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MARÍA G. VILLARREAL-MARROQUÍN,
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Abstract

This paper optimizes an injection molding process using an efficient sequential design

methodology. The goal is to set the process control variables to minimize the shrinkages

of a selected collection of injection molded parts. This multi-objective optimization problem

is solved by finding those process control variable settings that are Pareto minimizing values,

i.e., process settings for which none of the shrinkages of the parts can be decreased by an alter-

native process setting without increasing the shrinkages of other parts. The sequential design

uses an expected improvement criterion to guide updates. The shrinkages are estimated by a

calibrated predictor of the process mean shrinkage. The calibration is based on observations

of the manufacturing process supplemented by computer runs of a commercial simulator code

that mimics the manufacturing process.

Key Words: Advanced Manufacturing; Bayesian Analysis; Calibration; Injection Molded

Plastic; Multiobjective Optimization; Pareto Set; Pareto Front; Relative shrinkage
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1 Introduction

Many real-world applications require the simultaneous optimization of multiple competing

objective functions. For example, Leatherman et al. (2014) developed a finite element model of

the human knee in order to identify robust designs for a meniscal substitute which can provide

both small mean and low variability in peak contact stress. For Titanium Nitride/Titanium

multilayer tool coatings, Draguljić et al. (2015) used computer experiments for simultaneously

minimizing the maximum radial stress (associated with cohesive failures) and the maximum

shear stress (associated with adhesive failures). Atashkari et al. (2005) sought settings of the

turbine inlet temperature, the pressure ratio and the flight Mach number to optimize specific

thrust, thrust-specific fuel consumption, propulsive efficiency, and thermal efficiency in the

thermodynamic cycle of ideal turbojet engines.

The goal of multi-objective optimization is to identify optimal combinations of settings

of controllable variables (called control factors or input variables). A single combination of

control factor settings that optimizes all responses (outputs) simultaneously may not exist,

and some settings may result in better responses for one objective, while others may be better

for a different objective. Consequently, control factor settings are sought which are better than

all other settings for at least one objective. Such a set of control factor settings is called the

Pareto Set and the corresponding set of multi-objective responses is called the Pareto Front

(see Section 4.1).

In this paper, without loss of generality, we deal with multi-objective minimization. In

particular, we consider the situation where a few observations of the physical process can

be made, together with runs from a computer simulator. A simulator is a computational

implementation of a mathematical model which describes the physical process. Here, we

consider the situation where the simulator is deterministic (providing the same outputs at

repeated runs of the same input setting), and only a limited number of observations can be

taken on both the physical process and the simulator.

A common problem is that a computer simulator may provide biased output for the physi-

cal process due to the simplified physics or biology used in the mathematical model. However,

when physical observations are available, it may be possible to use these data to align the sim-

ulator output to be close to the true mean response by constructing a bias-corrected predictor
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(a process called calibration); for an example, see Williams et al. (2006).

Sacks et al. (1989) proposed a methodology for modeling deterministic simulator output

as a realization of a Gaussian Process (GP); see also Santner et al. (2003). Using a GP model

and a Bayesian calibrated predictor, Chen et al. (2017) developed a sequential methodology for

identifying an approximate (estimated) Pareto Set and Pareto Front. In this paper, we apply

the sequential methodology to minimize shrinkage in an injection molded plastic component.

Section 2 describes the manufacturing process, the component, the responses, and the simulator

bias. The Bayesian calibrated predictor that will be used to correct for the bias is described

in Section 3. Section 4 gives an overview of the sequential procedure of Chen et al. (2017)

for finding the Pareto Set and Pareto Front. This procedure is then applied in Section 5 to

the injection molding optimization. Two different examples with known solutions, one with

two objective functions and one with three, are used in Section 6 to show the success of

the sequential procedure. In addition, Section 6 investigates the allocation of simulator runs

between the initial and the sequential parts of the simulator design when the experimental

budgets are fixed. Finally, Section 7 provides a summary and discussion.

2 Injection Molding Shrinkage Optimization

The multi-objective injection molding optimization problem discussed in this paper was intro-

duced by Villarreal-Marroqúın et al. (2017) to search for process settings that lead to minimum

shrinkage in plastic test components. These components, depicted in Figure 1, were produced

by injecting a thermoplastic polyolefin material (manufactured by LyondellBasell) into an

ASTM mold (Figure 2) in a Sumitomo 180 Ton injection-molding machine.

The injection molding process starts by loading plastic pellets into a hopper at one end of

the injection-molding machine. A rotating screw inside the machine drags the pellets forward,

compacts and melts them. When sufficient molten plastic has accumulated, the screw head

acts as a plunger to inject the melted plastic into the mold (the filling stage). After the mold

is filled, more material is pushed into the mold using higher pressure (the packing stage) to

account for thermal shrinkage. The temperature of the mold itself is kept below the melting

point of the material so that, during packing, the material starts to cool. Once the material

has cooled sufficiently and is solid, the mold is opened and the component removed.
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Figure 1: A plastic test component. The
mid-tapered bar is P1 and the two rectan-
gular bars are P2 and P3.

Figure 2: ASTM mold in a Sumitomo 180
Ton injection-molding machine

The goal of the study described in this paper was to identify settings of the control factors

which lead to minimum shrinkage in the lengths of a mid-tapered bar and two rectangular

bars, which we label P1, P2, and P3 as shown in Figure 1. The budget allowed a small number

of components to be manufactured and measured and, in addition, a computer simulator of

the physical process was available for providing additional shrinkage observations although, as

will be seen later, its outputs were biased. The control factors, the responses, and the design

of the physical and simulator experiments are described below.

2.1 Control Factors and Responses

Four control factors, whose optimum settings were sought in the manufacturing process, are

(i) Tmelt, melt temperature in oC: temperature to which the plastic is heated before being

injected into the mold.

(ii) tpack, packing time in seconds: time for which the additional material is pushed into the

mold under higher pressure.

(iii) Ppack, packing pressure in MPa: pressure at which the additional material is pushed into

the mold.

(iv) tcool, cooling time in seconds: time for which the part is allowed to cool after packing

and before the mold is opened and the component removed.
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Two additional control factors, the mold temperature and filling time, were held constant at

26.7oC and 1 second, respectively. For the remainder of the paper, the term “control factor

setting” refers to a value of the vector of the four control factors (Tmelt, tpack, Ppack, tcool).

For each control factor setting, to ensure that the mold had reached thermal equilibrium, the

first few molded components were discarded. The peak surface temperature of each component

was monitored using a thermocouple located at the thickest bar, P3, and thermal equilibrium

was assumed when three consecutive cycles showed less than 0.55oC difference. After reaching

equilibrium, the next five molded components were allowed to cool for at least 48 hours to

equilibrate with the ambient environment, and then the linear dimensions of parts P1, P2, and

P3 were measured using a digital caliper with an accuracy of 0.01 mm. The relative shrinkage

of the length, width, and thickness of P1, P2 and P3 for each component was calculated as

Target dimension−Observed Dimension of Component

Target dimension
.

Villarreal-Marroqúın et al. (2017) discussed the Pareto minimization of the relative shrink-

ages of the length, width and thickness of part P3 using a calibrated predictor in multiple grid

searches. Here, we consider the Pareto minimization of the relative shrinkages of the lengths of

parts P1, P2, P3 relative to their target lengths. We show that the seqential methodology of

Chen et al. (2017) can find a good approximation to the Pareto set without large grid searches.

2.2 Design of the Physical Experiment

The design selected for the physical experiment consists of the 16 combinations of a 24 factorial

design in the four control factors Tmelt, tpack, Ppack, tcool, each observed at the high and low

levels towards the ends of their reasonable ranges. Three “center points” in the variables tpack,

Ppack, tcool, were added at the low, high and center values of Tmelt. The chosen control factor

settings used in the design are shown in the first four columns of Table 1. The corresponding

physical observations of the average relative shrinkage lengths, labelled L1, L2, L3, are shown

in the last three columns of Table 1; these observations are plotted as “+” in Figure 4 (and

zoomed in Figure 5).

Each control factor setting was observed four times and, each time, five components were

produced and measured as described above. The corresponding relative shrinkage was mea-
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Tmelt tpack Ppack tcool L1 L2 L3

184 14 32.14 36 .0049 .0022 .0059
184 14 32.14 50 .0048 .0020 .0057
184 14 42.67 36 .0044 .0017 .0056
184 14 42.67 50 .0043 .0016 .0053
184 21 37.41 43 .0046 .0018 .0056
184 28 32.14 36 .0049 .0022 .0058
184 28 32.14 50 .0051 .0020 .0058
184 28 42.67 36 .0041 .0016 .0049
184 28 42.67 50 .0042 .0015 .0047
200 21 37.41 43 .0041 .0018 .0050
216 14 32.14 36 .0046 .0023 .0063
216 14 32.14 50 .0046 .0022 .0060
216 14 42.67 36 .0039 .0016 .0056
216 14 42.67 50 .0041 .0015 .0053
216 21 37.41 43 .0042 .0019 .0049
216 28 32.14 36 .0044 .0022 .0049
216 28 32.14 50 .0043 .0021 .0046
216 28 42.67 36 .0037 .0015 .0044
216 28 42.67 50 .0038 .0014 .0042

Table 1: The 19 distinct combinations of control factor settings used in the physical experiment,
and the corresponding observations of relative shrinkages, L1, L2, and L3.

sured as the average over the 20 components produced for that control factor setting. This is

depicted in Figure 3.

Figure 3: A diagram of the 20 components produced for a given control factor setting.

Even for the simple test components considered here, physical experimentation is costly

and time-consuming; the large number of runs of the process required to achieve high quality

is infeasible. However, a deterministic simulator of the physical process was available and was

run to provide simulated observations to augment the physical responses. The simulator design

is described in Section 2.3.
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Figure 4: Scatter plot of the the 19 physical process observations (shown as “+”) of observed relative
shrinkages L1, L2, L3 of parts P1, P2, P3 for the 24 + 3 experimental design of Table 1, and the 35
Moldex3D L1, L2, L3 outputs (shown as “o”) from the 35-run 7-variable augmented maximin Latin
hypercube design of Table 3.

2.3 Design of the Initial Simulator Experiment

The simulator, called “Moldex3D”, is commercially available software developed to simu-

late injection molding processes and is based on Generalized Newtonian Fluid assumptions.

Moldex3D was used to simulate the non-isothermal three-dimensional flow motion of the poly-

mer through the mold and to compute the resulting lengths of P1, P2, P3 of the simulated

components (see Villarreal-Marroqúın et al., 2017, for further details about the simulator). In

addition to the specification of the settings of the four control factors (i)–(iv) listed in Sec-

tion 2.1, the simulator requires the specification of the values of three heat transfer coefficients

(HTCs) during filling, packing, and cooling. The ranges used for the four control factors and

the three HTCs in the simulator experiment are shown in Table 2.

The (deterministic) Moldex3D simulator was run at settings of the seven variables (four

control factors and three HTCs) defined by a 35-run augmented maximin Latin hypercube

design (LHD) as listed in the left portion of Table 3. Table 3 also lists the relative shrinkages

L1, L2, L3 in the lengths of P1, P2, P3, computed by Moldex3D. These 35 values of L1, L2, L3

are plotted as “o” in Figure 4. Compared with the 19 values of L1, L2, L3 computed from

the physical observations and plotted as “+”, the bias in the simulator is readily apparent.
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Consequently, to identify the control factor settings which lead to minimum relative shrinkage,

calibrated predictors of the means of the relative shrinkages in the physical process were used.

The exact boundary conditions of the HTCs are unknown and extremely difficult to measure

in the physical injection molding process. The HTCs were used as calibration parameters to

correct the bias in the Moldex3D simulator output.

In Section 3, a Gaussian Process (GP) model for the simulator output is described briefly.

The Pareto Set and Pareto Front are defined in Section 4, together with an overview of the

sequential Pareto optimization method of Chen et al. (2017). In Section 5, we will show

that the sequential methodology locates an approximate Pareto Front and Pareto Set for this

injection molding problem more quickly and more accurately than a fixed design with the same

number of observations, even when coupled with a sizeable grid search.

3 The Simulator Model and its Calibration

As described in Section 2, the inputs to the deterministic Moldex3D simulator are the d = 4

control factors for the manufacturing system and the b = 3 heat transfer coefficients (HTCs)

that will be used to calibrate the simulator. The HTCs are unknown and impossible to measure

in the injection molding production environment but are required in the mathematical model

that relates shrinkage to these factors. In this section, the stochastic model representing the

simulator output will be described first, then that for the physical experiment, and finally the

calibration model relating the two experimental outputs will be introduced.

Suppose that the deterministic simulator is calculated for ns inputs where each input con-

sists of d control factors and b calibration variables. Let xsi = (xsi,1, . . . , x
s
i,d)
> and ti =

Variable Low High

Melt temperature (Tmelt,
oC) 180 220

Packing time (tpack, sec) 10 30
Packing pressure (Ppack, MPa) 30 44
Cooling time (tcool, sec) 25 50

HTC during filling (Hfill, W/m2K) 1200 1800
HTC during packing (Hpack, W/m2K) 20000 30000
HTC during cooling (Hcool, W/m2K) 2000 3000

Table 2: Ranges of the four control factors for the physical and simulator experiments, and the
ranges of the calibration parameters for the simulator experiment
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Tmelt tpack Ppack tcool Hfill Hpack Hcool L1 L2 L3 seq

180.0 21.2 30.69 29.0 1560 27600 2940 .0168 .0182 .0218
180.2 25.4 41.31 28.5 1728 29000 2300 .0151 .0166 .0196 –
180.8 28.9 32.44 43.7 1536 20933 2227 .0146 .0157 .0198
181.2 23.4 37.77 48.8 1644 26400 2700 .0153 .0165 .0201
182.4 27.4 35.67 25.3 1200 27200 2000 .0154 .0167 .0200
183.2 12.0 31.21 50.0 1344 23800 2200 .0187 .0199 .0217
184.0 29.6 43.80 25.0 1368 25400 2600 .0144 .016 .0191
185.2 14.4 42.88 36.0 1788 21400 3000 .0169 .0183 .0196
187.5 10.8 35.41 48.0 1608 24000 2920 .0183 .0196 .0209 –
188.8 20.4 33.31 39.5 1218 30000 2420 .0166 .018 .0216
190.4 12.4 41.44 44.3 1626 29900 2120 .0173 .0187 .0197
191.2 28.7 31.74 33.3 1800 25600 2467 .0149 .0162 .0203
192.8 17.2 40.91 49.0 1776 23200 2060 .0165 .0178 .0199 –
194.0 20.7 36.59 30.0 1272 20500 2660 .0164 .0179 .0210
196.0 26.0 41.96 47.5 1512 20400 2480 .0144 .0158 .0198
198.0 13.4 38.82 37.3 1572 20300 2380 .0175 .0190 .0203 –
198.8 16.6 32.92 33.8 1710 24400 2020 .0176 .0190 .0215
199.2 19.6 43.40 30.5 1212 23400 2160 .0161 .0175 .0196 –
202.0 11.6 34.10 43.0 1794 29600 2740 .0183 .0197 .0216
203.6 17.6 40.65 35.0 1392 29800 2560 .0165 .0179 .0199 –
204.2 25.0 35.02 25.8 1680 21200 2900 .0158 .0175 .0214
206.8 13.0 37.51 49.5 1314 29700 2980 .0174 .0189 .0208
209.2 29.9 43.21 26.5 1758 20000 2260 .0144 .0161 .0196
210.4 24.8 39.34 46.0 1296 24800 2760 .0152 .0167 .0202 –
211.8 27.8 32.66 40.3 1242 29200 2960 .0151 .0166 .0213
212.8 14.0 30.95 46.5 1620 22000 2840 .0181 .0195 .0220
214.9 27.1 42.57 34.0 1280 28400 2107 .0149 .0165 .0196
215.6 29.1 40.00 40.8 1668 28000 2800 .0143 .0158 .0200
216.0 24.4 36.20 29.5 1410 22100 2080 .0160 .0177 .0208
216.4 11.0 34.88 39.0 1320 26000 2520 .0185 .0202 .0226
217.3 17.7 33.66 32.3 1600 28800 2987 .0172 .0187 .0211 –
218.4 26.8 31.48 27.5 1500 25000 2620 .0159 .0177 .0218 –
218.8 15.0 42.75 45.0 1356 23300 2040 .0166 .0183 .0198
219.2 22.4 31.08 48.3 1452 25800 2360 .0165 .0181 .0215 –
220.0 10.0 39.86 49.8 1224 20200 2860 .0177 .0193 .0226

Table 3: The 35 combinations of input variable settings used in the simulator experiment and the
corresponding relative shrinkages L1, L2, L3 computed from the simulator outputs. Columns 1-7
show the settings of the four control factors and the three calibration parameters at which Moldex3D
was run; columns 8-10 show L1, L2, L3. (“–” indicates the settings that will be omitted from the
initial design in the sequential procedure in Section 5)
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(ti,1, . . . , ti,b) denote the control factor and calibration variable settings, respectively, where >

denotes transpose; also let ys(xsi , ti) denotes the simulator output when run at (xsi , ti), i =

1, . . . , ns. Because the simulator output is deterministic it is assumed that the (xsi , ti), for

i = 1, . . . , ns, are distinct.

The simulator output is modeled using a generalization of a regression model that postulates

the outputs from “nearby” pairs of (xs, t) are correlated. This model regards the ys(xsi , ti),

for i = 1, . . . , ns, as realizations from

Y s(xs, t) = β0 + Z(xs, t), (1)

where β0 is a constant mean, and Z(·, ·) is a zero-mean, stationary Gaussian process with

variance λ−1Z , and output correlation

Cor
(
Y s(xsi , ti), Y

s(xsj ,xj)
)

= RZ((xsi , ti), (x
s
j , tj)) =

d∏
k=1

ρ
4(xsi,k−x

s
j,k)

2

x,k

b∏
e=1

ρ
4(ti,e−tj,e)2
t,e , (2)

for i 6= j. The parameters in (2) must satisfy 0 ≤ ρx,k, ρt,e ≤ 1, for k = 1, . . . , d and e = 1, . . . , b;

it can be shown that they control the smoothness of the ys(xs, t) realizations (see Section 2.3.4

of Santner et al. (2003)). The Gaussian process model is a general linear model because it

can be shown that the joint distribution of any finite set of Y s(xsi , ti) with distinct (xsi , ti)

is multivariate normal with mean β0, variance σ2Z = λ−1Z , and covariance matrix that has

elements of the form λ−1Z ×RZ((xsi , ti), (x
s
j , tj)). Lastly, it should be noted that the form of (2)

with the constant 4 in the exponent is one of several numerical transformations that have

been proposed to stabilize inverse calculations involving the correlation matrix of sets of the

Y s(xsi , ti) (see, for example, Higdon et al., 2008; MacDonald et al., 2015).

Now consider the model for the physical experiment observations. Suppose np runs of the

manufacturing process are made where, at the ith experimental run, the d control factors are

set at xpi,1, . . . , x
p
i,d. Let yp(xp1), . . . , yp(xpnp) denote the outputs when run at the np control

factor settings xpi = (xpi,1, . . . , x
p
i,d)
>, i = 1, . . . , np. This paper assumes the regression model

Y p(xpi ) = µ(xpi ) + ε(xpi ), (3)
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where µ(xpi ) denotes the mean response of the manufacturing process at xpi , and ε(xp1), . . . ,

ε(xpnp) are independent and identically distributed N(0, σ2ε ) measurement errors with unknown

variance σ2ε ≡ λ−1ε . Unlike a linear regression model, no parametric form is assumed for µ(xpi ).

The calibration model used in this paper to link the simulator output and physical process

responses was proposed by Kennedy and O’Hagan (2001). A Bayesian calibration analysis

based on this model is provided by Higdon et al. (2004) and Higdon et al. (2008). The

calibration model postulates that there is a true but unknown value of the calibration parameter

t which is denoted φ. The calibration model does not assume that the simulator runs, even

when made at the true value of the calibration parameter, provide a completely accurate

description of the mean of the physical responses. Instead the model allows the simulator to

exhibit a non-zero bias which can be estimated. The simulator bias (the “discrepancy”) at

control factor setting xp is defined to be the difference between the mean of the manufacturing

process run at xp and the simulator run at control factor setting xp and calibration parameter

setting φ, i.e.,

δ(xp) ≡ µ(xp)− ys(xp,φ). (4)

As in Kennedy and O’Hagan (2001), this paper regards δ(xp) as a realization of a Gaussian

process ∆(xp) which can be used to predict the bias. The ∆(xp) process is assumed to have

mean zero, variance λ−1δ , and correlation function

Rδ(x
p
i ,x

p
j ) =

d∏
k=1

ρ
4(xpi,k−x

p
j,k)

2

δ,k . (5)

for i, j = 1, . . . , ns. The discrepancy ∆(xp) is assumed to be stochastically independent of

Z(·, ·) and ε(·). Under assumptions (3)-(5), the mean µ(x) of the manufacturing process in (3)

at control factor setting x is a realization of the sum of independent Gaussian processes

U(x) ≡ Y s(x,φ) + ∆(x). (6)

The Bayesian analysis of the calibration model assumes that prior distributions can be

stated for all model parameters. These parameters are Ω = (λ,ρ,φ, β0) where λ denotes

11



the precision vector (λZ , λδ, λε)
>, ρ denotes the vector of combined smoothness parameters

(ρx
>,ρt

>,ρδ
>)>, where ρx

> = (ρx,1, . . . , ρx,d), ρt
> = (ρt,1, . . . , ρt,b), and ρδ

> = (ρδ,1, . . . , ρδ,d),

φ denotes the unknown calibration vector, and β0 the unknown mean of the GP for the

simulator responses. As in Higdon et al. (2004), this paper assumes mutually independent

priors for the four groups of unknown parameters. The prior distribution for value of the

calibration parameter φ can often be solicited from subject-matter experts. The posterior

distribution of the parameters given the physical and simulator data is formed in the usual

way from the likelihood and the prior. Details can be found in Chen et al. (2017).

To predict the mean response of the physical system at a new control factor setting x0, the

following approximation is used

µ̂(x0) = E{U(x0) | Y)} ≈ 1

Nmcmc

Nmcmc∑
q=1

E{U(x0) | Y,Ωq} (7)

where Y = (yp(xp1), . . . , y
p(xpnp), ys(xs1, t1), . . . , y

s(xsns , tns))> denotes the vector of the np phys-

ical observations concatenated with the ns simulator outputs, and Ωq, q = 1, . . . , Nmcmc, is

the qth draw from the posterior distribution of Ω given the data Y. Chen et al. (2017) give a

formula for the expectation in the right hand side of (7).

The calibrated predictor (7) was constructed separately for each output in the injection

molding study of Section 2 using the np = 19 manufacturing process physical observations and

the outputs from the ns = 35 simulator runs. As seen in Figure 4, the simulator is biased for all

three outputs L1, L2, L3. Figure 5 shows that, when computed for the same 19 control factor

settings as used in the manufacturing experiment, the calibrated predictions of the means of

L1, L2, and L3 successfully adjust for the simulator bias.

Section 4 describes the Pareto Front and Pareto Set solution to multi-objective minimiza-

tion problems and a sequential design methodology for finding the Pareto solution to a given

problem. Section 5 applies this methodology to optimize the injection molding process.

4 Pareto Minimization

Because conflicting objectives need not have a common minimizer, this section describes the

Pareto approach for identifying a set of compromise “minimizing” solutions. As mentioned in

12



4
2.5

4.5

5

5.5

L3

#10 -3

2

5.5

5

L2

#10 -3

6

#10 -3

L1

4.5

6.5

1.5
4

1 3.5

Figure 5: Scatter plot of the 19 relative shrinkages (L1, L2, L3) from the manufacturing process
(shown as “+”) and 19 calibrated predictions (shown as “♦”) made at same control factor inputs
used in the manufacturing process.

Section 1, the collection of control factor settings for these compromise solutions are termed the

Pareto Set for the problem and the corresponding outputs constitute the Pareto Front. Pareto

minimization of computationally expensive simulator output based on surrogate predictors

is an active research area, e.g. Wilson et al. (2001), Emmerich et al. (2006), Keane (2006),

Kim and deWeck (2006), Binois et al. (2014), Picheny (2015), Svenson and Santner (2016).

However, none of these papers treat situations where both physical observations and simulator

data are available.

4.1 Definition of Pareto Front and Set

Let y`(x), ` = 1, . . . ,m, denote m functions defined on a common domain X . Pareto mini-

mization seeks to identify the set of all x? ∈ X that cannot be dominated by any alternative

input xa in the sense that y`(x
a) ≤ y`(x?) for all ` = 1, . . . ,m with < for some `. The Pareto

Set, denoted by PX , is then defined as the collection of all Pareto minimizing x? in X . The

Pareto Front, denoted by PY , is the set of y(x?) = (y1(x
?), . . . , ym(x?)) corresponding to all

x? ∈ PX . In words, a y(x) that is not on the Pareto Front can be minimized further by at least

one other output on the Pareto Front. For example consider the collection of two-dimensional
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outputs (m = 2) shown as filled and empty stars in Figure 6. The two points denoted by filled

stars comprise the Pareto Front from this finite universe of points.
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Figure 6: The two filled stars are the Pareto
Front in the set consisting of the all stars
(filled or hollow). Each hollow star is domi-
nated by one or both filled stars.
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Figure 7: The gray area is the hypervolume
indicator for the PF of Figure 6 when the
reference point, r, is the filled square.

4.2 Hypervolume Indicator of Pareto Minimization

An important issue in multi-objective optimization is the evaluation of the quality of an es-

timated Pareto Front, especially when m ≥ 4. The hypervolume indicator is a popular real-

valued measure that can be used to compare competing approximate Pareto Fronts. While the

hypervolume indicator can be defined analytically, for this paper we show only the following

graphical interpretation. Let r = (r1, . . . , rm) be a fixed point whose components are upper

bounds for each output function y1(x), . . . , ym(x), i.e., r` ≥ y`(x) for all ` = 1, . . . ,m and all

x ∈ X . The hypervolume indicator of an approximate Pareto Front A is the volume of the set

of points in output space that both dominate r and are dominated by at least one point of A.

The shaded area in Figure 7 is the hypervolume indicator for the Pareto Front of Figure 6 (see

Zitzler and Thiele, 1999).

4.3 A Sequential Pareto Minimization Procedure

This paper shows the effectiveness of the sequential design and analysis procedure of Chen et al.

(2017) for Pareto minimization to optimize the manufacturing process described in Section 2.

It also illustrates the procedure’s efficiency using two analytic examples.
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In brief, the Chen et al. (2017) sequential design procedure is based on Bayesian calibrated

predictors and, in the spirit of the Jones et al. (1998) EGO global optimization procedure,

uses an expected improvement function, called the minimax fitness function (mMFF), to

efficiently guide the search for the new settings of the control input variables close to the Pareto

Set.

We describe the mMFF in the simplest possible setting of a known mean function µ(x) =

(µ1(x), . . . , µm(x)) of an m-output physical process where x ∈ X and X is the space of possible

control factor settings. The mMFF of µ(·) at x ∈ X is defined to be

IF (µ(x)) ≡ min
xi∈Pnp+ns

X

max
`=1,...,m

(µ`(xi)− µ`(x))

× 1 min
xi∈Pnp+ns

X

max
`=1,...,m

(µ`(xi)− µ`(x)) > 0

, (8)

where 1E is an indicator function having value 1 or 0 as the event E is true or not and Pnp+ns

X is

the Pareto Set among the np+ns control factor settings based on the np physical observations

and the control portions of the ns simulation runs. The mMFF is non-negative, and it can be

shown that positive values can be viewed as the “improvements” to the current Pareto Front.

The indicator function IF (µ(x)) = 0 if and only if x is dominated by some x∗ in PnX while

IF (µ(x)) > 0 if and only if x is not dominated by any x∗ in PnX . Thus, an intuitive choice is

to select the next control factor setting as that x ∈ X which maximizes IF (µ(x)).

Example 4.1 This example illustrates how the mMFF (8) can be used to construct sequential

designs for Pareto minimization. Consider the MOP2 function µ(x) = (µ1(x), µ2(x)) where

µ`(x) = 1− exp

{
−

2∑
k=1

(
xk +

(−1)`√
2

)2
}
, for ` = 1, 2. (9)

which has m = 2 outputs and d = 2 inputs with the input space X ∈ [−2, 2]2 (Fonseca and

Fleming, 1995). The function µ1(x) has global minimum equal to zero when x = (1/
√

2, 1/
√

2)

while µ2(x) has global minimum equal to zero when x = (−1/
√

2,−1/
√

2). It can be shown

that the Pareto Set of µ(x) is

PX =

{
x : x1 = x2 and − 1√

2
≤ x1, x2 ≤

1√
2

}
. (10)
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Points on the Pareto Front are plotted as the grey curve in Figures 8(a), (c) and (d).

Suppose that, initially, 10 observations of µ(x) have been made at a set of space-filling

control factor settings x in [−2, 2]2 and that these µ(x) are plotted as circles (some filled

and others hollow) in Figure 8(a). Two of these 10 points, plotted as filled circles, are not

dominated by any other points and form the current approximate Pareto Front. The plot of

IF (µ(x)) corresponding to these 10 points is shown in Figure 8(b), where Pnp+ns

X is taken

to be the 2-point Pareto Set identified above. The maximum value of IF (µ(x)) occurs at

x = (−0.7,−0.7). The point µ(−0.7,−0.7) is added to Figure 8(a) and is labeled “11” in

Figure 8(c), where the approximate Pareto Front (filled circles) has been updated and now

contains 3 points. The maximum of IF (µ(x)) based on the 11 observations (not shown) occurs

at x = (0.7, 0.7). Figure 8(d) adds µ(0.7, 0.7) to the plot of the previous points, and updates

the approximate Pareto Front again. The effectiveness of the mMFF function in guiding the

sequential search in this idealized, known output setting is seen from the fact that the two

added points give µ(x) on, or close to, the true Pareto Front. �

Example 4.1 illustrates the use of the mMFF function in the selection of control factor

settings at which to run the simulation. This forms the basis of a sequential design procedure

for finding the Pareto Front and Set of a known µ(x). As in many other applications, the

optimization of the injection molding process described in this paper is to find the Pareto

Front and Set for the vector of unknown means of a manufacturing process. The unknown

mean vector is denoted µ(x) in model (3). This paper illustrates the sequential procedure for

solving this problem where the data are a fixed number of physical observations and an initial

set of simulator runs to which a researcher can add simulator runs. Chen et al. (2017) also

provides theoretical procedures for the case of supplemental physical observations, and for the

choice of adding either simulator runs or physical observations to an initial set of runs.

Assume that initial data consists of observations from the physical system based on a fixed

control factor design Xnp = (xp1, . . . ,x
p
np)> and runs of the simulator based on an initial con-

trol factor design Xns = (xs1, . . . ,x
s
ns)> with associated calibration variables. The sequential

approach estimates µ(x) using the calibrated predictors and replaces the exact MmFF cal-

culations by its expectation. These features are seen in the sequential Pareto minimization

procedure below.
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Figure 8: For the MOP2 function, sequentially added points obtained by using an update formula
based on the mMFF.

Step 1 Fit the Bayesian calibrated model (6) to each output function (` = 1, . . . ,m) inde-

pendently.

Step 2 Predict the vector of physical process means at Xnp and Xns using the Bayesian

calibrated predictor (7).

Step 3 Based on the predictions in Step 2, determine the current approximate Pareto Set

Pnp+ns

X among the observed np + ns control factor settings.

Step 4 Select the next control factor setting x∗ to maximize the posterior expected minimax
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fitness function given the current data Yc, i.e.,

x∗ ∈ argmax
x∈X

E{IF (U(x)) | Yc}, (11)

where IF (·) is defined in (8). Chen et al. (2017) derived a nearly closed-form expression for

(11) and calculated it using Markov chain Monte Carlo.

Step 5 Construct the vector of calibration parameter settings t∗ to minimize the sum of the

posterior mean squared prediction errors (MSPE) given the current data Yc and the x∗ selected

from (11), i.e.

t∗ ∈ argmin
t∈T

m∑
`=1

E{[Û`(x∗)− U`(x∗)]2 | Yc}, (12)

where Û`(x
∗) is the mean of [U`(x

∗) | Y`, Y s
` (x∗, t)]. The mean Û`(x

∗) is a function of the

augmented data Y s
` (x∗, t). The expectation of Û`(x

∗) given Yc can be expressed in closed

form; the details can be found in Chen et al. (2017).

Step 6 Run the simulator to evaluate ys(x∗, t∗) and add it to the vector of simulator outputs.

Step 7 Set ns = ns + 1, and go to Step 1 unless the sampling budget has been exhausted

or a stopping criterion has been met. (A possibility is to stop when the posterior expected

minimax fitness function fails to increase by more than a given value ε for a specified number

of consectutive iterations).

5 Optimizing the Injection Molding Process

The goal of the injection molding experiment described in Section 2 was to obtain the Pareto

Set of optimizing conditions for the four control variables (melt temperature, packing time,

packing pressure, and cooling time) corresponding to the Pareto Front of the relative shrinkages

L1, L2, L3 in the lengths of the parts P1, P2, P3, where all three shrinkages were to be

minimized.

In Table 4, the second and third groups of columns list the points in the approximate

Pareto Set and Pareto Front for three approximating methods. The first of these methods

uses the 19 physical observations in Table 1 and the 35 runs of Moldex3D listed in Table 3
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Method Approximate Pareto Set Approximate Pareto Front Hypervol.
Tmelt tpack Ppack tcool 103 × L1 103 × L2 103 × L3 Indicator

19 physical obs 216 28 42.67 36 3.7802 1.5535 4.4033
� 0.0365

+ 35 LHD runs 216 28 42.67 50 3.8477 1.4810 4.1759

19 physical obs 200 24.5 42 43 2.9884 0.6481 3.3808

� 0.1427
+ 35 LHD runs 208 24.5 42 43 3.0275 0.7843 3.3645
+ 625 grid preds 200 28 42 43 2.9054 0.6495 3.4485

208 28 42 43 2.9537 0.7918 3.4193

19 physical obs 203.42 24.17 43.25 43.07 2.8094 0.8206 3.2010
• 0.1457+ 25 space filling 203.56 26.27 42.09 43.66 2.7658 0.9016 3.3088

+ 10 sequen. runs 202.12 22.50 43.80 43.96 2.9032 0.8061 3.2224

Table 4: Approximate Pareto Set and Pareto Front, and value of the hypervolume indicator from
each of three methods based on three designs. Each design consisted of the same 19 physical control
factor settings, together with the following designs for the simulator control factor settings (i) a
35-run augmented maximin LHD (with predictions at the control factor settings of these 54 runs),
(ii) a 35-run augmented maximin LHD (with predictions at the control factors with values on a grid
of 625 control factor runs), (iii) a 25-run space filling design from among the settings of the 35-run
augmented maximin LHD, plus 10 additional sequentially selected settings (with predictions at the
control factor settings for these 54 runs). The plotting symbols shown in the penultimate column
are used in Figures 9–10.

to build a calibrated predictor (Section 3) and predicts the true mean values of L1, L2, L3 at

these 19+35=54 control factor settings. Two of the predicted means form the Pareto Front

among this set of 54 predictions and these are listed in the first two rows in Table 4, (and also

shown as the filled diamonds in Figure 10). The control factor settings in the approximate

Pareto Set differ from each other only in the value of cooling time. The longer cooling time is

better for minimizing shrinkage in the lengths of P2 and P3, while the shorter time is slightly

better for that of P1.

The second method was based on the following strategy to improve the approximation to

the Pareto Front. Using the same 19+35 runs as for the first method, we predicted the true

mean values of L1, L2, L3 over a grid of 54 = 625 input points, where there were 5 equally

spaced values over the ranges of each of the four control factors. Projections of the grid points

and the predictions over the grid are shown as open diamonds in Figure 9. The approximate

Pareto Set from among the 625 points consists of four control factor settings. These and

the points on the approximate Pareto Front are listed as the second group of four rows in

Table 4 and are denoted by filled squares in Figures 9 and 10. The approximate Pareto Front

based on the 625 predictions is a great improvement over that obtained from predictions at

the 54 design points —the relative shrinkages in length of all three parts are smaller, and
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Figure 9: Left hand side shows the two-dimensional projections of the 625 grid points at which
calibrated predictions were made. The variables x1, ..., x4 are, respectively, the control factors Tmelt,
tpack, Ppack, tcool. The predictions of the means of the relative shrinkages L1, L2, L3 are shown on
right hand side as open diamonds. The Pareto Front and Set are indicated by filled squares.

the hypervolume indicator increased three-fold (calculated relative to the same reference point

r = (.0051, .0024, .0063)). Also, the optimizing settings for the melt temperature are lower.

The third method of approximating the Pareto Set and Front uses the sequential approach

of Chen et al. (2017) described in Section 4.3. We show that this method provides further

improvements to the hypervolume indicator of the approximate Pareto Front (relative to the

same r). Using the same 19 physical observations as before (Table 1), a space-filling initial

simulator design was selected which consisted of the subset of 25 points from among the 35

points of Table 3 which resulted in the largest value of the minimum interpoint distance. The

omitted points are indicated by “–”. The sequential procedure was then used to provide an

additional 10 input points. The approximate Pareto Set and Front obtained from this method

are shown in the last three rows of Table 4 and plotted as filled circles in Figure 10. The

hypervolume indicator is slightly larger than that obtained from the second method (0.1457

as compared with 0.1427) with relative shrinkages L1 and L3 being a little smaller (although

L2 is a little larger).

Figure 11 illustrates the steps in the sequential method. First, the calibrated predictions

of the means of L1, L2, L3 at the 19 + 25 initial design settings of the four control factors are

plotted in Figure 11(a). The filled diamond is the approximate Pareto Front at this stage. The

next setting of the four control factors and three calibration parameters was obtained using

the MATLAB program MultiOpt.m which was developed by Chen (2016) for the sequential
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Figure 10: Approximate Pareto Front (right panel) and corresponding approximate Pareto Set
(left panel) using the 19 physical observations and (i) the fixed 35-run maximin LHD (two filled
diamonds), (ii) the 35-run maximin LHD and predictions over a 54 grid (four filled sqares), and (iii)
the sequential approach with a 25-run space-filling design and 10 added points (three filled circles).

procedure of Section 4.3. The filled circle in Figure 11(b) is the calibrated prediction at the

first sequentially added point. Since this minimizes all three output variables, it becomes the

approximate Pareto Front and the previous point is removed.

Figure 11(c) shows, as open and filled circles, the calibrated predictions for each of the

10 additional points identified by the sequential design. Notice that every one of these gives

smaller predicted L1, L2, L3 than the predictions at almost all of the points in the initial design,

and the three filled circles indicate the final approximate Pareto Front. Figure 11(d) shows the

values of the hypervolume indicator of the approximate Pareto Front at each stage, calculated

relative to reference point r = (.0051, .0024, .0063). There appears to be a large improvement

in the approximation when the first sequential point is added to the 25-run space-filling design.

After that, there is a small improvement in the approximation at stages 5 and 10.

6 Properties of the Sequential Pareto Minimization

Procedure

In this section, the performance of the sequential Pareto minimization methodology of Chen et

al. (2017), described in Section 4.3, is examined for two known functions in terms of its ability

to predict points in, or close to, the true Pareto Set.
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Figure 11: Calibrated predictions of the means of L1, L2, L3 for the sequential procedure at (a)
the 19 + 25 initial design points, (b) after adding the fisrt sequential point, (c) after adding 10
sequential points. In each case the filled symbols indicate the current approximate Pareto Front.
The hypervolume indicator at each stage of the sequential procedure is shown in (d).

6.1 Accuracy of the Approximate Pareto Set and Front

6.1.1 MOP2 Function

The MOP2 function was described in Section 4.3. We assume that the two output functions

in (9) form the means of a “physical process” at control factor setting x = (x1, x2) with

(x1, x2) ∈ [−2, 2]2. We generate the individual physical observations as realizations of

Y p
` (x) = µ`(x) + ε`, ` = 1, 2, (13)
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Figure 12: The MOP2 example: Left Panel: (x1, x2) for the initial physical control factor settings
(“+”), simulator control factor settings (“o”), the true Pareto Set (grey circles), and the approxi-
mate (estimated) Pareto Set after adding 50 additional simulator runs identified by the sequential
procedure (filled circles). Right Panel: The corresponding intial observations (“+” and “o”), true
Pareto Front (grey circles), and approximate Pareto Front (filled circles).

with means as in (9) and with independent error variables ε` ∼ N(0, 0.12). The simulator

outputs are generated as

ys` (x, t) = µ`(x) + |t|/10 + 0.4 + 0.3(x1x2/4)2, (14)

for ` ∈ {1, 2}; there is a single calibration input t ∈ [−2, 2] for each simulator.

The initial designs for the physical and computer experiments are each chosen to be a

maximin LHD with 5 runs per input dimension. Therefore the LHD for the physical process is

10× 2 and that for the simulator is 15× 3. Both designs are obtained from the website of van

Dam et al. (2013). Assuming a fixed physical experiment budget, the simulator experiment

design is augmented using the sequential update procedure of Section 4.3.

The left panel of Figure 12 plots the design points for the physical experiment (“+”) and

those for the initial simulator experiment (“o”). The true Pareto Set of the MOP2 function,

equation (10), is shown as the grey line; the approximate (estimated) Pareto Set after applying

the sequential update formula and selecting 50 additional simulator input settings is shown as

filled circles. The right panel of Figure 12 plots the corresponding physical observations (“+”)

generated from (13), the initial observations (“o”) generated from the simulator in (14), the

Pareto Front of the MOP2 function (grey circles), and the predicted means (filled circles) of the

MOP2 function at the control factor settings of the approximate Pareto Set in the left panel.
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This example indicates that the sequential procedure has led to very good approximations to

the true Pareto Set and Pareto Front using the inputs identified by the sequential design.

6.1.2 DTLZ2 Function

Introduced by Deb et al. (2005), the version of the DTLZ2 functions used here has d = 3

inputs and m = 3 outputs defined as

µ1(x) = (1 + g(x) cos
(πx1

2

)
cos
(πx2

2

)
,

µ2(x) = (1 + g(x)) cos
(πx1

2

)
sin
(πx2

2

)
, (15)

µ3(x) = (1 + g(x)) sin
(πx1

2

)
,

where g(x) = (x3 − 0.5)2 is independent of x1 and x2. Similar to the example of the MOP2

function in Section 6.1.1, the physical observations of DTLZ2 functions are generated as the

means (15) plus independent errors ε` ∼ N(0, 0.12). The simulator outputs ys(x, t) are taken

to have a single calibration input, t ∈ [0, 1]. Each ys` (x, t) was obtained by adding (t− 0.5)2 to

a modified µ`(x) in which g(x) is replaced by gs(x) = x1+(x3−0.5)2, leading to a complicated

bias function, even under the “true” value φ = 0.5 of the calibration parameter.

As for the MOP2 example, the initial designs were chosen to be maximin LHDs with 5 runs

per input dimension, so there are 15 design points for the physical experiment and, initially,

20 design points for the computer simulator. These initial design points are augmented by

sequentially adding 50 new simulator design points using the procedure of Section 4.3.

The true Pareto Set is PX = {x : x3 = 0.5}; the left panel of Figure 13 plots 1, 000 points

from PX in grey. The right hand panel shows the corresponding outputs on the true Pareto

Front, again in grey. Figure 13 also displays the design points for the initial observations (“+”

for the physical observations and “o” for the simulator outputs) and the estimated Pareto

Set and Front (filled circles) after sequentially selecting the 50 additional simulator settings.

The estimated Pareto Set is a good approximation to the true Pareto Set with most points in

Figure 13 close to the plane with x3 = 0.5 and spread out over the entire (x1, x2) space; only

a few points have x3 away from 0.5.
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Figure 13: The DTLZ2 example: Left Panel: (x1, x2, x3) for physical control factor settings (“+”),
initial simulator control factor settings (“o”), the true Pareto Set (grey circles), and the approxi-
mate (estimated) Pareto Set after adding 50 additional simulator runs identified by the sequential
procedure (filled circles). Right Panel: The corresponding initial observations (“+” and “o”), true
Pareto Front (grey circles), and approximate Pareto Front (filled circles).

6.1.3 The Hypervolume Indicator

The value of the hypervolume indicator was calculated after each additional point was sequen-

tially added to the initial design. These values are plotted for the 50 added points in Figure 14

for both the MOP2 function and the DTLZ2 function. In each case the value of the hypervol-

ume indicator of the true Pareto Front is shown as a horizontal line. The speed of approach

of the hypervolume indicator of the approximate PFs identified by the sequential procedure to

the true value depends upon the sizes of the bias and the experimental error. Figure 14 shows

that the sequential procedure improves the approximation to the true PF at most stages, and

that approach is fairly rapid for the two-dimensional MOP2 function, and a little slower for

the DTLZ2 function.

6.2 Allocation of Simulator Runs

Now consider the allocation problem in which the number of observations of the physical

process and the number of runs of the simulator are each fixed by the budget. The division,

however, of the number of simulator runs between the initial design and the sequential stages

still needs to be determined. We return to the MOP2 function to address this problem. For

example, suppose that the maximum number of 10 physical observations has been made and

that a total number ns has been allocated for simulator runs. In this empirical study, we take
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Figure 14: The hypervolume indicator (HI) of the approximate Pareto Front at each stage of
the sequential Pareto minimization procedure adding 50 simulator runs. Left panel: the MOP2
function (with reference point r = (1.0, 1.0)); Right panel: and DTLZ2 function (with reference
point r = (1.1, 1.1, 1.1)) The horizontal line shows the hypervolume indicator of the true Pareto
Front.

ns = 15 and allocate nsI runs (in the range 4, 5, . . . , 15) to the initial simulator design, with the

remaining 15 − nsI runs to be added sequentially. All initial designs are selected as maximin

LHDs obtained from the website of van Dam et al. (2013). We investigate the effect of choice

of nsI on (i) the hypervolume indicator of the final identified approximate PF, and (ii) the mean

squared prediction error of outputs on the true Pareto Front.

The hypervolume indicator of the approximate Pareto Front identified using the calibrated

predictor based on the nsI initial and the 15−nsI sequentially added simulator outputs, and the

10 physical observations, is shown in Figure 15 for nsI = 4, 5, . . . , 15. The results suggest that

the size, nsI , of the initial simulator design should be about 25% to 75% of the total number

of runs, and perhaps towards the lower end of this range.

To examine the accuracy of prediction of the Pareto Front, the mean squared prediction

error,

MSPE =

∑2
`=1

∑100
i=1(µ̂`(xi)− µ`(xi))2

100
, (16)

is used where µ̂`(xi) is the calibrated prediction of the true mean µ`(x) of the `th function.

Figure 16 shows the MSPE calculated over 100 points on the true Pareto Front of the MOP2

function, when the initial simulator design has nsI(= 4, . . . , 15) points, and when the physical

observation error and the bias functions are as described in Section 6.1.1. Combining the
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Figure 15: The hypervolume indicators of the
approximate Pareto Fronts identified for the
MOP2 function of Section 6.1.1 using the 10
physical observations, the nsI initial and the
15−nsI sequentially added simulator outputs,
for each of nsI = 4, 5, . . . , 15.
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Figure 16: The MSPEs of the prediction of
the 100 points on the true Pareto Front for
the MOP2 function of Section 6.1.1 for each
of nsI = 4, 5, . . . , 15.

results of Figures 15 and 16, the initial simulator design for this example should be in the

range nsI = 6, . . . , 11; i.e. around 40% to 75% of the ns = 15 total number of runs.

It is not surprising that the above recommendation is in the center of the range of possible

values for nsI since a small initial design does not allow for an accurate initial calibrated

predictor to be built, and a large initial design whose points happen to be far from the true

Pareto Front gives few opportunities for additional points to home in to the goal. In general,

the optimal fraction of observations allocated to the initial design is likely to depend not only

upon the complexity and dimension of the output fnctions, but also the size of the bias. Further

studies are needed in this direction.

7 Summary and Discussion

This paper presents a method of efficiently designing a manufacturing process for injection

molding by determining the Pareto optimal Set of control factor settings; here these are the

values of the melt temperature, packing time, packing pressure, and cooling time of the mold-

ing machine. The objectives are the minimization of the relative shrinkages of a set of test

components. A final choice among the Pareto Set of control factor settings can be made on the

basis of additional criteria, such as cost, ease of manufacture, etc. The method presented uses

a sequential design guided by a minimax improvement function to rank the ability of candidate
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control factor settings to improve on the Pareto Set and Pareto Front of the current data. A

calibrated predictor that combines manufacturing process observations and simulator runs is

used to estimate the mean of the manufacturing process. The methodology can be used in

any other setting where there are conflicting outputs for which Pareto optimization provides

meaningful solutions.

In general the points added by the sequential design will not be space filling over the entire

input region because the Pareto Set is the target rather than good overall prediction. However,

the added points will typically be space filling over the region around the Pareto Set. This can

be seen in the two studies of analytic functions presented in Section 6; the spread of added

points across the Pareto Set for the first example is apparent in the left hand panel of Figure 12

and, to a lesser extent, in the left hand panel of Figure 13 for the second example. For the

injection molding experiment, the location of the true Pareto Set is unknown, but the ten

sequentially added points are clustered around the estimated Pareto Set identified in the last

three lines of Table 4.

While the computational budget in this application prevented additional simulator runs

from being made, a further small improvement in the Pareto Set and Front may still be

possible. One candidate strategy to find improvement is as follows. The predictor based on

the data collected after the sequentially added observations could be used to search in a grid

around the current approximate Pareto Set. Table 4 suggests searching the hyper-rectangle

bounded by 200 ≤ Tmelt ≤ 208, 22 ≤ tpack ≤ 28, 42 ≤ Ppack ≤ 44, and 43 ≤ tcool ≤ 44. Of

course, validation runs should also be run when relying on the calibrated predictor.

Additional physical observations are likely to help improve the calibration. In this study,

the limited availability of experimental material prevented this option.

Viewed as a frequentist model (by omitting priors), the likelihood portion of the Kennedy

and O’Hagan (2001) (KOH) calibration model need not be identifiable as pointed out by Wynn

(2001) in his discussion of KOH. Even with the Bayesian addition of priors, the KOH model

can also be non-identifiable, see Gramacy et al. (2015); Tuo and Wu (2015); Plumlee (2017).

For example, non-identifiability would be indicated when there are multiple posterior modes

for the calibration parameters that provide comparable explanations of a given data set.

Priors for the simulator output, ys(x, t), can be determined using the techniques described
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in Oakley (2002). However, forming priors for the calibration parameters and the bias function

is more difficult. The usual advice is to rely on expert opinion and experience with similar data

to suggest, marginally, priors for the values of the calibration parameters and the magnitude

and shape of the bias function. However, the calibration parameters and the bias function

are correlated: a large adjustment in the value of the calibration parameters may allow for a

smaller bias. Relying on expert knowledge to formulate priors for calibration parameters may

not lead to correct inference because the simulator is an approximation to the physical reality

and thus the calibration parameters may perform a different role in the simulator mathematics

than in the physical system. For this reason several recent papers (e.g., Tuo and Wu, 2015;

Plumlee, 2017) have advocated selecting the value of the calibration parameters mathematically

to minimize a specified deviation metric that measures the difference between mean of the

physical system and the simulator. Because the bias function depends on the selected value of

the calibration parameters, Plumlee (2017) suggests choosing the prior distribution of the bias

to depend on the calibration parameters in such a way that the draws of the bias function are

stochastically orthogonal to the gradient of the deviation metric evaluated at the calibration

parameters.

The initial design of each of the examples in Section 6 used two independent maximin

LHDs: one for the physical observations and another for the simulator runs. Similarly, two

independent initial designs were used for the physical and simulator experiments in the in-

jection molding optimization study. In terms of prediction of outputs over the entire surface,

a different pair of initial designs might possibly perform better. For example, Kennedy and

O’Hagan (2001) suggested that at least some parts of the design for the computer simulator

should be “close” to the physical design points in order to better estimate the simulator bias.

A specific implementation of this concept is given in Leatherman et al. (2017) who proposed

use of maximin augmented nested Latin hypercube designs (MmANLHD) for combined phys-

ical/simulator experiments, and provided an algorithm for their construction. Such designs

build on the notion of nested Latin hypercube designs discussed in Qian (2009) and Rennen et

al. (2010) but allow different numbers of facors for the two designs as would be needed in the

case of a physical experiment having only control factors and a simulator which also requires

calibration parameter settings. Leatherman et al. (2017) showed that, for prediction over the
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test surfaces studied, the MmANLHD performed well, as did designs that were composed of

a maximin Latin hypercube design for the simulator experiment coupled with an I-optimal

design for the physical experiment. The performance of linked designs for the objective of

predicting the Pareto Front, as in this paper, has not yet been studied

Lastly, we note that many multi-factor physical experiments are not able to be run using

a completely randomized design but involve blocking and randomization restrictions. For

example, in the physical experiment for the injection molding study of this paper, we could

only do a restricted randomization of the control factor settings due to the nature of the

manufacturing equipment and the length of time it took to heat up the mold to equilibrium

and to cool it down again. To help overcome any biases, the order of observation of control

factor settings was arranged so as to be trend free across days and during the day so that the

estimated effects of the control factor settings would be free of any day or time effects. An

open area of research is how to design efficient sequential update rules that account for such

complicated physical models when the goal is Pareto optimization.
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Villarreal-Marroqúın, M., Chen, P.-H., Mulyana, R., Santner, T. J., Dean, A. M. and Castro,

J. M. (2017). “Multiobjective Optimization of Injection Molding Using a Calibrated Pre-

dictor Based on Physical and Simulated Data”. Polymer Engineering and Science 57, pp.

248–257.

Williams, B., Higdon, D., Gattiker, J., Moore, L., McKay, M., Keller-McNulty, S. et al. (2006).

“Combining Experimental Data and Computer Simulations, with an Application to Flyer

Plate Experiments”. Bayesian Analysis 1, pp. 765–792.

Wilson, B., Cappelleri, D., Simpson, T. W. and Frecker, M. (2001). “Effect Pareto Frontier

Exploration Using Surrogate Approximations”. Optimization and Engineering 2, pp. 31–50.

Wynn, H. P. (2001). “Discussion of Bayesian Calibration of Computer Models by M. C.

Kennedy and A. O’Hagan”. Journal of the Royal Statistical Society B 63, pp. 450–451.

Zitzler, E. and Thiele, L. (1999). “Multiobjetive Optimization using Evolutionary Algorithms

- A Comparative Case Study”. Evolutionary Computation, IEEE Transactions on 3, pp.

251–271.

33


	Introduction
	Injection Molding Shrinkage Optimization
	Control Factors and Responses
	Design of the Physical Experiment
	Design of the Initial Simulator Experiment

	The Simulator Model and its Calibration
	Pareto Minimization
	Definition of Pareto Front and Set
	Hypervolume Indicator of Pareto Minimization
	A Sequential Pareto Minimization Procedure

	Optimizing the Injection Molding Process
	Properties of the Sequential Pareto Minimization Procedure
	Accuracy of the Approximate Pareto Set and Front
	MOP2 Function
	DTLZ2 Function
	The Hypervolume Indicator

	Allocation of Simulator Runs

	Summary and Discussion

