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ABSTRACT
Bayesian calibration is used to study computer models in the presence of both a calibration parameter and
model bias. The parameter in the predominantmethodology is left undefined. This results in an issue,where
the posterior of the parameter is suboptimally broad. There has been no generally accepted alternatives to
date. This article proposes using Bayesian calibration, where the prior distribution on the bias is orthogonal
to the gradient of the computermodel. Problems associatedwith Bayesian calibration are shown to bemiti-
gated through analytic results in addition to examples. Supplementarymaterials for this article are available
online.

1. Background on Calibration

A computer model is the mathematical representation of a
system evaluated via a single computer or a set of computers.
Computer models are widely adopted to understand specific
phenomena or the general behavior of systems. For example,
computermodels can assist an engineer in designing and testing
new processes without costly prototype development.

The focus of this article is calibration. Calibration is the
act of using observations from a real, physical experiment to
learn about and adjust the computer model. This action is often
required to ensure that the computer model’s mathematical rep-
resentation adequately emulates reality. For each observation,
or potential observation, it is assumed the computer model has
a corresponding response that deterministically depends on a
set of specified conditions. The conditions are partitioned into
two categories: (1) a set of general inputs that represent control-
lable or measurable quantities in a real system and (2) a set of
calibration parameters which cannot be directly controlled or
measured in a real system. This article will distinguish these by
terming the groups the input and the parameter of the computer
model, respectively.

From a broad statistical perspective, computer models can
be considered nonlinear response functions. The key differ-
ence between computer models and typical regression mod-
els is the structure of the computer model is fixed by the
physics/science of the system of interest. Therefore, the usual
regression methods for addressing model inadequacy, such as
including higher order or interaction terms, are not applicable.
As a result, a computer model is often considered inexact. This
means the computer model does not perfectly match the real
system even if some parameters included with it are set optimal-
ity. In their landmark work, Kennedy andO’Hagan (2001a) took
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a Bayesian approach to handling computer model bias, the dif-
ference between themodel and the truth. In contrast, traditional
nonlinear regression has operated under the assumption that the
model accurately represents reality if the correct parameters are
chosen (Bates and Watts 1988).

As an example, consider the following example of an inex-
act computer model. A ball is fired from a chosen vertical posi-
tion y0 with an unknown vertical velocity v0. The ball drops due
to gravity as time increases. At select instances of time, both
the time, denoted x, and the position of the ball, which is the
response, can be recorded. From basic projectile mechanics, the
second derivative of the vertical position is equal to−g, where g
is an unknown rate of acceleration caused by gravity. The com-
puter model is then given by

y0 + v0x − g
2
x2.

It follows that x is the input and (v0, g) is the parameter of the
computer model. In reality, air resistance will slow the ball via a
quadratic drag force and thus the second derivative of the ball’s
vertical height is equal to−g + cv2(x), where v2(x) is the square
of the vertical velocity of the ball at time x. Say that the initial
position is 8, the initial velocity is −1, the acceleration due to
gravity is 10 and the coefficient of drag, c, is 0.2. Then, the ball’s
vertical position at time x is given by

5
2
log

(
50
49

− 50
49

tanh
(
tanh−1(

√
0.02)+ √

2x
)2)

+ 8. (1)

The computer model is biased; no matter what values are
selected for v0 and g, 8 + v0x − g

2x
2 will never align perfectly

with the true response over all values of the input. Nonethe-
less, the computer model can be useful in emulating the system.
Figure 1 illustrates this, showing the true function along with
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Figure . The response from the real system (solid, dark line) for the ball example in Section  versus the computer model with (v0, g)= (−1.0, 10.0) (short dashes) and
(−1.5, 6.0) (long dashes). The left panel is the vertical height, themiddle panel is the derivative of the vertical height with respect to time, and the right panel is the second
derivative of the vertical height with respect to time.

the computer model given two different values of the parameter.
When v0 = −1.5 and g = 6, the computer model represents the
response well when time is between 0 and 1, despite the exis-
tence of a model bias. Compared to using v0 = −1 and g = 10,
v0 = −1.5 and g = 6 yields a closer representation of the system
in the domain [0, 1]. This is also true for the first and second
derivatives of the vertical position, where using v0 = −1.5 and
g = 6 gives values close to the true function, even though it is
not perfect.

Kennedy and O’Hagan (2001a) created a large impact among
statisticians who use computer models. To name a select few,
see Higdon et al. (2004), Goldstein and Rougier (2004), Bayarri
et al. (2007), Qian and Wu (2008), Joseph and Melkote (2009),
Wang, Chen, and Tsui (2009), Han, Santner, and Rawlinson
(2009), Kleiber et al. (2013), Joseph and Yan (2015), and Storlie
et al. (2015). Kennedy and O’Hagan’s statistical inference pack-
age includes, simultaneously, parameter and bias function esti-
mation. This bias estimation allows for bias correction, where
the estimate of the true response is formed by taking the sum of
the computer model plus the bias. The analysis is done by look-
ing at the posterior distribution of the parameter value and the
bias function after placing prior distributions on both.

Despite the excitement over these tools, there have also been
lingering concerns. As a recent example, Farah et al. (2014)
stated some concern over using Kennedy andO’Hagan’s calibra-
tion tools. Similarly, Gramacy et al. (2015) discarded Kennedy
and O’Hagan’s full posterior in part because of the “identifica-
tion issues known to plague [Kennedy and O’Hagan]-style cali-
bration.” Tuo and Wu (2015b) showed that, under a reasonable
model of data generation, the posterior mode of the parameter
will depend on the prior distribution of the bias even as the num-
ber of observations gets very large. Thus, the choice of the bias’s
prior becomes a permanent fixture in the parameter’s posterior.
This effect is undesirable because of the difficulty in conjectur-
ing an exact prior for the bias. Inexperienced users are rightfully
hesitant to adopt a Bayesianmethodwith somuch at stake in the
prior specification stage. Even those with a great deal of experi-
ence, like Keith Beven and Peter Diggle, noted the challenge of
this task in the written discussions of Kennedy and O’Hagan’s
article.

This article will show that Bayesian calibration is possible
without the presence of these issues by adopting the assump-
tion that there is some value of that parameter that is optimal

under some loss function (defined generally). Under this frame-
work, previously suggested priors for the bias are shown to be
inadequate. We suggest general priors for the bias to be used
instead. The core methods of Bayesian calibration are left intact,
including the ability to account for the noise in the physical
observations and the uncertainty induced when the computer
model is not exactly known.

Section 2 introduces a framework for calibration and dis-
cusses the practical implications. Section 3 outlines the pro-
posed Bayesian inference package that accounts for an orthogo-
nality condition that the prior on the bias ought to have. Section
4 deals with the practical issues arising from this formulation,
namely designing a computational approach to finding general
bias functions priors that meet this orthogonality condition.
Section 5 discusses three examples that illustrate the practical
implications of the proposed methods. Section 6 offers some
brief thoughts on future directions for calibration research.

2. The Parameter andModel Bias

The objective of this section is to delineate the assumptions built
into, but often not explicitly stated, for calibration. Section 2.1
gives the three major assumptions needed to frame the calibra-
tion problem. Section 2.2 compares this framework to Kennedy
and O’Hagan (2001a). Section 2.3 narrows the definition of the
calibration problem to the loss functions that are considered in
this article.

2.1. Definition of the Parameter andModel Bias

This subsection outlines the explicit mathematical definition
and assumptions behind the true function, the computermodel,
and the parameter. Three assumptions are introduced labeled
(i), (ii) and (iii). These form the basis for the proposed analy-
sis method. This definition does not depend on the statistical
model, nor does it depend on which observations are recorded
or the inputs that generate the recorded observations.

Every possible input is located in a bounded, open X,X ⊂
R

d . This space X is the physical experimental design region for
the inputs. This does not imply that every point in X will be
observed in a physical experiment, only that the points in X are
potential experimental inputs.
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The true, unknown function of the input is termed y(·),
which is provided by nature and is thus considered fixed. This
is commonly defined as the expected value of the observations
given the input. Define D(α)y(x) as the mixed partial derivative
of y(·) with orders α at x. The first major assumption is thus:

(i) y(·) is a deterministic map from X to R. There is some
integer k ≥ 0 such that for all length d vectors of non-
negative integers α with ‖α‖L1 ≤ k, D(α)y(·) exists and
is bounded over X .

The computer model is termed f (x, t ), where x is a possi-
ble input and t is a possible parameter in some set� ⊂ R

p. For
some value of θ ∈ �, we are hopeful that the computer model
f (·, θ ) is very close to y(·). Analogous to the above statement of
(i), the second key assumption is:

(ii) f (·, ·) is a deterministic map from X ×� to R such
that for all length d vectors of nonnegative integers α
with ‖α‖L1 ≤ k, D(α,0) f (·, ·) exists and is bounded over
X ×�.

The k-differentiability condition is carried over from nature’s
true function. D(α,0) f (x, t ) is the mixed partial derivative of
f (·, t ) with orders α at x.

With assumptions (i) and (ii), both nature’s true function and
the computer model are fixed mappings. It is thus reasonable
that if an oracle knew these entire functions, this oracle could
choose the “best” value of θ possible. To define the parameter
in specific terms, we use an explicit decision rule for the oracle
to make their decision based on the difference between y(·) and
f (·, t ) for all t ∈ �. This leads to the thirdmajor assumption:
(iii) There is a mapping L from the space of k differentiable

functions on X to R. There is some θ ∈ � such that

L{y(·)− f (·, θ )} < L{y(·)− f (·, t )},
for all t ∈ � such that t �= θ. (2)

That is, there is a function L(·) that can distinguish the
best possible parameter from all other possible values of the
parameter.

Borrowing from the notation of score functions (Gneiting
and Raftery, 2007), the loss L is considered strictly proper if

L{y(·)− y(·)} < L{y(·)− g(·)},
for all k differentiable functions g(·) �= y(·).

Thus, if there is some unique t∗ ∈ � such that y(x) = f (x, t∗)
pointwise for all x ∈ X , then if L is strictly proper, θ = t∗. The
computer model is biased if no such value exits.

The function zθ (·) is the bias function associated with the
computer model. Using assumptions (i), (ii), and (iii), the bias is
straightforwardly defined as

zθ (x) := y(x)− f (x, θ ),

and we have that

y(x) = f (x, θ )+ zθ (x).

The dependence of the bias on θ is often suppressed in the liter-
ature, but it will be included here for clarity.

The definition of θ in assumption (iii) is fixed in this arti-
cle (up to the loss function), and this may not agree with other
definitions of θ . As discussed in Higdon et al. (2004) and Han,

Santner, and Rawlinson (2009), there are cases when the param-
eter has an explicit physical meaning and other cases when
the parameter has little or no physical meaning. We make no
such distinction and always view the parameter as an artifact of
nature’s function, our computer model, and our choice of loss
function for the oracle.

2.2. Comparison to Kennedy andO’Hagan (2001)

Kennedy and O’Hagan (2001a) stated that the parameter θ is
the one that best explains the difference between the true model
and the computer model based on the prior distribution. This
statement appears to imply the parameter is theminimizer of the
reproducing kernel Hilbert space norm based on the prior dis-
tribution (Bayesian framework) of the bias. This definition was
not outlined in their original article but was attributed to them
later (Tuo and Wu 2015b), as Kennedy and O’Hagan offered no
formal definition of the parameter. When this interpretation is
used, it agrees with the framework established by assumptions
(i), (ii), and (iii). The use of the prior to define the parameter
was critiqued by Tuo andWu (2015a) and Tuo andWu (2015b).
Section 2.3 considers definitions of the parameter that are sepa-
rate from our prior distribution to avoid conflating the prior and
the definition of the parameter.

Even if this description of the parameter (as the minimizer
of the reproducing kernel Hilbert space norm corresponding to
the bias’s prior) is acceptable, Kennedy and O’Hagan’s approach
to using the same prior distribution on the bias independent of
θ is not. This is because by defining the parameter, as done in
assumptions (i), (ii), and (iii), we implicity require orthogonal-
ity of the bias function and an aspect of the computer model.
Section 3 provides the full technical details.

2.3. Loss Functions

This subsection outlines the structure of the class of loss func-
tions considered in this work. These are motivated by different
applications, see Section 5 for more discussion of the practical
implications of different losses. The structures of these losses
are such that they can be easily incorporated into the proposed
orthogonality approach (Section 3) for creating bias function
prior distributions because of their quadratic form.

The recent article of Tuo andWu (2015b) discussed a specific
version of this framework. They considered the loss

LL2{y(·)− f (·, t )} :=
∫
X
(y(ξ )− f (ξ , t ))2dξ

= ‖y(·)− f (·, t )‖2L2 . (3)

Han, Santner, and Rawlinson (2009) used a framework like this
for tuning parameter calibration. This L2 loss is named after the
norm in the associated Hilbert space.

As another loss, consider the inner product of y(·)− f (·, t )
with itself in a Sobolev space (Wendland, 2004, p. 133). Looking
at the Hilbert spaceW 2

k , the Sobolev space of order k, the loss is
thus

LW 2
k
{y(·)− f (·, t )} :=

∑
‖α‖L1≤k

‖D(α)y(·)− D(α,0) f (·, t )‖2L2 .
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Another important extension of the loss is the incorporation
of a weightingmeasureμ(·) defined over a sigma-field onX .We
presume that this measure is a probability measure for simplic-
ity. This measure will define the relative importance of different
sectors of the input space on the loss. Using μ,

LL2(μ){y(·)− f (·, t )} :=
∫
X
(y(ξ )− f (ξ , t ))2dμ(ξ )

= ‖y(·)− f (·, t )‖2L2(μ).

The minimizer of this loss will attempt to make the computer
model as close as possible to the true function, giving special
weight to regions where the measure is large.

Placing these ideas together, the most general loss this article
will consider is

LW 2
k (μ)

{y(·)− f (·, t )} :=
∑

‖α‖L1≤k

‖D(α)y(·)− D(α,0) f (·, t )‖2L2(μ).

(4)
This function is strictly proper in the sense that LW 2

k (μ)
{y(·)−

g(·)} > 0 if g(·) �= y(·) on a subset of X with positive measure
and LW 2

k (μ)
{y(·)− y(·)} = 0.

3. Bayesian Calibration, Orthogonality, and Bias
Functions

This section motivates and outlines the Bayesian analysis of
observational data using the principles described in Section 2.
Section 3.1 gives a general overview of the approach to the pro-
posed Bayesian analysis of data and describes the needed prior
distributions and Sections 3.2–3.4 will give the details and illus-
trations that motivate this approach.

3.1. General Bayesian Framework

Say that there are a set of inputs, {x1, . . . , xn}, which corre-
spond to a set of observations from the real system, labeled
{Y1, . . . ,Yn}. The observations are considered stochastic due to
some source of noise in the real system and thus Yi differs from
y(xi) by an unknown value. The prior distributions on the dif-
ferences between Yi and y(xi) are assumed independent nor-
mal distributionswith zeromean and variance v . This normality
assumption may require some transformation or agglomeration
of the raw data.

Let π generally represent a probability density and π(a|b)
implies the conditional probability density of a given b. The
parameter θ will be assumed to have any prior distribution
labeled π(θ ) decided by a user. In a Bayesian inference setup,
we thus would like to find

π(θ |Y = (Y1, . . . ,Yn)T),

whichwould define the posterior of θ . The boldface notationwill
be used for matrices and vectors whose size depends on n and
the superscript T represents transpose. Using Bayes rule,

π(θ |Y ) ∝ π(Y |θ )π(θ ),

where∝ stands for equality up to a constant multiplier. Expand-
ing out the conditional:

π(θ |Y ) ∝
∫
Rn
π(Y |zθ (x1), . . . , zθ (xn), θ )π(zθ (x1), . . . ,

zθ (xn)|θ )π(θ )d(zθ (x1), . . . , zθ (xn)). (5)

Y given (zθ (x1), . . . , zθ (xn), θ ) is thus a product of n indepen-
dent normal densities with mean y(xi) = f (xi, θ )+ zθ (xi) and
variance v .

Like Kennedy and O’Hagan (2001a), a Gaussian process
model serves as the prior distribution on the function zθ (·),
which is the bias conditional on θ . The Gaussian process
is a valid probability distribution on continuous functions
with easily computable conditional distributions. This prior
says that for every n = 1, 2, 3, . . . the joint distribution of
zθ (x1), zθ (x2), . . . , zθ (xn) is multivariate normal. In this case,
zθ (x) has zero mean and the covariance between zθ (x) and
zθ (x′) is σ 2rθ (x, x′), where σ 2 a scaling constant. This function
rθ (·, ·) must be positive semidefinite on X × X , which means
that the covariance matrix of zθ (x1), zθ (x2), . . . , zθ (xn) is non-
negative definite. Gaussian processes have been used for prior
distributions on functions in a diverse set fields beyond com-
putermodel calibration such spatial statistics (Cressie 1993) and
machine learning (Rasmussen and Williams 2006).

The key point of this article is the distribution of
π(zθ (x1), . . . , zθ (xn)|θ ) must account for the definition of
the parameter from Section 2 to avoid identifiability problems.
This article defines a new approach to creating the distribution
ofπ(zθ (x1), . . . , zθ (xn)|θ ) based on an orthogonality condition
which will be illustrated in Section 3.2 and justified in Sections
3.3 and 3.4.

Let r(·, ·) represent any covariance function on X × X . If
one accepts assumptions (i), (ii), and (iii) with loss LL2 , then the
suggestion for the prior distribution on the bias is a Gaussian
process with mean zero and a covariance function σ 2rθ (·, ·),
σ 2 > 0, with

rθ (x, x′) = r(x, x′)− hθ (x)TH−1
θ hθ (x′), (6)

where hθ (x) is the p× 1 vector

hθ (x) =
∫
X
D(0,1) f (ξ , θ )r(x, ξ )dξ

and Hθ is the p× pmatrix

Hθ =
∫
X

∫
X
D(0,1) f (ξ ′, θ ){D(0,1) f (ξ , θ )}Tr(ξ ′, ξ )dξ ′dξ .

The notation D(0,1) f (ξ , θ ) represents the vector valued gradi-
ent of f (·, ·) with respect to the second argument. If the loss is
LW 2

k (μ)
from Section 2.3, then

hθ (x) =
∑

‖α‖L1≤k

∫
X
D(α,1) f (ξ , θ )D(0,α)r(x, ξ )dμ(ξ )

and

Hθ =
∑

‖α′‖L1≤k

∑
‖α‖L1≤k

∫
X

∫
X
D(α

′,1) f (ξ , θ ){D(α,1) f (ξ , θ )}T

×D(α
′,α)r(ξ ′, ξ )dμ(ξ ′)dμ(ξ ).
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ThenotationD(α,1) f (ξ , θ ) represents the vector valued gradient
of D(α,0) f (·, ·) with respect to the second argument. The nota-
tionD(α,α′)r(·, ·) represents themixed partial derivative of r(·, ·)
with α for the first d elements and α′ for the last d elements.

Now consider the posterior distribution of the parameter and
the bias function. Let f θ be an n × 1 vector where the ith ele-
ment is f (xi, θ ). Given θ , the vectorization of {y(x1), . . . , y(xn)}
is multivariate normal with mean f θ and covariance matrix
σ 2Rθ , where Rθ is the n × n matrix with elements rθ (xi, x j).
Accounting for these facts and straightforwardly integrating
(5),

π(θ |Y ) ∝ π(θ )

|σ 2Rθ + vI|1/2

× exp
{
−1
2
(Y − f θ )

T (σ 2Rθ + vI
)−1

(Y − f θ )
}
,

where |A| indicates the determinant of the matrix A. Now con-
sider the posterior distribution of the bias function at some arbi-
trary point x0. Given θ , using zθ ’s prior,

π (zθ (x0)|Y , θ ) = N {az(x0, θ ), bz(x0, θ )} ,
where N (a, b) stands for the normal distribution with mean
a and variance b,

az(x0, θ ) = rθ (x0)T
(
Rθ + v

σ 2 I
)−1 (

Y − f θ
)

and

bz(x0, θ ) = σ 2rθ (x0, x0)− σ 2rθ (x0)T
(
Rθ + v

σ 2 I
)−1

rθ (x0).

Here, rθ (x0) is understood to be the n × 1 sized vector with ith
element rθ (x0, xi). One can then find the posterior distribution
of the bias function by integrating out θ , that is

π(z(x0)|Y ) =
∫
�

π (z(x0)|Y , θ ) π (θ |Y ) dθ,

∝
∫
�

1√
bz(x0, θ )

exp
{
− (zθ (x0)− az(x0, θ ))2

2bz(x0, θ )

}

×π (θ |Y ) dθ.
Typically, one can approximate this via Monte Carlo, where
draws from the posterior distribution of θ are used to approx-
imate the integral with a sum. Approximate samples of the pos-
terior distribution of θ can be found with Markov chain Monte
Carlo approaches such as the Metropolis-Hastings sampler
(Gelman et al. 2014, Chap. 11).

A major obstacle in practice is the exact knowledge of σ 2. If
one cannot conjecture σ 2 a priori, the value of σ 2 can be han-
dled through another level of a Bayesian model. Place a prior
on σ 2 of π(σ 2) ∝ 1/σ 2, which is the improper Jeffreys’ prior.
Given θ and zθ (·), the vectorization of {zθ (x1), . . . , zθ (xn)},
the posterior distribution of σ 2 is given by an inverse gamma
distribution with shape n/2 and rate zTθR

−1
θ zθ /2. This condi-

tional distribution then allows us to use the following Markov
chain Monte Carlo sampler called a Gibbs sampler (Geman and
Geman 1984):

� Draw θ from its posterior distribution given most recent
draw of σ 2. Draw zθ from its posterior distribution given
the most recent draws of θ and σ 2.

� Draw σ 2 from its posterior distribution given most recent
draws of θ and zθ .

These steps can be iterated many times and eventually θ and
σ 2 will be close to draws from their joint posterior.

Kennedy andO’Hagan (2001a) do not incorporate the defini-
tion of θ in (iii) into their posterior, which leads to the problems
that will be illustrated in the next subsection. Thus, the prior on
zθ (·) Kennedy and O’Hagan recommended as simply a Gaus-
sian process with mean zero and covariance function σ 2r(·, ·).
Letting R be defined the same as Rθ , their posterior of θ is

π(θ |Y ) ∝ π(θ )

|σ 2R + vI|1/2

× exp
{
−1
2
(Y − f θ )

T (σ 2R + vI
)−1

(Y − f θ )
}
.

Thus the only difference lies in our covariance matrix σ 2Rθ ver-
sus their σ 2R. As will be shown, this replacement is important
because by defining the parameter as done in assumption (iii),
σ 2Rθ is a better covariance for the bias conditioned on θ com-
pared to σ 2R.

3.2. Illustration of the Orthogonality Condition

Consider a input space that consists of two points, x1 = 1 and
x2 = 2. Say that the true output at these two points are y(x1) =
2.3 and y(x2) = 3.9, respectively. Consider the computer model
given by

f (x, t ) = t/4 + 2x + sin(tx),

where� = [−π, π]. There is no value of t for which f (1, t ) =
2.3 and f (2, t ) = 3.9, thus model bias exists.

A reasonable prior for the bias of these two possible outputs
conditioned on θ , labeled zθ (x1) and zθ (x2), is a bivariate nor-
mal distribution with zero mean and a covariance matrix of

1
25

(
1 0.75

0.75 1

)
.

Thus, the minimizer of the associated reproducing kernel
Hilbert space norm (Kennedy and O’Hagan-type definition of
the parameter, see Section 2.2) is

θ = argmin
t∈�

(t/4 + 2x1 + sin(tx1)− 2.3)2

− 1.5(t/4 + 2x1 + sin(tx1)− 2.3)

× (t/4 + 2x2 + sin(tx2)− 3.9)

+ (t/4 + 2x2 + sin(tx2)− 3.9)2 ≈ −0.108. (7)

Kennedy andO’Haganwould then say that the joint distribution
of y(x1) and y(x2) conditional on θ has a multivariate distribu-
tion normal with means f (x1, θ ) and f (x2, θ ) and a covariance
matrix given previously.

Consider when the following loss (# 1) is used:

(t/4 + 2x1 + sin(tx1)− 2.3)2,

which only considers the discrepancy at x1. Since we canmodify
t for the optimal parameter θ in (iii), the minimizer of the loss
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can be found by solving the following nonlinear equation:

θ/4 + 2x1 + sin(θx1) = 2.3.

This can be solved numerically to find θ ≈ 0.241. This naturally
implies that we expect, given the true value of θ , that zθ (x1) =
0. Thus by defining the parameter explicitly, only biases with
zθ (x1) = 0 should be considered. We can enforce this by using
the covariance for the bias conditioned on θ of

1
25

(
0 0
0 2

)
.

Now, consider when the following loss (# 2) is used:

(t/4 + 2x1 + sin(tx1)− 2.3)2+(t/4 + 2x2 + sin(tx2)− 3.9)2.

This puts an equal amount of weight toward the bias at each
point and θ ≈ 0.022. We also find that, by standard optimality
conditions,

∂

∂t
(t/4 + 2x1 + sin(tx1)− 2.3)2

+ (t/4 + 2x2 + sin(tx2)− 3.9)2|t=θ = 0,

and thus

1.249zθ (x1)+ 2.248zθ (x2) ≈ 0.

Here, there is some linear constraint on zθ (x1) and zθ (x2).
We are implicitly reducing the degrees of freedom of
(zθ (x1), zθ (x2)) by one because of standard optimization
results coupled with assumptions (i), (ii), and (iii). In this
case, the vector (zθ (x1), zθ (x2)) is orthogonal to the vector
(1.249, 2.248). We can enforce this by using the covariance for
the bias conditioned on θ of(

1.528 −0.849
−0.849 0.472

)
.

One can then verify that

var(1.249zθ (x1)+ 2.248zθ (x2))

= 1.2492 · 1.528 − 2 · 1.249 · 2.248 · 0.849+2.2482 · 0.472 ≈ 0.

Three different possible covariances for the bias at x1 and x2
given the true θ have been described: one provided by Kennedy
and O’Hagan and two others which have a single degree of free-
dom because the parameter is defined as the minimizer of a loss
(either #1 or #2). The latter two are referred to as orthogonal
approaches.

Figure 2 illustrates the distribution of the Y1 and Y2 con-
ditioned on the knowledge of the true parameter θ . It shows
the ellipses of the 95% credible region corresponding to the
joint distribution of the outputs using Kennedy and O’Hagan
(2001a) and the orthogonal approach. Kennedy and O’Hagan’s
suggestion leads a conditional distribution which is broader
than needed considering the true θ is known. This is because
they do not account for the definition of the parameter. The
orthogonal approach leads to a thin conditional distribution that
aligns closely with reality. This holds under both the losses # 1
and # 2 even though θ differs. Kennedy and O’Hagan (2001a)

have a noticeably large creditable region relative to the condi-
tioning on the true θ . The proposed orthogonal Gaussian pro-
cess method yields a conditional distribution that agrees with
the observations despite having significantly less area included
in the credible region.

3.3. Orthogonality in General

In general, the bias function must be orthogonal some aspect of
the computer model under assumptions (i), (ii), and (iii).

Let us expand out LL2 , the popular loss studied in Tuo and
Wu (2015b):

LL2{y(·)+ f (·, t )} =
∫
X
( f (ξ , θ )+ zθ (ξ )− f (ξ , t ))2dξ,

=
∫
X
zθ (ξ )2dξ + 2

∫
X
zθ (ξ )( f (ξ , θ )

− f (ξ , t ))dξ+
∫
X
( f (ξ , θ )− f (ξ , t ))2dξ .

Let f (x, t ) be differentiable in t at θ for all x ∈ X . This is labeled
D(0,1) f (x, θ ) and is a vector in R

p. Evaluating the gradient of
the loss at θ yields

−2
∫
X
D(0,1) f (ξ , θ )zθ (ξ )dξ .

If θ is in the interior of � ⊂ R
p, then the gradient of the loss is

a vector of zeros at θ . Thus:
Theorem 1. Suppose (i), (ii), and (iii) hold with the loss LL2 and
θ located in the interior of � ⊂ R

p. Suppose that D(0,1) f (·, ·)
exists and is bounded on X ×�. Then,∫

X
D(0,1) f (ξ , θ ){y(ξ )− f (ξ , θ )}dξ = 0. (8)

The direct proof of this result is as follows. Since θ is in the
interior of �, there exists a constant δ such that θ + aei is in
� for all −δ ≤ a ≤ δ and i = 1, . . . , p, where ei is the column
vector of zeros except for a one at the ith entry. Let the function
γi be defined as

γi(a) = LL2{y(·)− f (·, θ + aei)} − LL2{y(·)− f (·, θ )}
a

.

Under the assumptions of boundedness and the compactness
of X , we can use the dominated convergence theorem to show
this has a limit point at a = 0 of eTi

∫
X D(0,1) f (ξ , θ ){y(ξ )−

f (ξ , θ )}dξ . By (iii), for all a between 0 and δ the numerator of
γi(a) is nonnegative and thus γi(a) is nonnegative. Taking the
limit of γi(·) as a → 0 from the right yields

eTi

∫
X
D(0,1) f (ξ , θ ){y(ξ )− f (ξ , θ )}dξ ≥ 0.

Moreover, for all a between −δ and 0 the numerator of γi(a) is
nonnegative and thus γi(a) is nonpositive. Thus

eTi

∫
X
D(0,1) f (ξ , θ ){y(ξ )− f (ξ , θ )}dξ ≤ 0,

which finalizes the result since this is true for i = 1, . . . , p.
The condition (8) can be thought of as orthogonality in the

L2 Hilbert space between each element ofD(0,1) f (·, θ ) and zθ (·).
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The major assumption, aside from the boundedness and differ-
entiability conditions, is that θ is in the interior of �. If this is
not true, the resulting bias function zθ (·) may not be orthog-
onal to the gradient of the computer model. Consider if � is
the box [0, 1]2 and θ = (0.5, 1). The proof can be modified to
show that zθ (·) must be orthogonal to the first element in the
vectorD(0,1) f (·, θ ), but not the second. Themore general result
would be that zθ (·) is orthogonal to hTD(0,1) f (·, θ ) if there exists
a δ > 0 such that θ + αh is in� for all −δ ≤ α ≤ δ. Given that
none of the considered examples discussed in Section 5 had a
solution at a boundary point, this article will not further discuss
the case when θ is on the boundary of �, though it may be a
topic for future work.

This idea can easily be generalized to show that if the loss (4)
is used, a similar orthogonality condition emerges on the bias:

Theorem 2. Suppose (i), (ii), and (iii) hold with the loss LW 2
k (μ)

and θ located in the interior of � ⊂ R
p. For all vectors of non-

negative integers α with ‖α‖L1 ≤ k, suppose that D(α,1) f (x, θ )
exists and is bounded on X ×�. Then zθ (·) = y(·)− f (·, θ )
must be such that

∑
‖α‖L1≤k

∫
D(α,1) f (ξ , θ )D(α)zθ (ξ )dμ(ξ ) = 0. (9)

This shows that even if one adopts the idea that theminimizer
should not necessarily be theminimizer of the squared error loss
(LL2 ), there still should be consideration of orthogonality of the
bias to the gradient of the computer model, albeit in a different
Hilbert space.

If (8) or more generally (9) holds with probability one over
the probability measure placed on zθ (·), then zθ (·) is said to
be almost surely orthogonal to the gradient. The next subsec-
tion will discuss nontrivial prior distributions on zθ (·) that are
almost surely orthogonal to the gradient (see (6)).

3.4. Orthogonal Prior Distributions for Bias Functions

Gaussian processeswith almost sure orthogonalitywere not cov-
ered in the literature until recently. Plumlee and Joseph (2015)
developed a model for Gaussian process regression that con-
tained both a linear mean portion and a random field portion.

The purpose of that article was to reduce potential identifiabil-
ity problems in universal kriging. In Plumlee and Joseph (2015),
f (x, t ) was limited to the linear model tTg(x), where g(x) is a
vector of known functions.

For calibration, g(·) can be exchanged for the gradient
D(0,1) f (x, θ ), resulting in (6). The general form of the result of
almost sure orthogonality, which follows from the proof of The-
orem 1 in Plumlee and Joseph (2015), is:

Theorem 3. Suppose (ii) and for all pairs vectors of nonnegative
integers α, α′ with ‖α‖L1 ≤ k and ‖α′‖L1 ≤ k,∫

X

∫
X
D(α

′,1) f (ξ , θ ){D(α,1) f (ξ , θ )}T

×D(α
′,α)r(ξ ′, ξ )dμ(ξ ′)dμ(ξ )

exists and this matrix is finite and positive definite, and r(·, ·)
is bounded and continuous on X × X . Then if zθ (·) is has
covariance (6),∑

‖α‖L1≤k

∫
D(α,1) f (ξ , θ )D(α)zθ (ξ )dμ(ξ ) = 0, (10)

with probability one.

4. Practical Considerations of Orthogonal Bias
Functions

Evaluating rθ (·, ·) has twomajor difficulties in practice. The first
problem is that the integrals that define rθ (·, ·) are difficult to
solve even in simple cases, see Plumlee and Joseph (2015). Sec-
ond, rθ (·, ·) requires the exact specification of the gradient of
the computer model. Often times this is not directly observable
from a computer model, though there are exceptions (Morris,
Mitchell, and Ylvisaker 1993). These issues will be addressed by
slightly altering the definition of rθ (·, ·). The to-be-stated forms
of rθ (·, ·) in (11) and (12) will likely prove to be the most useful
expressions in practice.

4.1. Addressing Difficult Integration, L2(μ) Case

Revisiting the definition of the loss, note that under assump-
tions (i), (ii), and (iii) the sample average approximation of the

Figure . A comparison between conditional distribution of Y1 and Y2 given the true θ produced by Kennedy and O’Hagan (a) and the orthogonal approach. The
background vector field is based on the loss function, where the vectors are oriented toward the optimum. The dashed line represents all possible paired values of f (x1, ·)
and f (x2, ·). The dark circle is the point

(
f (x1, θ ), f (x2, θ )

)
based on assumptions (i), (ii), and (iii) with the three different losses. The ellipsis in each panel represents the

95% creditable region corresponding to the joint distribution of Y1 and Y2 given θ , where ε1 and ε2 have prior standard deviation .. The ∗ near (2.3, 3.9) represents a
random draw of (y(x1)+ ε1, y(x2)+ ε2).
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loss can be used (Shapiro, Dentcheva, and Ruszczynski 2014,
Chap. 5). The measure μ can be approximated by μN , a uni-
form measure over a discrete set {ξ1, . . . , ξN} where each ele-
ment is drawn independently from μ. The approximate loss is
then given by

LL2(μN )(t ) :=
1
N

N∑
i=1

(y(ξi)− f (ξi, t ))2.

The minimizer of LL2(μN ) is labeled θN . One might won-
der how close this minimizer is to θ , the minimizer of
LL2(μ). Under our conditions, the strong law of large num-
bers implies LL2(μN ) almost surely converges to LL2(μ) as
N → ∞. From Shapiro, Dentcheva, and Ruszczynski’s
Theorem 5.3:

Proposition 1. Say that (i), (ii), and (iii) are true with the
loss LL2(μ) and μ is a probability measure. Further suppose
LL2(μ){y(·)− f (·, t )} is continuous with respect to t and LL2(μN )

has a unique minimizer in� labeled θN for allN. Then θN → θ

with probability one as N → ∞.

Thus, the minimizer of LL2(μN ) can be made arbitrarily close
to the minimizer of LL2(μ). Unlike the value of n, which requires
physical experimentation, increasing the value of N requires
only slightly more computational cost. A practitioner can thus
increase N until LL2(μN ) is a suitable replacement for LL2(μ).
Thismotivates using aGaussian process prior for zθ (·)with zero
mean and covariance function σ 2rθ (·, ·), σ 2 > 0 with

rθ (x, x′) = r(x, x′)− hθ (x)TH−1
θ hθ (x′),

where

hθ (x) = 1
N

N∑
i=1

D(0,1) f (ξi, θ )r(x, ξi),

and

Hθ = 1
N2

N∑
i=1

N∑
j=1

D(0,1) f (ξi, θ )
{
D(0,1) f (ξ j, θ )

}T r(ξ j, ξi).
By Theorem 3, zθ (·) is almost surely orthogonal to gradient of
the computer model on the set ξ1, . . . , ξN .

The above relation is statedwith summation notation but this
covariance can also be represented using matrices and matrix
multiplication. Let w(x) be the N × 1 vector with elements
r(x, ξi), Fθ be the N × pmatrix with rows D(0,1) f (ξi, θ ) andW
be an N × N matrix with elements r(ξi, ξ j). Then

rθ (x, x′) = r(x, x′)− w(x)TFθ
(
FT
θWFθ

)−1 FT
θ w(x′). (11)

Note also that rθ (·, ·) is a valid covariance for all values ofN such
that FT

θWFθ is positive definite:

Proposition 2. Suppose Fθ is finite, r(·, ·) is a continuous,
bounded, positive semidefinite function on X × X and FT

θWFθ
is positive definite. Then, rθ (·, ·) defined in (6) is a positive
semidefinite function on X × X .

This result follows Plumlee and Joseph’s (2015) Lemma 1.

Practically, the formulation in (6) can be directly evaluated
ifD(0,1) f (ξ1, θ ), . . . ,D(0,1) f (ξN, θ ) are available. The next sec-
tion covers the case that the gradient is not available.

4.2. Addressing an Estimated f (·, ·), L2(μ) Case

This section will discuss when the computer model response,
f (x, t ), and its gradient, D(0,1) f (x, t ), are not directly avail-
able for the entire regionX ×�. This commonly happens when
the computer model takes a good deal of computational power
to evaluate or it can only be run on specialized equipment.
Assume that an experiment has been conducted on the com-
puter model. The common approach for inference would say
that a prior distribution of aGaussian process is placed on f (·, ·)
(Santner, Williams, and Notz 2003). Then, the posterior distri-
bution of f (·, ·) given the results from the experiment still a
Gaussian process, albeit with a different mean and covariance
function.

This article takes the posterior distribution of f (·, ·) as a
fixed probabilistic definition of the computer model: f (·, ·) fol-
lows a Gaussian process with mean at (x, t ) of mf (x, t ) and a
covariance between (x, t ) and (x′, t ′) of c f ((x, t ), (x′, t ′)). For
emphasis,mf (·) and c f (·, ·) are the mean and covariance func-
tions corresponding to the posterior of f (·, ·) after the computer
experiment, thus they account for information gained during
the experiment. This idea of first fixing the probabilistic defini-
tion of f (·, ·) is consistent withmodularization as introduced by
Bayarri et al. (2007). The core concept of this is separately ana-
lyzing the posterior of some components and data, here f (·, ·)
and the observations from the computer experiment, indepen-
dent of other components and data, here θ and Y . There any
manymotivations behind adoptingmodularization as discussed
in Liu et al. (2009). Among the explanations in that work, by fix-
ing f (·, ·)here, we avoid the corruption of f (·, ·)when inferring
on θ and zθ (·).

Assumption (i), since it does not depend on f (·, ·), is
unchanged. We must revisit the last two assumptions in this
new context where f (·, ·) is a random function.We thus replace
(ii) with:
(ii∗) f (·, ·) follows a Gaussian process with mean

mf (·, ·) and covariance function c f ((·, ·), (·, ·)).
Suppose that mf (·, ·) exists and is bounded on
X ×� and c f ((·, ·), (·, ·)) exists and is bounded
on (X ×�)× (X ×�). Further suppose that
D(0,1)mf (·, ·) and D(0,1),(0,1)c f ((·, ·)), (·, ·)) exist
and are bounded on X ×� and (X ×�)× (X ×�),

respectively.
By Fubini’s Theorem under (ii∗)

E
{∫

X
(y(ξ )− f (ξ , t ))2dμ(ξ )

}

=
∫
X
(y(ξ )− mf (ξ , t ))2 + v f (ξ , t )dμ(ξ ),

where

v f (ξ , t ) = c f ((ξ , t ), (ξ , t )),
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that is, v f (ξ , t ) is the variance of f (·, ·) at (ξ , t ). This forms
a good loss to use in these circumstances. This loss consid-
ers both the difference between the truth, y(·), and the emu-
lated computer model, mf (·, t ), and the uncertainty in that
emulation, v f (·, t ).

We now replace (iii) with
(iii∗) Suppose that there is some θ ∈ � such that for all t ∈ �

such that t �= θ ,∫
X
(y(ξ )− mf (ξ , θ ))

2 + v f (ξ , θ )dμ(ξ )

<

∫
X
(y(ξ )− mf (ξ , t ))2 + v f (ξ , t )dμ(ξ ).

At a stationary point of the loss in (iii∗), under (ii∗),∫
X
D(0,1)m(ξ , θ )zθ (ξ )dμ(ξ ) =

∫
X
D(0,1)v f (ξ , θ )dμ(ξ ).

Thus under this loss, we do not have orthogonality but still have
a linear constraint that we can deal with in a similar way.

In these cases, the integral is also not available and thus we
use the stochastic average approximation from the previous sub-
section. Let w(x) andW be as defined in the previous subsec-
tion,Mθ be the N × pmatrix with rows D(0,1)mf (ξi, θ ) and Qθ
be the p× 1 matrix

Qθ =
N∑
i=1

D(0,1)v f (ξi, θ ).

Pulling all of these ideas through, our suggested prior for zθ (·)
is a Gaussian process with a mean function

ζθ (·) = w(·)TMθ

(
MT
θWMθ

)−1 Qθ

and covariance σ 2rθ (·, ·), σ 2 > 0, with

rθ (x, x′) = r(x, x′)− w(x)TMθ

(
MT
θWMθ

)−1 MT
θw(x

′). (12)

Thus, the suggested covariance function for the bias function
is the same as the previously stated covaraince with a plug-in
estimate in place ofD(0,1) f (·, θ ). The difference lies in themean
function for zθ (·), which was zero before but now incorporates
in the uncertainty in f (·, ·).

With rθ (·, ·) is determined, we now closely follow the analy-
sis outlined in Section 3.4 to derive the posterior. Letmθ be the

vectorization of {mf (x1, θ ), . . . ,mf (xn, θ )}, ζθ be the vector-
ization of {ζθ (x1), . . . , ζθ (xn)} and Cθ be the n × n covariance
matrix with elements c f ((xi, θ ), (x j, θ )). The analysis then pro-
ceeds as in Section 3 with the following substitutions:

π(θ |Y ) ∝ π(θ )

|σ 2Rθ +Cθ + vIn|1/2 exp
{
−1
2
(Y − mθ − ζθ )

T

× (
σ 2Rθ +Cθ + vIn

)−1
(Y − mθ − ζθ )

}
,

az(x0, θ ) = ζθ (x0)+ rθ (x0)T

×
(
Rθ + 1

σ 2Cθ + v

σ 2 I
)−1

(Y − mθ − ζθ )

and

b2z(x0, θ ) = σ 2rθ (x0, x0)− σ 2rθ (x0)T

×
(
Rθ + 1

σ 2Cθ + v

σ 2 I
)−1

rθ (x0).

5. Illustrative Examples

5.1. Pedagogical Example

Say X = [0, 1], f (x, t ) = tx, and y(x) = 4x + x sin 5x and thus
model bias exists. In the left panel of Figure 3, the loss functions
LL2 and LW 2

1
are plotted as a function of the possible parame-

ter values. For comparison sake, the loss that corresponds to
the reproducing kernel Hilbert space associated with the bias’s
prior distribution, discussed in Section 2.2, is plotted as well.
The losses LL2 and LW 2

1
behave differently, with the minimizer

of the former being around 3.6 and the latter being around 3.2.
The behavior of the loss LW 2

1
is similar to the reproducing kernel

Hilbert space loss.
Say we conduct an experiment where responses are observed

at {0.00, 0.05, 0.10, . . . , 0.80} and generate Yi as y(xi) plus a
normally distributed variable with zero mean and variance
v = 0.022. The prior density on θ is normal with mean zero and
unit variance.

If we use the proposed method with σ 2 = 0, this produces
inference under the assumption of no bias, we can derive the
posterior distribution of θ as normal. Consider the method of

Figure . Graphs corresponding to Section .. The left panel is LL2 (y(·)− f (·, t )), LW 2
1
(y(·)− f (·, t )), and the loss attributed to Kennedy and O’Hagan (RKHS loss) and

versus t . The right panel shows the posterior density using the four methods, where the solid lines are the orthogonal approach with the two losses, the long dashes
represent Kennedy and O’Hagan’s posterior and the short dashes represent the posterior if model bias is ignored. The square is the minimizer of LW 2

1
and the circle is the

minimizer of LL2 .
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Figure . Posterior draws of f (·, θ ) along with the observations and true function for the ball example in Section .. The true, unknown function is the solid, dark line.
The dots are located at the observations. The lighter solid lines represent ten draws from the posterior distribution of f (·, θ ) using one of the four values of v with either
Kennedy and O’Hagan’s bias function priors (top) or the proposed orthogonal Gaussian process bias function priors (bottom) with LL2 .

Kennedy and O’Hagan (2001a) with the covariance

r(x, x′) = σ 2(1 + |x − x′|/ψ)(−|x − x′|/ψ). (13)

This is a special case of the Matérn covariance, widely used in
the analysis of computer experiments, whereψ = 1/2 is chosen
as our lengthscale parameter. The posterior θ is also normal for
the posterior of Kennedy and O’Hagan (2001a). To find rθ for
the orthogonal approach, we use symbolic integration packages
to find hθ (·) and Hθ in both the case of LL2 and LW 2

1
and with

a renormalization step so that the average prior variance over
the input space is the same as a stationary correlation function.
After completing these two steps, when the loss is LL2 ,

rθ (x, x′) = 5.19r(x, x′)− 23.52h(x)h(x′),

h(x) = 2x + 2x + 3
4

exp(−2x)+ 6x − 13
4

exp(2x − 2)

and when the loss is LW 2
1
,

rθ (x, x′) = 1.27r(x, x′)− 0.78h(x)h(x′),

h(x) = 2x − 6x + 1
4

exp(−2x)− 2x + 1
4

exp(2x − 2).

The right panel of Figure 3 shows the posterior distribution
of the parameter under each framework. The posterior when
bias is ignored is quite concentrated at a value that is beyond
the actual minimizer of the L2 norm of the bias. This is because
we observed data only up to 0.8. There is a great deal of bias that
occurs when the input is between 0.8 and 1 which is ignored if
the prior on the bias is zero. The posterior distribution of θ using
the orthogonal Gaussian process method is properly centered
around the appropriate minimizer, with a little broader distri-
bution to account for the uncertainty in the bias. The Kennedy
and O’Hagan posterior is not centered properly, mostly existing
to the left of the region of interest. This is despite the fact that
the parameter they implicity defined exists around 3.1 (see the
left panel of Figure 3).

5.2. Falling Ball Example, revisited

Consider the falling ball example from the first section with
the initial vertical height a known value of eight. The difference
betweenYi and y(xi) is drawn independently from a normal dis-
tribution with mean zero and a known variance v .

The objective in this subsection is to compare the posterior
distribution of f (x, θ ) using Kennedy and O’Hagan’s bias func-
tion priors and the proposed orthogonal Gaussian process bias
function priors. Let the loss be LL2 in this example and r(·, ·)
be (13) with ψ = 1. In this example, σ 2 is handled using the
Bayesian approach in Section 3.1. The observed responses are at
{0.10, 0.15, 0.20, 0.40, 0.70, 0.75, 0.95, 1.00}.

Figure 4 shows draws from the posterior distribution of
f (·, θ ) along with the true function with various values of v .
Kennedy andO’Hagan’s method results in a large posterior vari-
ance of f (·, θ ). Intuitively, one would expect a small value of the
noise variance v would result in smaller variance in the poste-
rior of f (·, θ ). For Kennedy and O’Hagan’s method, this is not
the case. Even when v is small at 0.052, there is still a large poste-
rior variance of f (·, θ ). In contrast, posterior variance of f (·, θ )
using the proposed method logically shrinks as the noise gets
small. When v is 0.052, the posterior f (·, θ ) is hard to distin-
guish from the true y(x).

5.3. Ion Channel Example

This subsection will detail analysis of a small subset of real
data analyzed in Plumlee, Joseph, and Yang (2016), which used
Kennedy and O’Hagan’s prior for the bias. That dataset contains
the results from whole cell voltage clamp experiments on the
sodium ion channels of cardiac cell membranes. These exper-
iments return the current (response) needed to maintain a fixed
membrane potential over time (input).We use a log scale for this
input, that is, x is the log of time, for better presentation because
most of the activity in the response is present in the begin-
ning of the experiment. The observations will be the output of
a single voltage clamp experiment on a cell. Figure 5 shows a
series of observations over the course of an experiment at a fixed
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Figure . The top panels are posterior draws of f (·, θ ) for the ion channel example in Section . using Kennedy and O’Hagan’s prior on the bias functions (left) and
the proposed method (middle with LL2 and right with LW 2

1
). The dots are located at the observations. The bottom panels are posterior draws of the bias using the same

framework as the top panels.

membrane potential of −35mV. The response is normalized by
a negative constant for clarity.

The computer model is the classic Markov model for
sodium ion channels, see, for example, Clancy and Rudy
(1999). This article will not detail the motivation behind
the model, but the normalization mentioned earlier allows
implies

f (x, t ) = eT1 exp(exp(x)A(t ))e4,

where the first exp implies the matrix exponential, ei is the col-
umn vector of zeros with the ith element one and

A(t ) =

⎡
⎢⎢⎢⎣

−t2 − t3 t2 0 0
t1 −t1 − t2 0 0
0 t2 −t1 − t2 t1
0 0 t2 −t1

⎤
⎥⎥⎥⎦ .

The parameter is three dimensional, (θ1, θ2, θ3). The gradi-
ent, D(0,1)(x, θ ), can be evaluated directly in this case, as can
D(1,1)(x, θ ). Take r(·, ·) as given in (13) with ψ = 1. The
value of v is fixed at 0.0012 and σ 2 at 0.022. For our method,
v = 0.0012 and the average prior variance of zθ (·) overX is fixed
at 0.022 for comparison. Since f (x, θ ) is a nonlinear and θ is
three dimensional, the Metropolis-Hastings algorithm is used
to sample from the posterior of θ for both the Kennedy and
O’Hagan’s method and the proposed method.

Figure 5 graphs six draws from the posterior of f (·, θ ) using
both the traditional and proposed approach to the bias func-
tion (with two losses). The posterior distribution of f (·, θ ) does
not cover the data in either approach. This is expected because
there is some model bias. But it is apparent that Kennedy and
O’Hagan’s posterior of f (·, θ ) is further from the data compared
to the proposed posterior. Kennedy and O’Hagan’s posterior
variance of f (·, θ ) is also much larger than one would expect
given the information available. These two issues are resolved
when the proposed bias function priors are used.

This also illustrates the different conclusions one can get
by using different loss functions. When LW 2

1
is used, there is a

penalty placed on the discrepancy between the derivative of the
response and the derivative of the actual response. The loss LL2
has no such penalty. The posterior draws from the bias when
using LL2 have smaller magnitude than the bias when using LW 2

1
,

but have more oscillations across the input. This illustrates the
effect the loss plays in estimation. It is up to a user to decide

which parameter/bias pair they are interested in when deciding
a loss.

6. Conclusions and Discussion

This article introduces a technique for Bayesian calibration
when the computer model does not align perfectly with reality.
This article assumes that the parameter is defined as the min-
imizer of a loss. Under this assumption, it was shown that the
bias function should be orthogonal to the gradient of the com-
puter model. Previously suggested bias function priors do not
have this property. This work details the construction of bias
function priors that do have this property.

The parameter in this work is defined as an artifact of the goal
we would like to achieve, for example, minimizing the squared
error difference between the computer model and nature’s func-
tion. Other options includeminimizing the squared error differ-
ence between the computer model’s derivative and the deriva-
tive of nature’s function. Defining the parameter based on these
type of criteria instead of from a probability distribution is not
uncommon to other fields, for example see Bouchard and Triggs
(2004) and Liang and Jordan (2008). From the perspective of a
statistical researcher, this definition allows for the evaluation and
comparison of different calibration methods.

There are some additional computational costs associated
with using the proposed bias functions as opposed to the bias
structure suggested by Kennedy and O’Hagan. The major cost
to compute the posterior of θ and zθ (·) will be the inversion
of an n × nmatrix, where n is the number of physical observa-
tions. This exists in both Kennedy and O’Hagan and the pro-
posed approach. In Kennedy and O’Hagan, only n2/2 evalu-
ations are of r(·, ·) required during likelihood computation.
When the ideas from Section 4.1 and Section 4.2 are used, r(·, ·)
is evaluated (n + N)2/2 times. Recall that N is the number of
samples drawn uniformly from the input space to approximate
the integrals. Thus, if N is much larger than n, there could
be a significant amount of additional computation. A repeat-
able strategy for having N be large enough such that θN is
close to θ without computational issues was not found by the
author. The other additional cost is the inversion of a p× p
matrix MT

θWMθ , which is relatively cheap if p is small, but
may be a consideration if p is very large. With the impact of
these values delineated, consider the practical ranges of each
value. Typically there are fewer parameters than observations,
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thus p � n, and there is typically not enough observations
to fill the space, thus n � N. The major additional cost will
then be evaluating r(·, ·) and additional N2/2 times, which is
a new cost to the proposed method. In Section 4.2, the com-
putation of the predictive mean and variance for the computer
model also requires inverting a square matrix with size equal
to the number of computer model observations, which is also
implicity required for Kennedy and O’Hagan’s posterior. If spe-
cialized computer experiment designs, such as grids (Kennedy
and O’Hagan 2001b) or sparse grids (Plumlee 2014), are used,
the cost of the computer model inference can be significantly
reduced.

SupplementaryMaterials

The supplementary materials contain the MATLAB code used to generate
the figures.
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