matrix is X =

⋃t
i=1 X i , and the interpoint distances among its

n design points are d(xi , xj ) (1 ≤ i ̸= j ≤ n). Denote S(X) =∑
1≤i<j≤n 1{d(xi , xj ) = 0}, where 1{A} = 1 if A is true and

1{A} = 0 otherwise. A positive S(X) indicates that some rows
in the current design matrix X are identical, and we refer to them
as the duplicated rows. This algorithm proceeds as follows:

(i) If S(X) = 0, directly go to Step (iv); otherwise, go to Step
(ii) to reduce the number of duplicated rows in the com-
bined design matrix X .

(ii) Randomly pick a duplicated row from the current X , and
then randomly select another row within the same slice
of this row. Interchange the two elements that belong to
a randomly chosen column of these two rows. Denote the
new combined design matrix as X try, and update the corre-
sponding interpoint distances using formulas (4) and (5).

0 1 2 3 4
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Stage I

0 2 4 6 8 10 12
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Figure 2. Illustration of the slice-wise construction method as a two-stage sampling process.
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OPTIMAL SLHDS 485

(iii) If S(X try) < S(X), replace X with X try and go to Step (i);
otherwise, discard X try and go back to Step (ii).

(iv) Randomly select a slice from the current X , and inter-
change two randomly chosen elements within a randomly
selected column in this slice. Denote the new combined
design matrix as X try, and update the corresponding inter-
point distances using formulas (4) and (5).

(v) If S(X try) > 0, discard X try and go back to Step (iv); oth-
erwise, go to Step (vi).

(vi) If φ(X try) < φ(X), replace the current X with X try;
otherwise, replace X with X try with probability π =
exp{−[φ(X try) − φ(X)]/T }, where T is a preset param-
eter known as “temperature.”

(vii) Repeat Steps (iv) to (vi) until some convergence require-
ments are met.

It can be seen that after quickly eliminating the initial row
duplications in Steps (i) to (iii), the above algorithm never con-
siders any candidate design that contains duplicated rows. Com-
pared to running the general algorithm in Section 3.2 with p0 set
as 1, the above Stage-I algorithm cuts out all the candidate de-
signs with positive S(X) from the search space, and thus it can
be expected to have a much faster convergence rate.

Stage-II algorithm. After obtaining the optimal combined
design matrix X from the Stage I, we can use it (with some
randomly chosen !l’s) as the starting design and run the general
algorithm in Section 3.2 with p0 set as 0. This Stage-II algorithm
optimizes the permutations !l (l = 1, . . . , m) for each column
of the matrix X , which arrange the t small space-filling LHDs
found by the Stage-I algorithm into an optimal space-filling
SLHD.

As we have discussed in the beginning of this section, since
the Stage-I algorithm plays a much more important role in deter-
mining the space-filling property of the SLHD, more resources
should be allocated for running the Stage-I algorithm if our com-
putational budgets are tight. When p is very large and mp ≫ n,
we may even completely focus on the Stage-I algorithm and skip
the optimization in Stage II by directly using some randomly
generated !l’s. In such cases, because the n sampled cells from
the Stage-I algorithm are very sparse (far away from each other)

in the (m × · · · × m︸ ︷︷ ︸
p

) grid, the Stage-II algorithm has a very minor

effect in determining the space-filling property of the SLHD.

4. EXAMPLES

Example 1. A new bottle design was needed for a beauty prod-
uct of The Procter & Gamble Company that is shipped under
changing air pressure due to altitude changes and the solution is
mixed by the consumer through shaking prior to use. The new
bottle design was optimized through a computer simulation of
both the air pressure changes and the solution mixing process
with the goal to minimize bottle deformation under pressure
while at the same time maximize mixing properties. There were
five continuous variables and three two-level categorical vari-
ables in the computer experiment. The computer experiment
along with the subsequent analysis allowed the project team to
define a new bottle design that was strong enough to handle
changes in air pressure seen through shipping, had very good
mixing properties, and was aesthetically pleasing.

Based on the available resources a 256-run computer exper-
iment was proposed. Since the three categorical factors have
eight different level combinations, we constructed an SLHD
containing eight slices, each of which is a 32-run LHD for the
five continuous factors (n = 256,m = 32, t = 8, and p = 5).
To demonstrate the advantage of using an optimal SLHD over a
random SLHD, in this example we randomly generate SLHDs
for 1000 times and draw the density plot of their minimum inter-
point distances in Figure 3(a). Then a maximin distance SLHD
of the same size is constructed using the algorithm in Section 3
and its corresponding minimum interpoint distance is depicted
by the red arrow in Figure 3(a). It can be seen that even the best
random SLHD out of the previous 1000 samples is substantially
worse than the optimal SLHD. This clearly shows the neces-
sity and benefits for optimizing the SLHD using the proposed
algorithm. Since it is well known that the space-filling prop-
erty of a design has a huge impact on the predictive accuracy
of the surrogate model (Johnson, Moore, and Ylvisaker 1990),
we can expect to obtain a much more accurate surrogate model
when using the proposed optimal design instead of a random
design.
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Figure 3. Density plots for 1000 random SLHDs: (a) Example 1: overall minimum interpoint distances. (b) Example 2: average of the
minimum interpoint distances of the designs in three slices.
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Example 2. Engineers at the Procter & Gamble employed
computer experiments to model the packing line process. The
following experiment involves modeling a particular part (or
transformation) of an oral care packing line. The computer
simulation consisted of nine continuous variables and one three-
level categorical variable representing three types of a particular
equipment part. A 132-run SLHD containing three slices, each
of which is a 44-run LHD for the continuous factors was used
(n = 132,m = 44, t = 3, and p = 9). Interestingly, after the
data were collected, it was found that the correlations of re-
sponses across different categories were quite weak. Since the
model cannot borrow too much information among the data
from different categories, any new prediction needs to be made
mainly based on the information from a single slice. This clearly
demonstrates the importance of also having a good space-filling
design for each slice. In Figure 3(b), we compare the average of
the minimum interpoint distances of the designs in three slices
for an optimal SLHD with that for 1000 random SLHDs of the
same size. We can see that the optimal SLHD is also much
superior in this aspect.

5. CONCLUSIONS

In this article, we developed a new approach for constructing
the SLHDs in which we first generate the small LHD in each
slice and then arrange them together. Unlike the method in-
troduced by Qian (2012), the proposed slice-wise construction
method can be easily adapted to produce SLHDs with many
desirable properties. Not only can it construct the OA-based
SLHDs, but it can also be extended to generate the second-
order orthogonal SLHDs with more flexible run sizes and larger
number of factors than those existing designs in the literature.
More importantly, a general algorithm has been developed based
on the proposed slice-wise construction method for finding the
optimal SLHDs with respect to any criterion. When our inter-
ests focus on generating the space-filling SLHDs, a two-stage
strategy has also been presented to substantially improve the
efficiency of our algorithm. An R package “SLHD” for im-
plementing the proposed algorithm can be downloaded from
http://cran.r-project.org/

APPENDIX: CONSTRUCTION PROCEDURE FOR THE
SECOND-ORDER ORTHOGONAL SLHD

For simplicity, we center the n equally spaced levels in LHD to
have mean equal zero, so that the orthogonality of any two columns
only requires their inner product to be zero. The proposed procedure
is based on Sun, Liu, and Lin (2009), which can generate any second-
order orthogonal LHD in 2c+1 or 2c+1 + 1 runs (c ≥ 1) with 2c columns
as follows:

For c = 1, let

S1 =
(

1 1
1 −1

)
, T 1 =

(
1 2
2 −1

)
.

For c ≥ 2, iteratively define Sc and T c as

Sc =
(

Sc−1 −S∗
c−1

Sc−1 S∗
c−1

)
,

T c =
(

T c−1 −(T ∗
c−1 + 2c−1 S∗

c−1)
T c−1 + 2c−1 Sc−1 T ∗

c−1

)
,

where the * operator works on any matrix with an even number of
rows by multiplying the entries in the top half of the matrix by −1 and
leaving those in the bottom half unchanged. Sun, Liu, and Lin (2009)
showed that Lc = (T T

c , 02c , −T T
c )T is a second-order orthogonal LHD

in 2c+1 + 1 runs with 2c columns, where 02c denotes a (2c × 1) col-
umn vector with all elements equal zero, and Lc = (HT

c , −HT
c )T is

a second-order orthogonal LHD in 2c+1 runs with 2c columns, where
Hc = T c − Sc/2.

Based on Sun, Liu, and Lin’s (2009) method, the slice-wise construc-
tion procedure can be modified as follows to generate the n-run second-
order orthogonal SLHD consisting of t slices, in which each slice is
a small second-order orthogonal LHD in m = 2c+1 or 2c+1 + 1 runs
(c ≥ 1 and n = mt):

(i) For m = 2c+1, any t ≥ 1 and p ≤ 2c (∀c ≥ 1):
Step 1. Use Sun, Liu, and Lin’s (2009) method to independently

generate t small (m × p) orthogonal LHDs X1, . . . , X t as
the design matrices for the t slices. Code their factor levels
as {−2c + 0.5, . . . , −1.5, −0.5, 0.5, 1.5, . . . , 2c − 0.5}, and
combine them row by row to form an (n × p) matrix X =⋃t

i=1 X i .
Step 2. Within each X i (for i = 1, . . . , t), transform every positive el-

ement l to (l − 0.5)t + (i − 0.5) and transform every negative
element l to (l + 0.5)t − (i − 0.5).

(ii) For m = 2c+1 + 1, t = 2c′+1 or 2c′+1 + 1 and p ≤ 2min(c,c′) (∀c, c′ ≥
1):

Step 1. Use Sun, Liu, and Lin’s (2009) method to independently gen-
erate t small (m × p) orthogonal LHDs X1, . . . , X t for the t
slices. Code their factor levels as {−2c, . . . , −1, 0, 1, . . . , 2c},
and combine them row by row to form an (n × p) matrix
X =

⋃t
i=1 X i .

Step 2. Within each X i (for i = 1, . . . , t), transform every positive el-
ement l to (l − 0.5)t + (i − 0.5) and transform every negative
element l to (l + 0.5)t − (i − 0.5).

Step 3. Use Sun, Liu, and Lin’s (2009) method to construct a (t × p) or-
thogonal LHD whose levels are taken as {1 − (1 + t)/2, 2 −
(1 + t)/2, . . . , t − (1 + t)/2}. For j = 1, . . . , p, replace the t
entries of level 0 in the jth column of the matrix X with the
sequence in the jth column of this (t × p) orthogonal LHD.

Lemma A.1. For any constant a and b, define W c = aT c − bSc.
We have WT

c W c = wc I2c , where wc = (a22c(2c + 1)(2c+1 + 1)/6 −
ab(22c + 2c) + b22c) and I2c is a (2c × 2c) identity matrix.

Proof. WT
c W c = (aT T

c − bST
c )(aT c − bSc) = a2T T

c T c − ab(ST
c

T c + T T
c Sc) + b2 ST

c Sc. According to the Lemma 1 and the
proof of Theorem 1 in Sun, Liu, and Lin (2009), we know
that ST

c Sc = 2c I2c , ST
c T c + T T

c Sc = (22c + 2c)I2c and T T
c T c =

2c(2c + 1)(2c+1 + 1)/6I2c . Therefore, we have WT
c W c =

(a22c(2c + 1)(2c+1 + 1)/6 − ab(22c + 2c) + b22c)I2c . !

Theorem A.1. The design matrix X generated from the above pro-
cedure is an SLHD, in which the whole design as well as each of its
slices are all second-order orthogonal LHDs.

Proof. Since the design matrix in each slice X i (i = 1, . . . , t) is con-
structed according to Sun, Liu, and Lin (2009), each of them is guaran-
teed to be a second-order orthogonal LHD. From the above construction
procedure, it is also obvious that each column of the matrix X forms
a permutation of {1 − (1 + n)/2, 2 − (1 + n)/2, . . . , n − (1 + n)/2},
and thus X is an n-run SLHD.

Now we show that the columns in X are orthogonal to each other.
First, it is easy to see that Sc is the matrix whose entries are taken
as 1 or −1 according to the signs of the elements in matrix T c (or
equivalently in matrix Hc). When m = 2c+1, the proposed proce-
dure constructs each X i (i = 1, . . . , t) as a set of p columns from
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L̃(i)
c = (M (i)T

c , −M (i)T
c )T , where M (i)

c = t Hc + (i − 0.5 − 0.5t)Sc =
tT c + (i − 0.5 − t)Sc. According to Lemma 1, M (i)T

c M (i)
c is a diag-

onal matrix. Therefore, all the columns in each L̃(i)
c are orthogonal

to each other (i = 1, . . . , t), and thus X = (XT
1 , . . . , XT

t )T is an or-
thogonal LHD. When m = 2c+1 + 1, the proposed procedure con-
structs each X i (i = 1, . . . , t) as a set of p columns from L̃(i)

c =
(M (i)T

c , 0̃(i)
2c , −M (i)T

c )T , where M (i)
c = tT c + (i − 0.5 − 0.5t)Sc and

0̃(i)
2c corresponds to the original 2c × 1 zero vector but its elements

are relabeled according to Step 3. Using the result in Lemma 1, we
know that M (i)T

c M (i)
c is a diagonal matrix. Since Step 3 has rela-

beled the t original zero vectors from X1, . . . , X t in such a way that
they form a (t × p) second-order orthogonal LHD, it is obvious that
X = (XT

1 , . . . , XT
t )T is an orthogonal LHD.

Now we only need to prove that the columns in X also satisfies the
second-order orthogonality property. Observe that the matrix X can
always be arranged into blocks as X = (K T , −K T )T when n is even
or X = (K T , 0p, −K T )T when n is odd. Thus, for any three columns
in X , no matter whether they are distinct or not, they can be de-
noted as cj = (kT

j , −kT
j )T when n is even or cj = (kT

j , 0, −kT
j )T when

n is odd, for j = 1, 2, 3. Then, we have (c1 ⊙ c2 ⊙ c3)T 1n = (k1 ⊙
k2 ⊙ k3)T 1m − (k1 ⊙ k2 ⊙ k3)T 1m = 0, where u ⊙ v represents the
element-wise product of u and v, 1m represents the m × 1 vector with all
elements equal one, m = n/2 when n is even and m = (n − 1)/2 when
n is odd. Now, it follows immediately that the element-wise square of
each column and the element-wise product of every two columns in
X are orthogonal to all the columns in the design. !

Since any 2c+1-run second-order orthogonal LHD can at most con-
tain 2c columns (Sun, Liu, and Lin 2009), it is easy to see that for
m = 2c+1 (∀c ≥ 1), the second-order orthogonal SLHDs constructed
by the proposed procedure have achieved the maximum 2c number of
factors (for any number of slices t ≥ 1). This is a substantial improve-
ment compared to the existing method in Yang et al. (2013), whose
second-order orthogonal SLHDs must satisfy the following two restric-
tions: (i) the number of slices is a power of two: t = 2r , r = 1, . . . , c;
and (ii) each slice contains 22c−r+1 rows but only 2c columns. Obvi-
ously, the slice number t in Yang et al. (2013) is much more restrictive,
and unless the design contains exactly 2c slices (r = c), the number of
columns these designs can accommodate are much smaller.
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