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SUMMARY

We introduce a method for constructing a rich class of designs that are suitable for use in
computer experiments. The designs include Latin hypercube designs and two-level fractional
factorial designs as special cases and fill the vast vacuum between these two familiar classes
of designs. The basic construction method is simple, building a series of larger designs based
on a given small design. If the base design is orthogonal, the resulting designs are orthogonal;
likewise, if the base design is nearly orthogonal, the resulting designs are nearly orthogonal. We
present two generalizations of our basic construction method. The first generalization improves
the projection properties of the basic method; the second generalization gives rise to designs that
have smaller correlations. Sample constructions are presented and properties of these designs are
discussed.

Some key words: Fractional factorial; Hadamard matrix; J -characteristic; Kronecker product; Latin hypercube;
Orthogonal array; Resolution IV design.

1. INTRODUCTION

Latin hypercube designs, which have been popular choices for computer experiments since they
were introduced by McKay et al. (1979), are a very large class of designs with some desirable
properties. For example, when projected on any single factor, Latin hypercubes achieve the
maximum stratification; that is, if we look at the one-dimensional projections only, the equally-
spaced design points cover the entire experimental region for each variable. Furthermore, a Latin
hypercube does not have repeated runs, a desirable feature as they do not bring new information
in computer experiments because of the deterministic nature of computer models. However, a
Latin hypercube design does not necessarily compare well with respect to other useful criteria
such as those related to orthogonality or space-filling. With regard to orthogonality, one natural
way of finding good designs within the class of Latin hypercubes is to restrict attention to
orthogonal Latin hypercubes. Ye (1998) and Steinberg & Lin (2006) provided some construction
results on orthogonal Latin hypercubes. Prior to this, Owen (1994) and Tang (1998) developed
computational algorithms for searching for nearly orthogonal Latin hypercubes. Butler (2001)
constructed Latin hypercubes that are orthogonal with respect to models based on trigonometric
functions.

The factors in a Latin hypercube design have as many levels as the run size, which makes it very
difficult for a Latin hypercube to be orthogonal. In the orthogonal Latin hypercubes constructed
by Ye (1998), the run size n must be of the form n = 2k and the number m of factors must satisfy
m = 2k − 2. This means that the ratio m/n becomes very small even for moderately large k. The
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orthogonal Latin hypercubes constructed by Steinberg & Lin (2006) have a large ratio m/n, the
price being a more severe restriction on the run size n, which now must have the form n = 22k

, a
very large number even for k as small as 5.

Latin hypercube designs are attractive for computer experiments because they allow one to ob-
serve factors at many levels in relatively few trials. However, practical experience and interaction
with researchers who use the design and analysis methodology of computer experiments in their
investigations have revealed that designs with many levels are desirable, but it is not essential
that the number of runs equals the number of levels at which each factor is observed, as in a
Latin hypercube design. By relaxing the condition that the number of levels for each factor be
identical to the run size, we construct in this paper a class of orthogonal designs for computer
experiments. This very rich class of orthogonal designs includes two-level orthogonal designs and
orthogonal Latin hypercubes as special cases. The construction method allows various choices
for the number s of levels in the whole range s = 2, . . . , n. The constructed designs have much
more flexible run sizes than the designs in Ye (1998) and Steinberg & Lin (2006).

With regard to space-filling designs for computer experiments, see chap. 5 and 6 of Santner
et al. (2003) for discussion and useful ideas. A full investigation is beyond the scope of the paper.

Many researchers are increasingly interested in using polynomial models for computer ex-
periments though Gaussian-process models are still very popular. Polynomials are attractive
because they allow gradual building of a suitable model by starting with simple linear terms
and then gradually introducing higher-order terms. Orthogonal and nearly orthogonal designs are
directly useful when polynomial models are considered. If one insists on using Gaussian-process
models, orthogonality and near orthogonality can be viewed as stepping stones to space-filling
designs. This is because a good space-filling design must be orthogonal or nearly so, as the design
points should be uniformly scattered when projected onto two dimensions. Thus, the search for
space-filling designs can be restricted to orthogonal and nearly orthogonal designs.

2. DESIGN CONSTRUCTION

2·1. Notation, definition and background material

Consider designs of n runs for m factors of s levels, where s = 2, . . . , n. For convenience, the
s levels are chosen to be centred, equally spaced and integer-valued. When s is odd, the levels
are taken to be −(s − 1)/2, . . . ,−1, 0, 1, . . . , (s − 1)/2. When s is even, the levels are chosen
as −s + 1,−s + 3, . . . , −1, 1, . . . , s − 1. For example, the levels are −2,−1, 0, 1, 2 for s = 5
and −3,−1, 1, 3 for s = 4. The levels except for level 0 in the case of odd s are assumed to
be equally replicated in each design column to ensure that linear main effects are all orthogonal
to the grand mean. Such a design is denoted by D(n, sm) and can be represented by an n × m
matrix D = (di j ) with entries from the set of s levels as described above. Clearly, a D(n, sm)
becomes a Latin hypercube design when s = n and a two-level fractional factorial when s = 2.
Design D is said to be orthogonal if the inner product of any two columns of D is zero, that is,∑n

i=1 di j1di j2 = 0 for any j1 < j2. This definition of orthogonality is not to be confused with the
combinatorial definition used for orthogonal arrays (Hedayat et al., 1999). We use OD(n, sm) to
denote an orthogonal design with m factors at s levels. We will use this shorthand for D(n, sm)
and OD(n, sm) throughout.

For an arbitrary number of vectors b j = (b1 j , . . . , bnj )T, where j = 1, . . . , k, their
J -characteristic is defined as

J (b1, . . . , bk) =
n∑

i=1

bi1 · · · bik .
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For a pair of columns, the J -characteristic is just the inner product of the two columns. Therefore,
design D = (d1, . . . , dm) is orthogonal if and only if J (d j1, d j2 ) = 0 for any j1 < j2, where d j

denotes the j th column of D. Let A = (ai j )n1×m1 and B = (bi j )n2×m2 be two matrices. Their
Kronecker product is defined as

A ⊗ B =

⎛
⎜⎜⎜⎝

a11 B a12 B · · · a1m1 B

a21 B a22 B · · · a2m1 B
...

...
...

an11 B an12 B · · · an1m1 B

⎞
⎟⎟⎟⎠ .

The following result from Tang (2006) is useful for later development.

LEMMA 1. We have that

J (a1 ⊗ b1, . . . , ak ⊗ bk) = J (a1, . . . , ak) J (b1, . . . , bk),

where a j = (a1 j , . . . , an1 j )T and b j = (b1 j , . . . , bn2 j )T for j = 1, . . . , k.

2·2. Design construction and its orthogonality

Let A = (ai j ) be an n1 × m1 matrix with entries ai j = ±1. In what follows, we always use
A to denote a matrix only having entries ±1 unless otherwise stated. Furthermore, let D0 be a
D(n2, sm2). Clearly, design

D = A ⊗ D0 (1)

is a D(n1n2, sm1m2).
In the above construction it is not required that the two levels ±1 of A be equally replicated in

any column of A. As we shall see, it will be beneficial to choose A to be orthogonal. Hadamard
matrices and two-level orthogonal arrays are all such orthogonal matrices. A Hadamard matrix
is an orthogonal square matrix with entries ±1. A two-level orthogonal array of strength t � 2,
denoted by OA(n1, 2m1, t), is an n1 × m1 matrix with entries ±1 such that, in any of its n1 × t
submatrices, each of the 2t possible row vectors occurs the same number of times. Clearly,
attaching a column of all plus ones to a two-level orthogonal array still gives an orthogonal
matrix.

PROPOSITION 1. Let A be orthogonal. Then design D = A ⊗ D0 in (1) is orthogonal if and
only if D0 is orthogonal.

Proposition 1 can be verified directly using Lemma 1, and its validity also follows from
Proposition 2 in the next section. The construction in equation (1) and Proposition 1 are well-
known results in the construction of Hadamard matrices and two-level orthogonal arrays of
strength two. The use of this Kronecker product method in constructing two-level orthogonal
arrays of strength three has recently been investigated by Chen & Cheng (2006) and Cheng et al.
(2008). We see from Proposition 1 that the same idea allows us to construct a rich class of
orthogonal designs suitable for computer experiments. The next two examples illustrate the
power of this method.

Example 1. Let A be a Hadamard matrix of order k, and let D0 be the orthogonal Latin
hypercube OD(8, 84) constructed by Ye (1998). Applying the construction in (1), we obtain a
series of OD(8k, 84k)s, where k is an integer such that a Hadamard matrix of order k exists.
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Adding a centrepoint (0, . . . , 0) to these designs and rescaling the levels, we obtain a series of
OD(8k + 1, 94k) designs.

Example 2. Steinberg & Lin (2006) constructed an orthogonal Latin hypercube of 16 runs for
12 factors. Taking this OD(16, 1612) to be D0 in (1), we obtain a series of OD(16k, 1612k)s, where
k is such that a Hadamard matrix of order k exists.

2·3. Near orthogonality

Since there are only a handful of orthogonal Latin hypercubes available for small run sizes,
choices for D0 in (1) are quite limited. Greater flexibility is gained by allowing D0 to be a nearly
orthogonal Latin hypercube. If D0 in (1) is nearly orthogonal, one expects that D is also nearly
orthogonal. This is quantified in the present section.

For any design C = (c1, . . . , cm), where c j is the j th column of C , we define ρi j (C) = ρ(ci , c j )
to be J (ci , c j )/{J (ci , ci )J (c j , c j )}1/2. If the sum of the components in c j for all j = 1, . . . , m is
zero, as will be the case for designs in D(n, sm), then ρi j (C) is simply the correlation coefficient
between ci and c j . This is the case for both D0 and D in (1). For A in (1), the interpretation of
ρi j (A) is slightly different. Although it is not the correlation between the i th and j th columns, it
does provide a measure of non-orthogonality of the two columns. Let ρM (C) = maxi< j |ρi j (C)|
and ρ2(C) = ∑

i< j ρ2
i j (C)/{m(m − 1)/2}.

PROPOSITION 2. Consider design D in (1). Then we have that

(i) ρM (D) = max {ρM (A), ρM (D0)},
(ii) ρ2(D) = w1ρ

2(A) + w2ρ
2(D0) + w3ρ

2(A)ρ2(D0),

where w1 = (m1 − 1)/(m1m2 − 1), w2 = (m2 − 1)/(m1m2 − 1) and w3 = 1 − w1 − w2.

Proposition 2 says that, if A and D0 are both nearly orthogonal, then design D is nearly
orthogonal as well, in terms of both measures of non-orthogonality. Lemma 1 allows Proposition 2
to be proved easily. Here we provide a sketch of the proof. Let a1, . . . , am1 be the columns of A and
let b1, . . . , bm2 be the columns of D0. Then ai1 ⊗ b j1 and ai2 ⊗ b j2 are two columns of D. They
are distinct unless i1 = i2 and j1 = j2 are both true. Lemma 1 gives J (ai1 ⊗ b j1, ai2 ⊗ b j2) =
J (ai1, ai2)J (b j1, b j2 ), which further implies that

ρ(ai1 ⊗ b j1, ai2 ⊗ b j2 ) = ρ(ai1, ai2 )ρ(b j1, b j2 ). (2)

From (2), part (i) of Proposition 2 is immediate. Part (ii) follows from

m1∑
i1=1

m1∑
i2=1

m2∑
j1=1

m2∑
j2=1

ρ2(ai1 ⊗ b j1, ai2 ⊗ b j2) =
m1∑

i1=1

m1∑
i2=1

ρ2(ai1, ai2 ) ×
m2∑

j1=1

m2∑
j2=1

ρ2(b j1, b j2 ).

If A in (1) is chosen to be orthogonal, simpler expressions are obtained.

COROLLARY 1. If A in (1) is orthogonal, then we have that

(i) ρM (D) = ρM (D0),
(ii) ρ2(D) = w2ρ

2(D0), where w2 = (m2 − 1)/(m1m2 − 1).

Example 3. Let D0 be a Latin hypercube D(6, 62) given by

DT
0 =

(−5 −3 −1 1 3 5
3 −3 1 −5 5 −1

)
.
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The two columns of D0 have a small correlation of −0·0286. If we choose A to be a Hadamard
matrix of order k, then D in (1) is a D(6k, 62k). This design is nearly orthogonal, with ρM (D) =
0·0286 and ρ2(D) = 0·02862/(2k − 1) = 0·0008/(2k − 1).

2·4. Orthogonality of higher order

The orthogonal Latin hypercubes constructed by Ye (1998) enjoy an orthogonality property of
higher order in that, in addition to being mutually orthogonal, the linear main effects are orthogonal
to the quadratic effects and the linear-by-linear two-factor interactions. Steinberg & Lin (2006)
also provided a construction of Latin hypercubes with orthogonality of higher order. In this
section we show that, if one of A and D0 in (1) has this orthogonality property of higher order,
then D = A ⊗ D0 has the same property.

For convenience of presentation, design C = (c1, . . . , cm) is said to be 3-orthogonal if J (c j ) =
0 for all j , J (ci , c j ) = 0 for all i < j and J (ci , c j , ck) = 0 for all i, j, k. Clearly, a two-level
design is 3-orthogonal if and only if it is an orthogonal array of strength three. A design with
more than two levels is 3-orthogonal if and only if the linear main effects are orthogonal to the
grand mean, linear main effects are mutually orthogonal and linear main effects are orthogonal
to quadratic effects and linear-by-linear two-factor interactions.

PROPOSITION 3. Let both A and D0 be orthogonal. We have that

(i) design D in (1) is 3-orthogonal if D0 is 3-orthogonal,
(ii) design D in (1) is 3-orthogonal if A is an orthogonal array of strength three.

Proposition 3 is immediate from Lemma 1. Now consider the special case in which A is a
Hadamard matrix and D0 is a two-level design. Proposition 3 concludes that D = A ⊗ D0 is an
orthogonal array of strength three if D0 is an orthogonal array of strength three, a result obtained
earlier by Chen & Cheng (2006) and Cheng et al. (2008).

Example 4. Since the OD(8, 84) from Ye (1998) is in fact 3-orthogonal, the OD(8k, 84k) in
Example 1 is also 3-orthogonal, where k is such that a Hadamard matrix of order k exists.

Example 5. Let D0 be the OD(16, 1612) from Steinberg & Lin (2006), and let A be a saturated
orthogonal array of strength 3 with n1 = 2k runs and m1 = k factors, assuming that a Hadamard
matrix of order k exists. Then D in (1) is a 3-orthogonal OD(32k, 1612k).

Remark 1. For convenience, our discussion has been restricted to designs that have the same
number of levels for all factors. In fact, all the results in this section still hold true if D0 in (1) has
mixed levels, meaning that the numbers of levels may be different for different factors. Similar
remarks can also be made for the results in later sections. Clearly, if D0 has mixed levels, then
D in (1) has mixed levels. Designs with mixed levels are useful if one feels the need of studying
some factors in more details than others.

Remark 2. Mathematically, the results in this section are even more general than described in
Remark 1. All the results rely solely on Lemma 1. There is no need to require that A have entries
±1 and the levels of D0 be equally spaced and integer-valued, as these requirements are never
used. However, this generality appears to be only mathematically interesting. For example, if we
allow A to have entries ±1 and ±2, the levels of D in (1) will no longer be equally-spaced even
when the levels of D0 are equally-spaced.
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3. GENERALIZATIONS

3·1. Generalization for better projection properties

Let A = (ai j ) be an n1 × m1 matrix with ai j = ±1 as in § 2. For each j = 1, . . . , m1, let D j

be a D(n2, sm2). Consider the following construction:

D = (ai j D j ) =

⎛
⎜⎜⎜⎝

a11 D1 a12 D2 · · · a1m1 Dm1

a21 D1 a22 D2 · · · a2m1 Dm1

...
...

...
an11 D1 an12 D2 · · · an1m1 Dm1

⎞
⎟⎟⎟⎠ . (3)

We have the following results for design D in (3), which generalize Proposition 1 and
Corollary 1.

PROPOSITION 4. Let A be orthogonal. We have that

(i) ρM (D) = max { ρM (D1), . . . , ρM (Dm1) },
(ii) ρ2(D) = w2{ρ2(D1) + · · · + ρ2(Dm1)}/m1, where w2 = (m2 − 1)/(m1m2 − 1),

(iii) D in (3) is orthogonal if and only if D1, . . . , Dm1 are all orthogonal.

We sketch a proof. Let a j be the j th column of A, and let b1, b2 be two columns of D j .
Then we have J (a j ⊗ b1, a j ⊗ b2) = n1 J (b1, b2) according to Lemma 1. Let ai and a j be
two distinct columns of A, let b1 be a column of Di and let b2 a column of D j . We obtain
J (ai ⊗ b1, a j ⊗ b2) = 0 because A is orthogonal. Parts (i) and (ii) quickly follow from these
observations. Part (iii) becomes obvious once we have part (i) or part (ii).

What makes the construction in (3) attractive is that it offers better projection properties as
compared with our basic construction method in (1). To explain this, consider the simple case in
which A = ((1, 1)T, (1,−1)T)T, a Hadamard matrix of order 2. Then design D given by (1) has
two columns of the form (

b b
b −b

)
,

where b is a column of D0. When design D is projected on to these two columns, the design
points lie on the two lines y = x and y = −x . By using two different D1 and D2 as in (3), we
can eliminate the above pattern.

Example 6. Consider the following two OD(8, 84)s.

D1

1 −3 7 5
3 1 5 −7
5 −7 −3 −1
7 5 −1 3

−1 3 −7 −5
−3 −1 −5 7
−5 7 3 1
−7 −5 1 −3

D2

−3 −1 −5 7
−7 −5 1 −3

7 5 −1 3
3 1 5 −7
5 −7 −3 −1
1 −3 7 5

−5 7 3 1
−1 3 −7 −5

Design D1 is the orthogonal Latin hypercube from Ye (1998) while D2 is a row permutation
of D1. Let A = ((1, 1)T, (1,−1)T)T. We now obtain two OD(16, 88)s. The first is given by the
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Fig. 1. The OD(16, 88) constructed by the basic method in (1).

basic construction in (1) by taking D0 = D1 and the second is obtained from the construction
in (3) using the above D1 and D2. The pairwise plots of the two OD(16, 88)s are given in Figs.
1 and 2, respectively. In Fig. 1, four bivariate projections of the design points have the pattern
that the points lie on the two diagonals of the square region. No such pattern is apparent in
Fig. 2.

To construct orthogonal designs using the construction in (3), we need several orthogonal Latin
hypercubes. Orthogonal Latin hypercubes are very difficult to find, and only a handful of them
are available for small run sizes. However, this is not a problem for using the construction in
(3). Given an orthogonal Latin hypercube, we can obtain a large collection of orthogonal Latin
hypercubes by row-permutation, column-permutation, sign-switching columns, or a combination
of these operations. To use (3), one can consider different orthogonal Latin hypercubes given by
permuting the rows of this given orthogonal Latin hypercube. One could also consider column-
permutation and sign-switching columns as well as row-permutation. However, it should be
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Fig. 2. The OD(16, 88) constructed by the generalization in (3).

mentioned that column-permutation and sign-switching columns alone do not help to eliminate
the diagonal pattern in the bivariate projections.

Regarding higher-order orthogonality, we can easily prove a generalization of part (ii) of
Proposition 3.

PROPOSITION 5. Let D1, . . . , Dm1 be orthogonal. Then D in (3) is 3-orthogonal if A is an
orthogonal array of strength three.

A result analogous to part (i) of Proposition 3 is also true, which states that D in (3) is
3-orthogonal if A is orthogonal and (D1, . . . , Dm1) is 3-orthogonal, but this result is hardly useful
because it will give a design with far fewer columns. Simply requiring each of D1, . . . , Dm1 be
3-orthogonal is not sufficient for D to be 3-orthogonal if A is only orthogonal.
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3·2. Generalization for better correlation properties

Let A = (ai j ) be an n1 × m1 matrix with ai j = ±1 as before. For each p = 1, . . . , n1, let Dp

be a D(n2, sm2). Now consider design D given by

D = (ai j Di ) =

⎛
⎜⎜⎜⎜⎝

a11 D1 a12 D1 · · · a1m1 D1

a21 D2 a22 D2 · · · a2m1 D2

...
...

...
an11 Dn1 an12 Dn1 · · · an1m1 Dn1

⎞
⎟⎟⎟⎟⎠ . (4)

For this design D in (4), we have the following results.

PROPOSITION 6. Let A be orthogonal. Then we have that

(i) ρM (D) � {ρM (D1) + · · · + ρM (Dn1)}/n1,
(ii) ρ2(D) � w2{ρ2(D1) + · · · + ρ2(Dn1)}/n1, where w2 = (m2 − 1)/(m1m2 − 1),

(iii) D is orthogonal if D1, . . . , Dn1 are all orthogonal,
(iv) D is 3-orthogonal if D1, . . . , Dn1 are all 3-orthogonal.

Using Lemma 1, the proofs of all the previous results in Propositions 1–5 are relatively
straightforward. In contrast, Lemma 1 does not help prove Proposition 6, of which we give a full
proof.

Proof . Let b j (p) be the j th column of design Dp. Then a column of design D in (4) has a
form

d(i, j) = [a1i {b j (1)}T, . . . , an1i {b j (n1)}T]T.

For two columns d(i1, j1) and d(i2, j2) of D, we have

J {d(i1, j1), d(i2, j2)} =
n1∑

p=1

api1api2 J
{

b j1(p), b j2 (p)
}

. (5)

Dividing both sides of equation (5) by

J {d(i, j), d(i, j)} =
n1∑

p=1

api api J {b j (p), b j (p)} = n1 J {b j (1), b j (1)},

we obtain

ρ{d(i1, j1), d(i2, j2)} = 1

n1

n1∑
p=1

api1api2ρ
{

b j1(p), b j2 (p)
}

. (6)

If d(i1, j1) and d(i2, j2) are two distinct columns of D, then (i1 j1) � (i2, j2). For the case
i1 � i2 but j1 = j2, we have ρ{d(i1, j1), d(i2, j2)} = 0, as A is orthogonal. For the case j1 � j2,
from (6) we obtain

|ρ{d(i1, j1), d(i2, j2)}| � 1

n1

n1∑
p=1

|ρ{b j1(p), b j2(p)}| � 1

n1

n1∑
p=1

ρM (Dp).

This gives

ρM (D) � 1

n1

n1∑
p=1

ρM (Dp),
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proving part (i) of Proposition 6. Part (iii) follows from part (i). Similarly to (5), for three columns
d(i1, j1), d(i2, j2) and d(i3, j3) of D, we have

J {d(i1, j1), d(i2, j2), d(i3, j3)} =
n1∑

p=1

api1api2api3 J
{

b j1 (p), b j2(p), b j3(p)
}

from which part (iv) is immediate. We now turn our attention to part (ii). Let α =∑m1
i1=1

∑m1
i2=1

∑m2
j1=1

∑m2
j2=1[ρ{d(i1, j1), d(i2, j2)}]2. Then we have

α = m1m2 + (m1m2)(m1m2 − 1)ρ2(D). (7)

From (6), we further have

α = 1

n1

m1∑
i1=1

m1∑
i2=1

m2∑
j1=1

m2∑
j2=1

⎡
⎣ n1∑

p=1

api1api2

n1/2
1

ρ
{

b j1 (p), b j2(p)
}⎤
⎦

2

. (8)

For fixed i1 and fixed j1 � j2, consider

β =
m1∑

i2=1

⎡
⎣ n1∑

p=1

api1api2

n1/2
1

ρ
{

b j1 (p), b j2(p)
}⎤
⎦

2

.

Let

x =

⎡
⎢⎢⎢⎣

ρ
{

b j1 (1), b j2(1)
}

ρ
{

b j1 (2), b j2(2)
}

...
ρ
{

b j1(n1), b j2(n1)
}

⎤
⎥⎥⎥⎦ , Q = 1

n1/2
1

⎛
⎜⎜⎜⎝

a1i1a11 a1i1a12 · · · a1i1a1m1

a2i1a21 a2i1a22 · · · a2i1a2m1

...
...

...
an1i1an11 an1i1an12 · · · an1i1an1m1

⎞
⎟⎟⎟⎠ .

Then we have β = ‖QTx‖2. As the columns of Q are orthogonal vectors of length unity, we must
have

β = ‖QTx‖2 � ‖x‖2 =
n1∑

p=1

[
ρ
{

b j1(p), b j2 (p)
}]2. (9)

Substituting (9) into (8), we obtain α � m1m2 + m1n−1
1

∑n1
p=1

∑
j1 � j2 [ ρ{b j1(p), b j2(p)} ]2,

which simplifies to

α � m1m2 + m1

n1
m2(m2 − 1)

n1∑
p=1

ρ2(Dp). (10)

Combining (7) and (10), we obtain part (ii). �

When orthogonal Latin hypercubes are not available, the construction method in (4) provides
ample opportunities to obtain designs with correlations smaller than those from the basic con-
struction method in (1). From the proof of Proposition 6, we see that, if m1 = n1 in which case
A is a Hadamard matrix, then the equality holds in part (ii). When m1 < n1, the strict inequality
holds in part (ii) unless x in (9) is in the column space of Q. Now let us look at part (i). Also from
the proof, in order for the equality to be true in part (i), there must exist i1, i2 and j1 � j2 such that
ρM (Dp) = |ρ{b j1(p), b j2 (p)}| for all p and all api1api2ρ{b j1 (p), b j2(p)} for p = 1, . . . , n1 have
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the same sign. In all other cases, the strict inequality in part (i) is true. An example illustrates the
usefulness of this construction method.

Example 7. Consider the four D(6, 63)s given below.

D1

−5 3 −5
−3 −3 3
−1 1 5

1 −5 −3
3 5 1
5 −1 −1

D2

3 −5 −5
−3 3 −3

1 5 −1
−5 −3 1

5 1 3
−1 −1 5

D3

−5 −5 3
3 −3 −3
5 −1 1

−3 1 −5
1 3 5

−1 5 −1

D4

5 3 −5
3 −3 3
1 1 5

−1 −5 −3
−3 5 1
−5 −1 −1

Designs D2 and D3 are column permutations of design D1. Design D4 is obtained from D1 by
sign-switching the first column. The four designs have the same ρM = 0·086 and ρ2 = 0·003.
Let

A =

⎛
⎜⎜⎝

1 −1 −1
1 −1 1
1 1 −1
1 1 1

⎞
⎟⎟⎠ .

Consider the two D(24, 69)s, D∗ and D∗∗, where D∗ is given by the construction in (4)
and D∗∗ is obtained from the construction in (1) by taking D0 = D1. For design D∗, we
have ρM (D∗) = 0·057 and ρ2(D∗) = 0·00054. For design D∗∗, we have ρM (D∗∗) = 0·086
and ρ2(D∗∗) = 0·00075. Design D∗ improves upon design D∗∗ in terms of both measures of
non-orthogonality.

In applying the construction in (4), we need several Latin hypercubes. Given a Latin hypercube,
we can obtain a large collection of Latin hypercubes by row-permutation, column-permutation,
sign-switching columns or a combination of these operations. To use (4), one can consider
different Latin hypercubes given by a combination of permutation and sign-switching the columns
of a given Latin hypercube, as illustrated in Example 7. Row-permutation does not help here as
permuting the rows of one or more Dps in (4) gives essentially the same design.

The construction in (4) can also be used to obtain designs with better projection properties.
Although it cannot eliminate the diagonal pattern, it can improve other two-dimensional projec-
tions. Example 7 provides an illustration. Some two-dimensional projections of design D∗∗ given
in (1) have only six distinct points while all two-dimensional projections of design D∗ given in
(4) have at least twelve distinct points.

4. REPEATED RUNS

Repeated trials in computer experiments are often viewed as undesirable. This is because the
computer simulator is often deterministic, and, therefore, running the code at the same input
setting gives the same output. However, if one considers how the design is likely to be used, the
implications are not so severe.

If the goal of the computer experiment is numerical integration (Owen, 1997), the design
points represent strata from which the settings of the factors are randomly selected, rather than
points where trials are performed. Therefore, a design with repeated trials has two or more points
from the same strata and the probability of a repeated run is zero. On the other hand, if the
goal is response surface estimation, the data analysis is likely to be carried out using a Gaussian
spatial process (Sacks et al., 1989). Again, if one views the design points as strata, instead of
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the collection of points where trials are to be performed, then repeated runs are avoided and one
obtains good space-filling properties from the design as well as some localized information where
there are repeated trials. This can be important for fitting the spatial model and, in particular,
estimating the correlation parameters (Handcock, 1991). Having some trials from the same strata
can help detect high-frequency changes in the response surface.

Nevertheless, some experimenters would prefer to use the available resources to fill the design
region, and avoid repeated runs. This section provides an investigation of this issue. We obtain
some results about when repeated runs can occur and how they can be eliminated, if desired. We
first present a lemma that will be useful for constructing designs without repeated runs. A design
C = (ci j )n×m is said to have mirror-image runs if there exist k � l such that (ck1, . . . , ckm) =
−(cl1, . . . , clm).

LEMMA 2. (i) If A = (ai j )n×m is orthogonal such that m � n/2 + 1, then A has no repeated
run nor mirror-image runs.

(ii) If A is an OA(n, 2m, 3) with m � n/4 + 2, then A has no repeated run.

Proof. (i) From the well-known fact that tr(AAT AAT) = tr(AT AAT A), we obtain

2
∑

1�i< j�n

r2
i j + nm2 = mn2, (11)

where ri j denotes the inner product of runs i and j . Suppose that A has repeated runs. Without
loss of generality, let the first two runs be identical, that is, (a11, . . . , a1m) = (a21, . . . , a2m). We
can also assume that both equal (1, . . . , 1), for otherwise we use (a1 j ai j )n×m , also an orthogonal
matrix. Now consider the matrix A′ obtained from A by deleting the first two runs. Since the
columns of A are orthogonal, the inner product of any two columns of A′ must be −2. For A′,
we obtain

2
∑

3�i< j�n

r2
i j + (n − 2)m2 = m(n − 2)2 + (−2)2m(m − 1). (12)

Since
∑

1�i< j�n r2
i j − ∑

3�i< j�n r2
i j � r2

12 = m2, from (11) and (12) we have

mn2 − nm2 + (n − 2)m2 − m(n − 2)2 − 4m(m − 1) � 2m2,

which simplifies to m � n/2, contradicting that m � n/2 + 1. If A has mirror-image runs, the
above argument also goes through. The matrix A′ obtained by deleting the first two runs still has
the property that the inner product of any two columns is equal to −2 with the only difference
being that the first two runs are now supposed to be (1, . . . , 1) and (−1, . . . , −1).

(ii) Let A be an OA(n, 2m, 3) with m � n/4 + 2. Suppose that the first two runs are identical and
that both equal (1, . . . , 1). Taking the half fraction of A by selecting the rows with their entries
in the first column equal to 1 and then deleting the first column, we obtain an OA(n/2, m − 1, 2)
with repeated runs. From Lemma 2(i), we must have (m − 1) � n/4, a contradiction. �

Lemma 3 of Butler (2003) is closely related to our Lemma 2(i). Lemma 2(i) does not follow
from his result but his proof can be modified to prove our Lemma 2(i). We choose to present this
alternative proof as it appears to us more intuitive.
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We now look at the three constructions as given in (1), (3) and (4). In the following discussion,
we assume that n1, n2 � 2. Results for the trivial cases n1 = 1 or n2 = 1 are obvious. The
following result provides a complete characterization of repeated runs for the construction in (1).

LEMMA 3. Consider the construction in (1). Then design D has repeated runs if and only if at
least one of the following conditions is satisfied: (i) D0 contains the centrepoint (0, . . . , 0), (ii)
D0 has repeated runs, (iii) A has repeated runs and (iv) both A and D0 have mirror-image runs.

Proof . It is straightforward to verify that, if one of the four conditions holds, design D has
repeated runs. It remains to be shown that, if design D has repeated runs and none of the conditions
(i), (ii) and (iii) holds, it is necessary that both A and D0 have mirror-image runs. Let A = (ai j )
and D0 = (bpq ). Since D has repeated runs, there exist i1, i2, p1 and p2, where (i1, p1) � (i2, p2),
such that

ai1 j
(
bp11, . . . , bp1m2

) = ai2 j
(
bp21, . . . , bp2m2

)
for all j = 1, . . . , m1. Since none of the conditions (i), (ii) and (iii) is true, we must have
ai1 j = −ai2 j for all j = 1, . . . , m1 and (bp11, . . . , bp1m2) = −(bp21, . . . , bp2m2 ), showing that
both A and D0 have mirror-image runs. �

The following result is now immediate.

PROPOSITION 7. Consider design D given by the construction in (1). Suppose that D0 has no
centrepoint nor repeated run. We have that

(i) if A is orthogonal with m1 � n1/2 + 1, then D has no repeated run, and
(ii) if A is an OA(n1, 2m1, 3) with m1 � n1/4 + 2, then D has no repeated run, provided that D0

has no mirror-image run.

If D0 is a Latin hypercube with even run size, then it has no centrepoint nor a repeated run.
According to Proposition 7, D = A ⊗ D0 has no repeated run for any A that is orthogonal with
m1 � n1/2 + 1. The orthogonal Latin hypercube OD(16, 1612) from Steinberg & Lin (2006) has
no mirror-image run. If it is used as D0, for D = A ⊗ D0 to have no repeated run one can also
choose A to be an OA(n1, 2m1, 3) with m1 � n1/4 + 2, which results in a 3-orthogonal design.
The orthogonal Latin hypercubes in Ye (1998) and some of the designs in Steinberg & Lin (2006)
have mirror-image runs. If we use one of these orthogonal Latin hypercubes as D0, design D is
still without repeated runs as long as A is orthogonal with m1 � n1/2 + 1. In this case, choosing
A to be an orthogonal array of strength three may result in repeated runs in D. However, there
is no loss in our ability to construct 3-orthogonal designs, as these designs with mirror-image
runs are already 3-orthogonal, implying that D = A ⊗ D0 is also 3-orthogonal as long as A is
orthogonal.

Next we consider repeated runs for the two generalizations of our basic construction. For each
generalization, a complete characterization of repeated runs similar to that in Lemma 3 can be
obtained but is less attractive as the corresponding results become more complicated. In the
interest of space, we choose to present directly the counterparts of Proposition 7 for the two
generalizations, sacrificing mathematical generality for user-friendliness.

PROPOSITION 8. Consider design D given by the construction in (3). For each j = 1, . . . , m1,
let D j have no centrepoint nor a repeated run. We have that

(i) if A is orthogonal with m1 � n1/2 + 1, then D has no repeated run; and
(ii) if A is an OA(n1, 2m1, 3) with m1 � n1/4 + 2, then D has no repeated run, provided that at

least one D j has no mirror-image run.
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PROPOSITION 9. Consider the construction in (4). Suppose that none of the Dps has repeated
runs and at most one of the Dps has a centrepoint. We have that

(i) if A is orthogonal with m1 � n1/2 + 1, then D has no repeated run; and
(ii) if A is an OA(n1, 2m1, 3) with m1 � n1/4 + 2, then D has no repeated run, provided that

there do not exist Dp1 and Dp2 with p1 � p2 such that Dp1 has a run that is the mirror-image
of a run in Dp2 .

5. DISCUSSION

The construction methods in this paper use small two-level orthogonal or nearly orthogonal
arrays together with small orthogonal or nearly orthogonal Latin hypercube designs to construct a
large class of bigger designs that retain the orthogonality properties of the small designs and many
of their other desirable properties. This allows one to exploit existing tables of small designs,
and methods and algorithms for the construction of small designs. Examples for Latin hypercube
designs already mentioned include construction methods for orthogonal Latin hypercubes in
Ye (1998) and Steinberg & Lin (2006), and algorithms for obtaining nearly orthogonal Latin
hypercubes in Owen (1994) and Tang (1998). There is also a rich literature on minimal and
efficient nearly orthogonal two-level designs. Margolin (1969) points out the connection between
such designs and non-orthogonal, chemical-balance, weighing designs; see Hotelling (1944),
Kishen (1945), Mood (1946), Raghavarao (1959) and Yang (1966, 1968), for example.

Even without these specific methods and algorithms, because only small designs are needed, one
can quite easily obtain very good nearly orthogonal two-level designs and Latin hypercubes via
more general robust optimization routines, such as simulated annealing and genetic algorithms,
merely by using ρ2 or ρ2

M as an objective function.
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