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Abstract Most surrogate models for computer experiments
are interpolators, and the most common interpolator is a
Gaussian process (GP) that deliberately omits a small-scale
(measurement) error term called the nugget. The explana-
tion is that computer experiments are, by definition, “deter-
ministic”, and so there is no measurement error. We think
this is too narrow a focus for a computer experiment and a
statistically inefficient way to model them. We show that es-
timating a (non-zero) nugget can lead to surrogate models
with better statistical properties, such as predictive accuracy
and coverage, in a variety of common situations.

Keywords Computer simulator · Surrogate model ·
Gaussian process · Interpolation · Smoothing

1 Introduction

To some, interpolation is the defining feature that distin-
guishes surrogate models (or emulators) for computer ex-
periments from models for ordinary experiments. We think
this is old-fashioned at best and misguided at worst. It is cer-
tainly true that a large swath of computer experiments are
“deterministic”, in the sense that once y(x) is known there
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can be no uncertainty in the output Y(x′) if x′ = x, because
the simulator does not behave stochastically. Interpolation
would seem natural in this case, and this is typically facili-
tated by a zero nugget in a Gaussian process (GP) prior for
Y(x). Our first observation is that many of the more recent
computer experiments are indeed stochastic. A typical for-
mulation is as an agent based model or finite element simula-
tion where the purpose is to study cohort/community effects
in independent organisms/agents whose behavior is gov-
erned by simple stochastic rules which cannot be understood
analytically. Examples abound in biology (Johnson 2008;
Henderson et al. 2009), chemistry (Gillespie 2001), and in-
dustrial design and engineering (Ankenman et al. 2010) to
name just a few. It is in this sense that the defining feature of
zero-nugget GPs for computer experiments is old-fashioned.
Many computer experiments these days are not determinis-
tic, so in those cases you would include a nugget without
hesitation. The definition of surrogate model for a computer
experiment needs to be updated.

But that is not what this paper is really about. We shall
concentrate on those computer experiments that really are
“deterministic”—in a sense similar to its usage above but
whose decomposition of meaning in modern experiments
is one of the main foci of this paper—and argue that you
should use a nugget anyway. Our arguments for this are not
computational, although the numerical instabilities of zero-
nugget models are well-documented (Ababou et al. 1994;
Neal 1997). Another established criticism of zero-nugget
models, upon which we will not focus, involves theoretical
aspects of smoothness and derivatives. Stein (1999, p. 96)
proves that the smoother the spatial process, the smaller any
error or variability needs to be in order for it to have negli-
gible effect. Since the standard assumption in the computer
modeling literature is a Gaussian correlation function, and
therefore of infinite differentiability, means that the results
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are highly sensitive to any possible deviations and thus Stein
strongly cautions against omitting a nugget term.

As larger nugget values can impact the fitted values
of other parameters (Gramacy and Lee 2008b; Pepelyshev
2010), some authors go to great lengths to reconcile numeri-
cal stability and zero-nugget-like interpolation, usually by
using as small a nugget as possible (Ranjan et al. 2010).
Instead, we argue that issues of numerical stability, while
they are strong arguments in favor of a nugget, are a bit
of a red herring in the face of more serious conceptual is-
sues. We aim to separate the ideology of forcing interpola-
tion from some important (and undesirable) consequences
of the zero-nugget model. We shall argue that when the data
are sparse or when model assumptions are violated (e.g.,
stationarity)—and they typically are—the nugget is crucial
for maintaining good statistical properties for the emulator
(e.g., coverage). Essentially, when modeling computer ex-
periments, we must be pragmatic about how assumptions
map to conclusions (surrogate model fits), and this leads us
to conclude that the most sensible default is to estimate a
(nonzero) nugget.

The remainder of the paper is outlined as follows. We
conclude this section with a brief review of GP basics, with
further reference to their application as surrogate models for
computer experiments. In Sect. 2 we elaborate on several
conceptual problems with the zero-nugget approach. Sec-
tion 3 provides numerical examples, showing how sparse-
ness of the sample (Sect. 3.1) or violations of standard (and
uncheckable) assumptions (Sect. 3.2) can lead to inferior
predictive surfaces with the zero-nugget approach. The is-
sue of “determinism” is explored in Sect. 3.3 to similar ef-
fect. And in Sect. 4 we revisit these points on a real-world
computer experiment involving CFD simulations of a rocket
booster re-entering the atmosphere. Finally, we conclude
with a discussion.

1.1 GP basics

The canonical choice of surrogate model for computer ex-
periments is the stationary Gaussian process (Sacks et al.
1989; O’Hagan et al. 1999; Santner et al. 2003), which de-
fines a random process whose evaluation at any finite col-
lection of locations has a multivariate Gaussian distribution
with a specified mean and covariance function that depend
only on the relative positions of the locations. A typical
specification of the covariance function is the Gaussian cor-
relation, so that the covariance between any two points is

C(xj ,xk) = σ 2K(xj ,xk)

= σ 2 exp

{
−

m∑
�=1

|xij − xik|2
d�

}
, (1)

where m is the dimension of the space and d is a vector
(the range parameter) which scales the correlation length in

each dimension. This model will interpolate the data, fitting
a smooth curve between observed outputs of the computer
simulator. The predictive distribution (or so-called kriging
equations) at new inputs x∗ are conditionally Gaussian given
(x, y) pairs (x1, y1), . . . , (xn, yn) and settings of the parame-
ters σ 2 and d. Our references contain the relevant equations;
we simply remark here that the variance of this distribution
has the distinctive property that it is zero when x∗ = xi for
one of i = 1, . . . , n, and increases away from zero as the dis-
tance from x∗ to the nearest xi increases. When all elements
of d are equal, the process is called isotropic.

An extension of this model is to include a nugget term,
specifying the covariance function as

C(xj ,xk) = σ 2K(xj ,xk)

= σ 2

[
exp

{
−

m∑
�=1

|xij − xik|2
d�

}
+ gδj,k

]
,

where δ·,· is the Kronecker delta function and g is the nugget
term. Originally introduced to model small-scale variation
in geostatistical models, it is also mathematically equivalent
to adding random noise term into the likelihood. Thus with
g > 0, this model no longer interpolates the data, and returns
us to a situation analogous to fitting a mean function with
noisy data. The predictive distribution has many features in
common with that obtained from the zero-nugget/no-nugget
model (above). For example, the variance increases away
from the nearest input xi , but is not zero at x∗ = xi ; rather,
it is gσ 2 at those locations.

There are many ways to infer the parameters σ 2,d, g

given data (x1, y1), . . . , (xn, yn). For example, the resulting
multivariate normal likelihood can be maximized numeri-
cally, although the presence of the nugget may lead to a
bimodal surface (Gramacy and Lee 2008b). In this paper
we happen to take a Bayesian approach, but all of our ar-
guments hold true under the frequentist paradigm as well.
Our implementation is in R using the GP code from the
tgp library on CRAN (Gramacy 2007). The package makes
use of a default Inverse–Gamma prior for σ 2 that yields a
multivariate Student-t marginal likelihood (integrating out
σ 2) for y1, . . . , yn given x1, . . . ,xn and the parameters d
and g. Standard Gamma priors are placed independently on
the d� components and g, and the Metropolis-within-Gibbs
MCMC method is used to sample from the posterior via the
Student-t marginal likelihood. The inputs xi are pre-scaled
and the proposals are designed to deal with the bimodal pos-
teriors that can result.

2 Examining the model assumptions

Most papers obsess on the zero-nugget model. When a
nugget is needed for computational reasons, one aims to
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make it as small as possible while still maintaining numeri-
cal stability. The argument is that the closer the nugget is to
zero, the more accurate the surrogate model approximation
is to the computer code output. This may be true if there
is sufficient data, but is it even the right thing to be wor-
ried about? The measurement error captured by the nugget
(which is presumed to be zero for deterministic computer
simulations) is but one of many possible sources of error.
Here we discuss four such sources of uncertainty which are
likely to be of greater importance, so it is boggling why so
much attention is paid to the nugget.

2.1 Simulator bias

No computer simulator is a perfect representation of the
real world. All simulators are mathematical models and thus
only approximate the real world, so they have some “bias”.
How we deal with this discrepancy depends on whether or
not real world data are available. We take those two cases in
turn.

When real data are available, it is well-established that
the simulator can be calibrated using the data, that is, the
discrepancy between the simulator and reality can be mod-
eled using an additional Gaussian process (Kennedy and
O’Hagan 2001; Santner et al. 2003). While this addresses
the simulator bias, it introduces a source of noise—that of
the real data. A measurement error term in the likelihood can
be shown to be a re-parameterization of a nugget term in the
covariance function (Gramacy 2005, Appendix B). Thus we
get the same model at the end whether we interpolate then
add noise, or whether we just fit a nugget term. Since the
two approaches end up at the same place, we might as well
embrace the nugget while fitting the model.

If real data are not available, then the bias cannot be esti-
mated, and that term is typically ignored and swept under the
rug. Yet pretending that the simulator is perfect, even though
we know it is not is clearly ignoring a major source of error.
Rather than insist that the statistical model interpolate the
simulator, why not allow the model to smooth the simulator
output? We make this point philosophically, in that we do
not see why forcing the model to interpolate something that
is deterministically wrong would be any better than allow-
ing smoothing, and that smoothing can offer a measure of
protection and robustness.

2.2 The stationarity assumption

Nearly every analysis in the computer modeling literature
makes an assumption of stationarity, second-order station-
arity, or at least piece-wise stationarity. More precisely, a
residual process, arrived at after subtracting off some mean
which might be estimated using a fairly substantial number
of regressors (e.g., Rougier et al. 2009; Martin and Simp-
son 2005), is assumed stationary. Such a two-step process

can, indeed, lead to good fits. But it can also be fairly in-
volved as choosing the best regressors is a non-trivial task,
and there is no guarantee that the residuals thus obtained are
stationary. In any case, the stationarity assumption is easily
challenged. While it may be reasonable as a close approxi-
mation to the truth, assuming stationarity will not be exactly
correct in most cases.

Typically there is not enough data available to fit a fully
nonstationary model, and if there is enough data, then the
model becomes too difficult to fit efficiently. Like the bias
case, when there is unknown error, a general statistical prin-
ciple is that smoothing (or shrinking) can give better results.
Thus a nugget can help protect us in the case of moderate
deviations from stationarity, which would be hard to detect
in practice. In Sect. 3.2 we show that even minor violations
in the stationarity assumption lead to emulators with poor
statistical properties without a nugget.

2.3 Correlation assumptions

There is an underlying assumption that the specified (typ-
ically Gaussian) correlation structure is correct. While this
is a nice modeling assumption, it is yet another convenient
approximation to reality. Parameters for the form of the cor-
relation function can be difficult to fit in practice, and so it is
often necessary to simply specify a reasonable guess. Since
it is only an approximation, this is a further reason for al-
lowing smoothing in the model.

2.4 The assumption of a deterministic simulator

The modeling assumptions addressed above may indeed be
reasonable for a particular true physical process, but the
computer implementation of the solution may still behave
in unpredictable ways. The assumption of a deterministic
simulator may itself be a problem. Here we discuss two re-
lated possible issues, nonmodelable determinism and theo-
retical but not numerical determinism, among other possible
problems with the assumption of deterministic behavior in
practice.

Some deterministic functions really are better treated as
nondeterministic. As a simple example, consider a pseudo-
random number generator where, for any given seed, an out-
put is returned deterministically (if not also unpredictably
unless you know a lot about numerical analysis). A ver-
sion of a computer simulator f(x) approximating a function
g(x) numerically might effectively behave as follows (coded
in R):

f <- function(x) {
set.seed(x)
return(g(x) + rnorm(1))

}
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This function f(x) is theoretically deterministic, but know-
ing how it relates to the true function g(x), it would be ir-
rational to interpolate it. Clearly one would want to smooth
out the pseudo-random noise which would give us a much
better fit of the underlying g(x), and this is exactly what
the nugget is designed to do. You may argue about the “de-
terministic” nature of the f simulator, but that is to get
bogged down in philosophical matters and miss the practical
point. In this “cartoon”, g might represent the mathematical
model/equations that describe a system (perhaps only on pa-
per) whose solutions or realizations are not available analyti-
cally and require numerically approximate solutions. This is
where computer implementation in f comes in, which may
be deterministic if not otherwise ill-behaved. In our experi-
ence, such scenarios are more the rule than the exception in
modern computer experiments.

Along similar lines, the f and g relationship might just as
easily represent a function with chaotic behavior, which can
happen in complex systems of differential equations, or the
Perlin noise function (Perlin 2002), which is a deterministic
method for generating random-looking smooth surfaces in
computer graphics. Alternatively, the rnorm(1) term may
stand in for the amount by which an iterative approximation
algorithm steps over the convergence threshold. Although
we usually we assume that this amount can be made to be ar-
bitrarily small, this might not always be justified. One reason
is the lack of uniformity in machine-representable floating-
point numbers.

Now, the above example may seem pathological, but in
Sects. 3.3 & 4 we give a synthetic and real example, respec-
tively, which are essentially the following adaptation:

f2 <- function(x) {
set.seed(x)
y <- runif(1)
if(y < 0.9) return(g(x))
else return(h(x))

}

for some new h(x). The pseudo-random (but deterministic)
y is intended to represent the chance that the computer code
was (poorly) initialized such that it may end up converg-
ing to a sub-optimal (but locally converged) solution h(x)

10% of the time rather than the true globally converged ap-
proximation to g(x). This is not an uncommon feature of a
modern computer simulator, i.e., where the final output de-
pends upon an initial “solution” for which there are defaults
that usually work, but sometimes lead to a converged solu-
tion which is different from the one intended. It is clearly
sub-optimal to use a zero-nugget model in this case, be-
cause some of the outputs are not the correct values. Despite
their deterministic nature, we show in Sect. 3.3 that uncer-
tainty about the true function is best modeled with a random
process that smooths rather than interpolates.

3 Statistically better fits with the nugget

3.1 Protecting against misfits with sparse data

Many computer experiments are expensive to run and the
number of datapoints is limited. As many experiments have
higher dimensional input spaces, the curse of dimensionality
implies that the data will be sparse in the input region. When
the data are sparse, interpolation can have unpleasant results
(Taddy et al. 2008, Sect. 2.2). We present here a simulated
example where the data are sparse in one dimension, but this
represents the concept of sparseness in higher dimensions
with a simpler function or with more data.

Consider the function

Z = sin(10πX)

2X
+ (X − 1)4 .

Suppose we only have 20 datapoints available (in practice,
we would have more points but more dimensions). We ran-
domly generated 10,000 such datasets (with X generated
from a uniform distribution each time) and fit models both
with a nugget and without one. The table in Fig. 1 gives
the distribution of the mean square errors of fits under each
model, and the model that includes a nugget does better
on average (a paired t-test gives a p-value of less than
2.2 × 10−16). The plots in Fig. 1 show one of the runs.
The data are too sparse to get a good fit of the function for
smaller input values. While the nugget model smooths and
produces reasonable confidence bands, in order to interpo-
late smoothly the no-nugget model ends up making predic-
tions well outside the range of the actual data in that region,
and its confidence bands are all over the place.

In practice, if we only had one-dimensional inputs, we
would use evenly-spaced points for small samples, and
much of the issue here would go away. However, as the di-
mension of the space increases, it becomes impossible to use
a regular grid, and random Latin hypercubes are often used.
It can be impossible to understand how well a design really
covers a high-dimensional space. Thus the nugget provides
good protection against the strange fits that interpolation can
produce.

3.2 Poor coverage

In fact, the nugget offers protection from a slew of problem-
atic scenarios. Here we shall illustrate that the no-nugget
model under-covers the true computer simulator response
when the stationarity assumption is not satisfied. We use
three examples.

The first example is a 1-d function which is clearly non-
stationary, but otherwise mimics typical features of a com-
puter code. The response is given by y(x) = sin(x) − 0.02 ·
t1(x,1.57,0.05) where t1(·,μ,σ ) is a Cauchy density with
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MSE nug nonug
Min. 0.0250 0.0057
1st Qu. 0.0999 0.0851
Median 0.1262 0.1399
Mean 0.1847 0.1929
3rd Qu. 0.1906 0.2290
Max. 1.2990 1.3510

Fig. 1 (Color online) Plots of one example of a fit (dark solid line),
confidence bands (red), and true function (light grey). The left plot
shows the fit using a nugget, the right plot without a nugget. The table

on the right is the summary of the mean square errors under both mod-
els for 10,000 repeated uniform designs

mean μ and spread σ . The two rows of Fig. 2 show fits for
two typical random uniform designs of size ten. The differ-
ence between smoothing (estimated nugget; left panels) and
interpolation (no nugget; right panels) is clear. We see that
the no-nugget model under-covers the truth (in gray) and
can have wildly different (i.e., narrow or wide) 90% pre-
dictive credible intervals. This experiment was repeated 100
times and the percentage of the area of the input space where
the true y(x) was covered (pointwise) by the 90% interval
was recorded. A table summarizing the results numerically
is on the right in the figure. We see from this table that the
under-coverage of the no-nugget model can be drastic. For
one of the random designs it only covered 6.5% of y(x) and
3/4 of the trials under-covered by more than 10%. By con-
trast, the model which estimates a nugget has good cover-
age properties. Its median and mean coverages are close to
90% and the central 50% region tightly brackets the truth.
Clearly, connecting the dots comes at the expense of other,
arguably more important, statistical measures of goodness
of fit.

Although it is intuitive, pointwise coverage via might not
be an ideal metric for comparing model fit because it ignores
correlation aspects of the posterior predictive distribution—
mis-coverage at one input is indicative of miscoverage at a
continuum of nearby inputs. A metric based on the Maha-
lanobis distance, proposed by Bastos and O’Hagan (2009)
for GP models, allows such correlation in the predicted out-
puts to be taken into account. For completeness, we report
a summary of the square root of these distances in Fig. 2
as well. The conclusions based on this metric are largely the
same: estimating a nugget leads to a superior fit (smaller dis-
tances) compared to the zero-nugget interpolating approach.

Table 1 Left are coverages and square-root Mahalanobis distances for
the 2-d exponential data; right for the 5-d Friedman data

coverage exp data fried data

nug nonug nug nonug

Min. 0.5479 0.3965 0.5480 0.4580

1st Qu. 0.8623 0.8242 0.8930 0.8350

Median 0.9185 0.8936 0.9320 0.8890

Mean 0.8962 0.8691 0.9205 0.8762

3rd Qu. 0.9492 0.9395 0.9580 0.9310

Max. 1.0000 1.0000 0.9990 1.0000

√
mah exp data fried data

nug nonug nug nonug

Min. 3.181 3.857 14.312 15.816

1st Qu. 20.870 25.850 24.203 30.760

Median 34.840 48.270 28.676 36.100

Mean 78.020 96.960 29.271 36.794

3rd Qu. 67.260 100.500 33.621 41.968

Max. 1971.000 21820.000 55.435 69.111

We performed similar experiments on two higher-dimen-
sional data sets. The first is a 2-d exponential function
y(x) = x1 exp{−x2

1 − x2
2}, which less clearly violates the

stationarity assumption. From the left side of Table 1 we
see a similar under-coverage of the no-nugget model with
repeated uniform designs of size 20. Mahalanobis dis-
tances are included for completeness. Our second exper-
iment involved the first Friedman data function (Fried-
man 1991) with five inputs where the response is y(x) =
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coverage nug nonug
Min. 0.3210 0.0650
1st Qu. 0.8028 0.5108
Median 0.8915 0.7230
Mean 0.8517 0.6531
3rd Qu. 0.9570 0.8068
Max. 1.0000 0.9960

√
mah nug nonug

Min. 7.067 20.020
1st Qu. 16.319 47.901
Median 25.079 91.024
Mean 49.928 246.772
3rd Qu. 45.111 174.876
Max. 560.245 2966.92

Fig. 2 The plots on the left are examples of fits under two uniform designs in nugget (left column) and no-nugget (right column) models. The
table on the right summarizes of the coverages and (square root) Mahalanobis distances under both models for 100 repeated uniform designs

10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. This func-
tion is better behaved (i.e., stationarity may be a reason-
able assumption). However, it is apparent that correlation in
the response would decay at different rates along the five
coordinates—clear anisotropy. To illustrate how the effect
of an inappropriate choice of correlation function is felt
more strongly in the no-nugget model we used an isotropic
Gaussian correlation function and uniform designs of size
25. The results are shown on the right in the table.

It is worth pointing out that as the size of the designs
are increased, and/or as the data less obviously violate as-
sumptions, both models (nugget and no-nugget) will tend
to over cover in practice. This is because we are fitting a
model (GP) which always yields positive posterior predic-
tive error away from the (discrete set of) design points, i.e.,
over an uncountably large region. Since the function we are
modeling is deterministic, we know that as the size of the

design tends to (countable) infinity we should be able to
obtain a “perfect” fit with a high degree polynomial. So a
GP is the wrong model in this case. Since over-coverage is
inevitable, under-coverage should be our primary concern,
and to avoid under-covering we can see that a nugget is
needed.

3.3 Challenging determinism in computer simulation

Some computer experiments are deterministic in a technical
sense, but not necessarily in a way that translates into sen-
sible assumptions for the building of a surrogate model. We
may reasonably presume that codes implementing the algo-
rithms and calculations behind the experiment are nontrivial.
They are expensive to program and expensive to execute, re-
quiring long iterations to convergence and the (sometimes
arbitrary) specification of tuning parameters, tolerances, and
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grid/mesh sizes. As a rule more than an exception, the result-
ing apparatus works better for some choices of inputs than
for others. The most important issue is in detecting global
convergence of the code, whose properties usually depend
crucially on other implementation choices. It is essentially
impossible to guarantee good global convergence proper-

ties, and so this the main target of our attack on the mod-
eling of such “deterministic” computer simulations without
a nugget.

Consider the following computer simulator coded in R
below.

## 2-d function
f2d <- function(x1, x2) {
w <- function(y) {
return(exp(-(y-1)^2) + exp(-0.8*(y+1)^2) - 0.05*sin(8*(y+0.1)))

}
return(-w(x2)*w(x1))

}

## find the minimum of a projection of the 2-d function
f <- function(x) {
return(optim(par=x, fn=f2d, x2=x)$value)

}

The true underlying function f (x), evaluated by f(x) in R,
is arg minx1 f (x1, x) where

f (x1, x2) = −w(x1)w(x2), and

w(y) = exp
(
−(y − 1)2

)
+ exp

(
−0.8(y + 1)2

)
− 0.05 sin (8(y + 0.1)) .

The optimization method used by the code above is the
optim function in R initialized at x1 = x.

Figure 3 shows the true f (x) (dashed-green) and the out-
put of the simulator f(x) (gray) for x ∈ [−1.5,1.5]. We can
see that the result of numerically finding the optimal value of

Fig. 3 GP fit (with an estimated nugget) to a deterministic function
which is the result of an iterative procedure

the objective function (initialized somewhat arbitrarily, but
not pathologically) is that the simulations f(x) are biased,
and behave badly/unpredictably in some parts of the input
space. It is worth noting that both behaviors persist with a
different static initialization scheme; the f (x1, x2) surface
has about a dozen local minima. Also, the implementation
f(x) is completely deterministic in a technical sense. How-
ever, f(x) is exhibiting “random” behavior of the sort al-
luded to in Sect. 2 as the initialization scheme causes the al-
gorithm to converge to different local minima in a way that
is not (easily) predictable. There are three places where the
initialization causes it to have discontinuities (even though
the true f (x) is smooth everywhere), and it is particularly
unstable near x = 0 since (0,0) is more or less equidistant
from the many local minima of f (x1, x2) in the 2-d space.

The figure also shows a fit to the computer simulator
(f(x)) output obtained from a gridded design of 100 input–
output pairs using a GP with an estimated nugget. The fit
is sensible given the discontinuities and otherwise “noisy”
behavior of the simulator. It is not possible to fit this data
without a nugget, or even with a small one, due to numerical
instabilities. However, it is possible to do so with a reduced
design of about 20 points or so. To connect with the coverage
results in the last section (where stationarity was the issue)
we calculated the coverage of f(x) with 100 repeated uni-
form random designs of size 20 under the estimated nugget
and no-nugget models, and the story is much the same as
before. The results are shown in Table 2. Square-root Ma-
halanobis distances are also shown, as are the distances to
the true f (x). They show that when “determinism” is chal-
lenged as an assumption on the nature of the data-generating
mechanism, a nugget for smoothing is clearly preferred to
interpolation in the surrogate model.
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Fig. 4 (Color online) Linearly interpolated slice of the roll response
plotted in perspective (left) and image/contour (right) as a function
of speed (Mach) and angle of attach (alpha), with the slide slip angle
(beta) fixed to 2. In the image plot, dark/red values are lower and

light/yellow values higher in the image plot; the perspective plot is ro-
tated for visualization purposes so that the closest corner corresponds
to low speed and high angle of attack

Table 2 Summaries of
coverage of the “deterministic”
computer simulated f(x) data,
and the square-root
Mahalanobis distances to f(x)
and the analytic solution f (x)

coverage computer f
√

mah computer f true f

nug nonug nug nonug nug nonug

Min. 0.433 0.2280 Min. 14.07 36.88 41.90 279.17

1st Qu. 0.787 0.6665 1st Qu. 33.24 139.39 104.44 8544.02

Median 0.875 0.7345 Median 56.87 292.17 213.78 12932.55

Mean 0.846 0.7276 Mean 183.45 1163.17 855.44 15402.05

3rd Qu. 0.938 0.8362 3rd Qu. 136.59 811.23 617.03 19392.16

Max. 0.993 0.9760 Max. 3212.00 14561.06 12271.41 49362.90

4 A modern computer experiment

The Langley Glide-Back Booster (LGBB) is a rocket
booster that underwent design phases at NASA primarily
through the use of computational fluid dynamics simulators
that numerically solve the relevant inviscid Euler equations
over a mesh of 1.4 million cells (Rogers et al. 2003). The
simulator models the forces felt by the rocket at the moment
it is re-entering the atmosphere as a function of three inputs
describing its state: speed (measured by Mach number), an-
gle of attack (the alpha angle), and sideslip angle (the beta
angle). As a free body in space, there are six degrees of free-
dom, so the six relevant forces/outputs are lift, drag, pitch,
side-force, yaw, and roll. While theoretically deterministic,
the simulator can fail to converge. Some nonconvergent runs
are caught by an automated checker, and re-run with a new
schedule of initial conditions, but some are erroneously ac-

cepted even after converging to a clearly inferior solution.
Input configurations arbitrarily close to one another can fail
to achieve the same estimated convergence, even after satis-
fying the same stopping criterion.

Here we focus on the roll force output on a data set
comprised of simulator runs at 3041 locations. See Fig. 4
for a 2-d slice of this response. Previous work has focused
on the lift force (Gramacy and Lee 2008a) which exhib-
ited many similar features, and on a sequential design task
taking account of all outputs simultaneously (Gramacy and
Lee 2009). The experimental design is a combination of an
initial grid followed by two hand-designed finer grids fo-
cused around Mach one, as the initial run showed that the
most interesting part of the input space was generally around
the sound barrier, where the physics behind the simulator
changes abruptly from a subsonic regime to a supersonic
one. What happens close to and along the boundary is the
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Table 3 Coverage of the roll response for the LGBB computer experi-
ment data using a Gaussian process (left) and a treed Gaussian process
(right)

coverage GP TGP

nug nonug nug nonug

Min. 0.7547 0.5726 0.7627 0.5180

1st Qu. 0.9022 0.8427 0.8757 0.7195

Median 0.9239 0.8793 0.8978 0.7670

Mean 0.9187 0.8703 0.8954 0.7606

3rd Qu. 0.9396 0.9059 0.9186 0.8051

Max. 0.9777 0.9741 0.9771 0.9305

most difficult part of the simulation. The regime changes
across this boundary cause the stationarity assumption to
be violated. Also note the string of anomalies around Mach
four, which appear to converge to local, rather than global,
solutions. So this experiment comprises two challenging
aspects—impractical determinism due to convergence is-
sues and failed assumptions of stationarity due to physical
regime changes—and we aim to show that the nugget is im-
portant in mitigating their effects when building a surrogate
model.

Towards this end we calculated the coverages of predic-
tive surfaces obtained with and without the nugget on a 20-
fold partition of the 3041 input/output pairs. We iterated
over the folds, training on 1/20th of the data, about 159
pairs, and predicting at the remaining 3009-odd locations
in an (inverse) cross-validation fashion. The results of this
experiment, repeated 100 times for 2000 total coverages for
each predictor, are shown on the left in Table 3. Note that this
is not a uniform coverage rate (over the input area), since the
design is more heavily concentrated around Mach one. How-
ever, the results here are as expected. The no-nugget model
can severely under-cover in certain examples (with coverage
as low as 57%), and gives the target coverage of 90% less
than 1/4 of the time. The model using an estimated nugget
is much better behaved. However, it does seem to slightly
over-cover. Although less of a concern, we think that the
main cause of this is the nonuniformity of the design and our
choice of priors for both the range and nugget parameters in
the face of nonstationarity and nonconvergence issues.

The treed Gaussian process (TGP, Gramacy and Lee
2008a) model was designed to handle the axis-aligned non-
stationarity that arises due to regime changes—exactly the
sort exhibited by this data. In essence, the TGP model learns
an axis-aligned partition of the data wherein the process is
well-fit by separate stationary GP models. We performed an
identical experiment using TGP and the results are summa-
rized on the right in Table 3. We can see that the coverage of
the version of TGP which estimates the nugget is improved
(with better centering around 90%), but the no-nugget ver-
sion is not (showing a more consistent tendency to under-

cover). We are left with the impression that the nugget is
even more important when a nonstationary model is used,
especially in the case of nonconvergent computer experi-
ments where the assumption of “determinism”, while tech-
nically valid, may be challenged from a practical standpoint.

5 Discussion

Several authors have previously argued in favor of a nugget
term for reasons of numerical stability even when fitting a
deterministic model. We go well beyond numerical conve-
nience, raising fundamental issues of a variety of modeling
assumptions and argue that the use of a nugget helps protect
against poor fits when they are violated.

In many ways, the themes harped on in this paper are
just reminders of the usual statistical insights, like exploit-
ing bias variance trade-offs and shrinkage, which are well-
known to lead to improved estimators and predictors. It is
true that some applications call for specific features in esti-
mators/predictors, like interpolation for deterministic com-
puter experiments, which might cause us to eschew those
good practices. At first glance it would seem like forcing a
zero nugget, versus estimating one, is just one of these situ-
ations. But our experience with fitting GPs to real computer
simulation output has shown us time and time again that the
ideal of an interpolating (zero-nugget) emulator is not ideal
at all. In addition to showing, in this paper, a subset of ex-
amples illustrating why we prefer the nugget for statistical
purposes, we have touched on high level arguments as to
why the zero-nugget model will be inferior in practice.

In reflecting further on these arguments, thanks to helpful
comments from our referees, we have come to the following
perspective on the matter. The idealized model for the ex-
periment is the following.

real data from physical process (a)— computer model

Computer model realizations are expensive so we deploy an
emulator [at (a)] based on GP interpolation of the computer
model output to save on cost/time. The reality is probably
more like the following.

real data (b)— physical process (c)— mathematical model

(d)— computer code (e)— emulator

In other words, the real data is a measurement of the physi-
cal process, so there is noise or measurement error [at (b)].
This is not controversial. Now, the computer model is actu-
ally two things in one. It is a mathematical model which ap-
proximates [(c)] the physical model, and although it does not
perfectly describe the system—it is biased—it is still an ide-
alization. The computer implementation adds a further layer
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of “approximation” [(d)], often with erratic if still techni-
cally deterministic behavior, which can be an unavoidable
nuisance. We try to find the knobs/settings in the code that
give the best results, but it is never perfect. If we interpolate
[(e)] the output of the computer code, then we are interpo-
lating its idiosyncrasies. If we use a nugget, we might not be
precisely where we want to be (closer to the mathematical
model and thus the physical process [at (c)]), but we have a
fighting chance since we will smooth out the “rough edges”
in the computer code. While this schematic representation
is a simplification, it shows the multiple stages where ap-
proximations are made and our empirical work on real and
synthetic data suggest that there is something to it.

Instead of using a nugget, Rougier et al. (2009) advo-
cate using a “rougher”—but still interpolating—correlation
function like the Matèrn (e.g., Stein 1999). This may
lead to an improved fit, and better numerical proper-
ties/decompositions of matrices, compared to smoother cor-
relation functions like the Gaussian (1). There are a few
complications with this approach, like the burden specifying
an extra smoothing parameter which is hard to infer statis-
tically. But more importantly, one wonders whether better
interpolations of idiosyncratic computer code is really what
you want? We think it would be better to use a nugget and
smoother correlation function because, in our experience,
the true solutions to the mathematical equations underlying
the model are well-behaved, i.e., smooth. It is also just an
easier default option.
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