Biometrika (2009), 96, 3, pp. 663—676 doi: 10.1093/biomet/asp028
© 2009 Biometrika Trust Advance Access publication 30 June 2009
Printed in Great Britain

Gaussian process emulation of dynamic computer codes

By S. CONTI

Centre for Infections, Health Protection Agency, 61 Colindale Ave., London, NW9 5SEQ, UK.
stefano.conti@hpa.org.uk

J. P. GOSLING

Central Science Laboratory, Department for Environment, Food and Rural Affairs,
Sand Hutton, York, YO41 1LZ, UK.

jp-gosling@csl.gov.uk

J.E. OAKLEY AnND A. O'HAGAN

Department of Probability and Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
j-oakley@sheffield.ac.uk a.ohagan@sheffield.ac.uk

SUMMARY

Computer codes are used in scientific research to study and predict the behaviour of complex
systems. Their run times often make uncertainty and sensitivity analyses impractical because
of the thousands of runs that are conventionally required, so efficient techniques have been
developed based on a statistical representation of the code. The approach is less straightforward
for dynamic codes, which represent time-evolving systems. We develop a novel iterative system
to build a statistical model of dynamic computer codes, which is demonstrated on a rainfall-runoff
simulator.

Some key words: Bayesian inference; Computer experiment; Dynamic simulator; Emulation; Gaussian process;
Iterative modelling.

1. INTRODUCTION

Complex computer codes are used to make predictions about real-world systems in many fields
of science and technology. We refer to such a computer code as a simulator. We can represent
the simulator in the form of a function y = f(x), and a run of the simulator is defined to be the
process of producing one set of outputs y for one particular input configuration x. Throughout
this paper, we assume that the simulator is deterministic; that is, running the simulator for the
same x twice will yield the same y. The complexity of a simulator can become a problem when
it is necessary to make many runs for different x. For example, the simulator user may wish
to study the sensitivity of y to variations in x, which entails a large number of simulator runs.
In particular, standard Monte Carlo-based methods of sensitivity analysis require thousands of
simulator runs; these methods are extensively reviewed by Saltelli et al. (2000).

A two-stage approach based on emulation of the simulator’s output has been developed that
offers substantial efficiency gains over standard methods; see for example Sacks et al. (1989),
Kennedy & O’Hagan (2001) or O’Hagan (2006). An emulator is a statistical representation of
f(-) that is constructed using a training sample of simulator runs. Uncertainty and sensitivity

664 S. ConTl, J. P. GOSLING, J. E. OAKLEY AND A. O’HAGAN

analyses can then be tackled using the emulator as shown by Oakley & O’Hagan (2002, 2004).
The efficiency gains arise because it is usually possible to emulate the simulator output to a high
degree of precision using only a few hundred runs of the simulator.

Many simulators are dynamic: they operate iteratively over fixed time-steps to model a system
that is evolving over time. A single run of such a simulator generally consists of a simulation
over many time-steps, and we can think of it in terms of a simpler, single-step simulator being
run iteratively many times. The single-step simulator requires the current value of a state vector
as an input, and the updated value of the state vector becomes an output. It may have other
inputs that can be classified as model parameters and forcing inputs. Model parameters have fixed
values for all the time-steps of a simulator run. They describe either fundamental parameters
of the mathematical model or enduring characteristics of the system being simulated. Forcing
inputs vary from one time-step to the next and represent external influences on the system. At
time-step ¢, the simulator may be written in the form Y; = f(z;, Y;—1), where Y;_; is the state
vector at the previous time-step, z; = (x, w,) subsumes both the model parameters x and the
forcing inputs w; at time-step ¢, and the output of the simulator is the new state vector ¥;. We use
Y, rather than y, to differentiate between a state vector in the series of interest and a simulator
output from the training dataset.

Emulation techniques can be applied to dynamic simulators in two different ways. One approach
is to use existing methods to emulate a complete multi-step run of the simulator, while the other
is to emulate the simpler, single-step simulator and then to use the emulator iteratively. In this
paper, we develop the second of these strategies, which requires two distinct developments of
the existing methodology as described by Sacks et al. (1989) and in a yet unpublished paper by
Conti & O’Hagan. Emulation is used to take account of our uncertainty about the simulator.
This is usually considered secondary to the uncertainty in the simulator output caused by our
uncertainty about the inputs. The iterative nature of the emulator proposed in this paper allows
us to handle uncertainty in the time-varying forcing inputs that are usually taken as being known.

2. EMULATION OF COMPLEX SIMULATORS

In this section, we review the theory of emulation for multi-output simulators as presented in
a paper by Conti & O’Hagan. We consider a deterministic simulator that returns outputs y € R?
given inputs x from some input space X € R?. Although, in principle, the simulator is a known
function, so that y = f(x) can be determined for any x, the complexity of the simulator means
that before running the computer code y is unknown in practice. Therefore, we regard f(-) as an
unknown function, and we represent it by the ¢g-dimensional Gaussian process

SO 1B, X, R~ Ny {m(), c(-,)T} (1)

This implies that, for all x, E{f(x)|B,X,R}=m(x) and, for all x and x/,
cov{f(x), f(x")| B, Z, R} = c(x, x")Z, where c(-, -) is a correlation function having the prop-
erty that c(x, x) = 1 for every x. We assume a stationary, separable covariance structure, with
covariance between the outputs at any single input given by the matrix ¥ = [0;;/] and with c(-, -)
providing correlation across X'. We expect that the separable covariance function will serve well
in many situations even where outputs are not of a common type. This covariance function as-
sumes that, for a given input, all the outputs respond with a common length scale, and this is what
is generally perceived to be the weakness of separability. However, if, after subtracting the mean
functions m(-), the outputs are strongly correlated, then they must necessarily have very similar

Gaussian computer code emulation 665

length scales. If they are only weakly correlated, then they can have different length scales, but
we can use independent emulators in this case.

We model the mean and covariance functions in terms of further unknown hyperparameters B
and R by

m(x) = B'h(x), c(x,x") = exp{—(x —x')'R(x —x")}.)
Here h: X — R™ is a known vector of m regression functions %(x), ..., &, (x) shared by each
individual function f;(-) (j =1...,q), B =[Bi1, ..., By] € Ry 4 is a matrix of regression coef-

ficients,and R = diag{@fz} is a diagonal matrix of p positive length scale parameters. The length
scales are also called ranges by Cressie (1993) and correlation lengths by Santner et al. (2003). The
squared-inverses of the length scales are called roughness parameters by Kennedy & O’Hagan
(2001).

The selection of the prior mean structure should be driven by both experience and sim-
plicity; a linear specification 4(x) = (1, x)" has been found to be appropriate in most appli-
cations. The form of c(-,-) assumed in equation (2) implies that the f;(-) are smooth, in-
finitely differentiable functions. There are many possible correlation functions we could use
here, and we choose the squared-exponential form for its analytical tractability when we de-
velop an approximation for the dynamic emulator in §3-4. The squared-exponential has been
found to model the correlation in complex computer codes well; a recent example of this is in
Kennedy et al. (2008).

We start by running the computer code on a preselected design set S = {sy,...,s,} C X and
this yields outputs organized in the data matrix D = [f;(s,)] € R, 4. The set S is selected in
accordance with some space-filling design criterion. If p is large, then it will be expensive to
have a design set S that spans & effectively. Indeed, most of & will be an extrapolation from S.
However, if we use a good space-filling design, then most points in X" will lie close to a point
in § and the emulator should provide a good representation of our uncertainty about any point.
If we were interested in the function at a point far away from S, then 4(-) may require a more
complex structure to capture our beliefs about the simulator.

From (1) and (2), the joint distribution of the code output matrix D conditional on hyperpa-
rameters B, X and R is the matrix-normal distribution

D|B,%,R~N,,(HB, T® 4),

where H™ = [A(s1), ..., h(sn)], 4 = [c(sy, s7)] and ® denotes the Kronecker product operator.

Ifwelett™(-) = {c(-, s1), ..., c(-, s,)}, standard normal theory leads to the following conditional
posterior distribution for the simulator:
f() | sz,RvDNNq{m*(')’ C*("')E}’ (3)

where, for x;, x, € X,

m*(x1) = B"h(x1) + (D — HB)' A~ 't(x1), c*(x1,x2) = c(x1, x2) — t"(x1) 4~ ' 1(x2).

One way of obtaining the posterior process of f(-) conditional on R alone is through the
integration of (3) with respect to the posterior distribution of B and ¥. Since any substantial
information about such parameters will hardly ever be elicited from the code developers, the
conventional noninformative prior 7'(B, ¥ | R) o |=|~@+1/2 is selected. An alternative prior
distribution, which allows for expert judgement for B and X, is given by Rougier (2008).

666 S. ConTl, J. P. GOSLING, J. E. OAKLEY AND A. O’HAGAN
Combining the distribution in (3) and 7'(-) using Bayes’ theorem yields
SO TE, R, D~ Ng{m™ (), (-,)E},
m*™(x1) = B'h(x1) + (D — HB)" A~ '1(xy),
™ (x1, x2) = ¢ (xr, x2) + () — HT AT ()

(H" A7 H) Y {h(x2) — H" A7 1(x2)), (4)
with B = (H"A~'H)"'H" 4~' D. Provided now that n > m + ¢, so that the posterior is proper,
the conditional 7-process with n — m degrees of freedom,

SO R, D~ Tyfm*™ (), (.)¥5n — m}, &)

is obtained, in which & = (n — m)~"(D — HE’)TA_I(D — Hfi’). A full Monte Carlo Markov
chain strategy for removing the dependence on the unknown length scales in R is computationally
expensive. An alternative is to use posterior estimates of (61, ..., 6,). There are contrasting
opinions about using this plug-in strategy: Kennedy & O’Hagan (2001) found uncertainty about
R to be relatively unimportant, but Abt (1999) and an unpublished University of British Columbia
technical report by B. Nagy, J. L. Loeppky and W. J. Welch show that prediction uncertainty can
be underestimated when using a Gaussian correlation function. However, in our example of § 4,
we found no evidence of overconfidence.

3. EMULATION OF DYNAMIC SIMULATORS
3-1. lterative use of emulators

Dynamic simulators model the evolution of state variables over a number of time-steps. If
we are interested in the state variables or some transformation thereof after a fixed number of
time-steps, then ordinary emulation techniques will suffice. However, if we want to emulate the
behaviour of the simulator over a number of time-steps, we need a different formulation.

A run of the simulator over the time-steps 0 to 7" can be expressed iteratively in terms of the
single-step simulator:

Yr=fGr,Yr-1) = fler, fzr_y, Y1-2)}
== flzr, flzr-1, ..., f(z1, Yo)}]
= fD(x,z, Y),

where f(T)(.) represents the T-step simulator, which takes as its inputs the model parameters x,

the whole sequence z = (zy, . .., zr) of forcing inputs, and the initial state vector Y.
An emulator of f(7)(.) for given T can be constructed using the theory of § 2. This approach
of directly emulating the multi-step simulator to quantify our uncertainty about (Y, ..., Y7) has

two main disadvantages. First, the dimension of the corresponding input space becomes very
large because it must include the whole time sequence of forcing inputs. Second, the resulting
emulator is specific to a particular 7. We consider the iterative process explicitly: we emulate the
single-step simulator f(-) and use this to emulate f(7)(-) indirectly. The dimension of the input
space is then more manageable, and the emulator can be used for simulator runs of any length.

3.2, Exact emulation of dynamic simulators

The emulation of the single-step simulator f'(-) is straightforward. The challenge now is the
construction of an emulator of f(7)(-) from the emulator of £(-). This cannot be done analytically.

Gaussian computer code emulation 667

The joint distribution of Y; and Y, is no longer bivariate normal as in the standard emulation
case because of the dependency of Y, on Y;. In fact, there is potential for an emulator that is
considerably different from the standard because Y is a stochastic nonlinear function of Y;.

A simple brute-force approach is to use a Monte Carlo scheme, replacing f'(-) by its emulator
in the iterative scheme. In order to train the single-step emulator, we choose a set of well-spaced
points that covers the portion of input space of interest; that is, a set that covers the range of the
forcing inputs over the T steps and the areas to which we expect the state variables to move in the
T steps. We then update our beliefs about f(-) given the training data to arrive at the posterior
distribution given in (5).

Suppose that we know the initial values of the state variables Y and the forcing inputs for the
first time-step z;. A simulation technique is used where we draw a realization of Y1 = f(z1, Yo)
from the multivariate 7-distribution given in (5). We next draw a realization of Y, = f(z2, Y1),
but at this step the distribution should be conditional on f(z;, Yp) = Y;. In effect, this adds
f(z1, Yo) = Y7 as an extra training run and imposes the condition that, if the series revisits
the same set of state variables and forcing inputs, we will recover the same result we have
encountered previously. We proceed in this sequential manner by successively drawing each Y,
from the emulator constructed by adding the random realization of (Y1, ..., Y;_1) to the training
data D. By repeating this process many times, we draw a sample of values from the posterior
distribution of (Y, ..., Yr). Each time we add a simulated point to the training dataset, we update
the correlation matrix 4 and compute its inverse. In order to do this, we use the recursion formulae
of Strassen (1969) to compute the new inverse using the previous step’s inverse and some simple
matrix arithmetic. Our simulation scheme for obtaining a sample of Nyic series is set out below.

Step 1. Create design S of size n to span the space of interest, Z x).
Step 2. Evaluate f(-) at the n design points to obtain D.
Step 3. Estimate R for the posterior distribution of f(-) | D.

Step4. Set N =1andt = 1.

Step 5. Simulate f(z,, Y;—1) from the distribution of f(-) | D, R and store Yt(N).

Step 6. Ift =T,set N =N + 1.

Step 7. If t = T and N < Nwmc, go to Step 4 and reset S and D; otherwise stop.
Step 8. Add (z;, Yt(ivl)) to S and Y,(N) to D, sett =t 4+ 1 and go to Step 5.

New points added to the training dataset can be close to an existing point in S when we condition
during the simulation process. Hence, our uncertainty about the function at the new point may
be small. Using the emulator for the single-step function, we can calculate var{ f(z,+1, ¥7) |
D,R, Yy, ..., Yi1}. Ifvar{f(z/41, Y1) | D, R, Yo, ..., Y;—1} is small, we have little uncertainty
about the value of f'(z;1, 1;), and adding the point to the training dataset can cause the correlation
matrix 4 to become ill-conditioned. In this case, the point can be taken as being known and will
not be added to S.

If we find that we are still very uncertain about (Y, ..., Yr), we can use our posterior dis-
tribution for (Yy, ..., Yr) to select additional design points. First, we check that the predicted
state variable values fall within the area specified when we created the initial design. If the
series of state variables moves outside this area, we may add more training data to cover f(-)s
unexpected behaviour. We can use the posterior means for the state variables at each time-point

668 S. ConTl, J. P. GOSLING, J. E. OAKLEY AND A. O’HAGAN

along with their corresponding forcing inputs to create a set of points where we want to reduce
uncertainty.

3-3. Efficiency considerations

An alternative approach to our algorithm is reviewed by Bhattacharya (2007). It is possible
to simulate the single-step function over the region of interest using methods described by
Oakley & O’Hagan (2002). The idea is to draw from the posterior process given in equation (5)
on a grid of points. Once we have simulated the single-step function, we can use it iteratively to
determine one possible sequence {Y, ..., Yr}. An additional assumption used by Bhattacharya
(2007) is that the values of the state variables at previous time-steps are ignored; that is, p(¥Y7 |
D,D*, Yy,...,Yr_1) = p(Yr | D, D*), where D* is the set of points at which we sample the
function and the associated draws. If we repeatedly draw from the posterior process at D* and
D* is dense enough in the input space, we will obtain a Monte Carlo sample that is equivalent to
the sample we obtain from the method detailed in this section.

Both of these simulation methods can be thought of as drawing realizations of f(-) from the
posterior process. Consider obtaining the complete realization f(;)(-). We must sample from the
joint distribution of f(sy), f(s2), ..., where {s1, 52, ...} is the set of all possible input values.
In theory, this set is uncountably infinite; however, in practice it would be finite because of
limitations of computer storage. In Bhattacharya (2007), a fixed and relatively large subset of
{s1, 82, ...} is chosen. In our method, we sample each f(s) sequentially. Let G ; be the jth variable
simulated in obtaining the single realization f;)(-). If we prespecify that we will sample f'(s1), then
f(s2) | f(s1), and so on, then the marginal distribution of G ; will be the marginal distribution
of f(s;). Now suppose we randomly reorder the input values {si,s2,...} in the sequential
simulation to obtain (g, , Sk, . - -). This will change the joint distribution of Gy, G, ..., and we
may no longer be able to derive joint or marginal distributions of any G ;s analytically. However,
changing the order in which we do the sequential simulation has no effect on the joint distribution
of f(s1), f(s2), ..., and we can ignore the fact that the order of the inputs has been changed
when simulating f'(sg,), then f(sk,) | f(sk,), and so on. In the exact simulation approach, we are
randomly choosing the order of the inputs by setting the jth input to be the value of the (; — 1)th
simulated output. This ensures that the first 7 simulated outputs are precisely the 7 output values
of the realization f(;(-) needed to determine Y7, ..., Y7.

The main computational difference between the two methods is the selection of the points
at which we sample the single-step function. In Bhattacharya (2007), a grid of points at which
we are going to sample must be defined, and there may be a lot of redundancy in this set. In
our method, we select the points as we need them. The higher the dimensionality of the input
space, the more points will be needed to cover the space for the method of Bhattacharya (2007).
As we increase the size of the training dataset, we increase the effort required to construct a
single-step emulator: as 4 becomes a larger matrix, we require more computational time to
invert it.

If the single-step emulator for either method has been built from a sufficiently large training
dataset, the posterior uncertainty in the series of outputs will be small and the approaches
will provide an accurate emulation of (Y, ..., Y7). The question then arises of whether or not
iterating the single-step emulator in this way is more efficient than directly emulating the multi-
step simulator £(7)(-). To emulate a long simulator run accurately, it will be necessary to emulate
the single-step simulator to a high degree of accuracy. Thus, relatively large numbers of training
runs may be needed. However, these runs will be much faster than the full simulator runs as they
are over just a single step. Also, the two methods provide two alternative statistical representations
of the simulator output; hence, validation of the emulator is important.

Gaussian computer code emulation 669

Single-step emulation will generally be more efficient than multi-step emulation for dynamic
simulators, but implementing the Monte Carlo exact solution becomes a computationally intensive
process. There could even be the case that the single-step simulator is quicker to run than the
emulator. We develop an approximation that does not require the computational effort of a Monte
Carlo simulation.

3-4. Approximate emulation of dynamic simulators

To avoid the repeated use of the single-step emulator in a Monte Carlo scheme, we introduce
two approximations. To motivate the first approximation in the exact computation, if the training
dataset is large enough, a new point added to this set at each iteration should have negligible
effect. We would obtain essentially the same distribution for Y7 if we sampled each f(z;, Y;_1)
from its posterior distribution based only on the original training dataset. Accordingly, the first
approximation replaces p(Y; | D, R, Yy, ..., Y;—1) with p(¥; | D, R).

The second approximation is to set the distribution of Y, to be multivariate normal for all
t=1,...,T. Att = 1, the distribution is multivariate ¢, which will be very close to normal for
even a moderately large training dataset, but normality cannot hold for # > 1 unless f(-) is linear.
Nevertheless, again given a large enough training sample, uncertainty in any Y; should be small,
and it is reasonable to assume approximate linearity over a small part of the input space.

Subject to this condition, first- and second-order moments uniquely identify the posterior
distribution of f(z,+1, ¥;), given knowledge about the distribution of ¥; and the matrices ¥ and
R. Denote the posterior mean of Y; by u, and its variance matrix by V;. Using the assumption of
approximate normality, we have Y; | X, R ~ N, (u;, V;), and the recursion will derive equations
for w41 and V;4; in terms of their values at step ¢. Using these assumptions, we can show that

tis1 = BTE{h(zi11, Y) | DY 4+ (D — HB)Y' A7 E{t(z11, Y1) | D), (6)
Vier = var{m** (zi41. Y;) | D} + E[¢*{(zi11, Y). (41, Yo)} | D]E. (7)

The expectation and variance in (6) and (7) are given in the Appendix. Equations (6) and (7) are
conditional on ¥ and R; the removal of this conditioning is also described in the Appendix.

The computational speed of the approximation is much greater than that of the exact simulation
method or the method of Bhattacharya (2007). Only one set of matrix inversion calculations
needs to be performed to obtain results using the proposed approximation whereas thousands
are required for the Monte Carlo scheme within the exact simulation method. However, as this
is not an exact representation of our beliefs, we will find cases where our uncertainty about
the series is badly approximated and our posterior mean for (Y, ..., Y7) could be far from the
series produced by exact simulation. Validation of the single-step emulator is therefore of great
importance.

3.5. Uncertainty analysis of dynamic simulators

Uncertainty analysis that considers input uncertainty can be carried out using a simple Monte
Carlo scheme. We draw one set of inputs required to run the simulator from the inputs’ distribution.
We then use the approximation to the exact emulator to find our posterior mean and variance
for (Y1, ..., Yr) given these input values. We repeat this thousands of times to find the mean
and variance for (Y1, ..., Yr) given our uncertainty about the simulator and the inputs. This
is computationally expensive, but we have found that it yields results comparable to those of
uncertainty analysis in the standard emulation framework of Oakley & O’Hagan (2002) for just
a fraction of runs of the simulator’s single-step function. In § 4, this Monte Carlo scheme is put
to use and results are compared with the standard method.

670 S. ConTl, J. P. GOSLING, J. E. OAKLEY AND A. O’HAGAN

@ (b) (©
125 7-5 2.0 N
\\ /
100 15 ~J
75 .10
<’ <
50 05
25 0-0
0 50 -0-5
0 5 10 15 20 25 0 5 100 15 20 25 0

Fig. 1. Posterior 95% credible intervals (dashed) for 25 time-steps and the actual series (solid) based on 30 training
runs, for (a) A, (b) kg, and (c) A,

4. DYNAMIC RAINFALL-RUNOFF SIMULATOR

The simulator described by Kuczera et al. (2006) is a rainfall-runoff simulator that models
the interaction between three water-bearing pools near a river. The simulator has three state
variables; namely, volume of water in the soil /g, volume of water in the ground-water pool /4y,
and volume of water in the river 4, ; two forcing inputs, namely, rainfall at time #, RAIN(?), and
evapotranspiration potential at time ¢, PET(¢); and seven other model-parameter inputs that govern
the simulator’s differential equations. The state variables of the simulator are all of the same type:
they are all volumes of water-bearing compartments. Hence, the choice of covariance structure,
as given in (2), is appropriate for this simulator.

First, we consider code uncertainty in the simulator output, the three state variables over 25
time-steps. We will take the initial values as being known: /,(0) = 1, h4,,(0) = 7 and /,(0) = 1.
We also take the sequences of forcing inputs as being known. We begin by emulating the
single-step function of the rainfall-runoff simulator using 30 training runs of the simulator.
The input configurations for the initial runs are chosen using the maximin design strategy of
Morris & Mitchell (1995). This design strategy uses ranges of the inputs derived from the area
of the five-dimensional input space that we expect the simulator to cover. The following ranges
were used for the design: 4, € [0, 100], hg, € [5,9], 4, € [0, 2], RAIN € [0, 50] and PET € [3, 6].
The ranges for the state variables are selected on the basis of knowledge of the simulator and the
ranges for the forcing inputs are taken from the known sequences.

We now employ the exact simulation scheme of § 3-2 to emulate the three state variables over
25 time-steps. Figure 1 shows the results of this. It can be seen from Fig. 1 that we expect two
of the state variables to move outside the range specified for the initial design. Therefore, we add
20 extra training runs that target the unexplored areas of the state variable space; to be specific,
hs € [100, 125] and A, € [2, 2-5]. The results of the exact simulation scheme are then shown in
Fig. 2. The emulated series of state variables now mirror the real series very closely. However, we
have used 50 training runs of the single-step simulator to emulate one run of a 25-step simulator.

The potential of the emulator is shown in Figs 3 and 4. Figure 3 is the result of employing
the exact simulation scheme on nine different sets of initial values for %, and 4,. Also, we can
emulate the series over many more time-points. Figure 4 shows the results of emulating the state
variables over 250 time-steps using the same 50 training runs of the single-step function and 20
additional runs that were selected to allow for departures in the state vector.

Using a multi-output emulator to deal with the whole 250-step series would be computa-
tionally more demanding: we would have an output space of 750 dimensions. By breaking the
process down into single time-steps, we reduce the problem to a manageable size. However,

Gaussian computer code emulation 671

@

125
100
75
50
25

0 5 10 15 20 25 "0 5 10 15 20 25 ~o 5 10 15 20 25
t t t

Fig. 2. Posterior 95% credible intervals (dashed) for 25 time-steps and the actual series (solid) with 20 extra training
runs, for (a) Ay, (b) hgy and (c) A,.

hy(0)=0.5 hy(0) = 50 hy(0) =100
N
3 A AN
\ A \ I»\\ \ I\ / "\
24\ i\ I\ AR AW F
i PN AL N ARNALL W\ A3
\ NI AVENIAIA 1N AT
14 RN N A / y ~ I
N\ N ERN/AIRN N N NN e
N AN NN~ NVANNY/
0 N_ T —— \
_// w/\\\J/
34 N A ™ -
IQ\ A\ II/\\\\ I’\ N
- 27 [I’ \ N /;\ /] \\ N I// \ I/ \ :a
= | ~ | N\ / //\\ | \ 1\ / \V/ \\/\ 5
A AN N NN A Y -
N NG N S~ AN
0] \\N/ - ANy
34 N [\ [I\
N A Mo s
2- P N r \ I\ =
i\ NNV ANANEAC
\ // I e J/ \ \ / 1
1 PRV / \\J/ Vi N “ e
. ,\\\ . ///f\\‘f \/ V\\\\ﬁ\\//) <‘\\;'\\\\\// n
] \\J\:__// /_/
T T T T T T T T T T T T
0 0 15 20 0 5 10 15 2 0 5 10 15 20

Fig. 3. Nine sets of posterior 95% credible intervals for 4, for 25 time-steps for different values of 4,(0)
and 4,(0).

the outer-product emulator of Rougier (2008) makes a high-dimensional multi-output emulator
computationally feasible.

We suppose now that we are uncertain about the initial values of the three state variables,
hg(0), hgy(0) and £,.(0), three of the most influential model parameters, x;, x, and x3 say, and
the sequences of the forcing inputs. The following independent distributions were given to the
uncertain state variables and model parameters:

hg(0) ~ N(0-4,0-01), hgy(0) ~ N(7-5,1), £(0) ~ N(0-145, 0-0005),
X1 ~ N(1-5,0-4), X2 ~ N(2,0-36), x3~ N(65,0-36).

672 S. ConTl, J. P. GOSLING, J. E. OAKLEY AND A. O’HAGAN

(b) (©)
20

1.5

10

g

0-5

w o A

0-0 [Vel ey} \ |
! Ve P Y 2y
_V ARl AN

W kA L N 0

— -0-5
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
t t t

Fig. 4. Posterior 95% credible intervals (dashed) for 250 time-steps and the actual series (solid) based on 70 training
runs, for (a) A, (b) gy, and (c) A,

Table 1. Comparison of uncertainty analysis results for the rainfall-runoff simulator
after 10 time-steps

Standard emulation Approximation
Mean Variance Mean Variance
h(10) 13.92 0-60 13.91 0-65
hgw(10) 6-23 0-81 6-23 0-80
h,(10) 0-010 0-005 0-010 0-007
Number of single-step evaluations 2000 200

For the forcing inputs, we take a known sequence and add noise; we used uniform noise over
[0, 0-25] for RAIN(?) and N(0, 0-0625) for PET(¢). These distributions do not represent anyone’s
beliefs and are simply for illustrative purposes. We are interested in our uncertainty about the state
variables over 10 time-steps caused by this input uncertainty and uncertainty about the simulator.
A simple uncertainty analysis can be performed through a Monte Carlo scheme: first, we draw
from the input distributions, then we apply the approximation of § 3-4 conditional on the drawn
values, and we repeat these two steps many times.

To emulate the single-step function well, we required 200 single-step training runs. We also
carried out an uncertainty analysis using standard emulation techniques where 200 training runs
over a 26-dimensional space were required to produce comparable emulator accuracy for the
simulator output after 10 time-steps. The 200 ten-step training runs in the standard emulation
case are equivalent to 2000 single-step training runs. The uncertainty analysis results for the two
approaches are given in Table 1, where the variance represents our uncertainty in the outputs
caused by our uncertainty about the inputs and the code. The two approaches yield similar results,
with the approximation to the dynamic emulator using a fraction of the single-step training runs.
In addition to the results given in Table 1, we also obtain the uncertainty analysis results for
all the intermediate time-steps and at subsequent time-steps of interest when using the dynamic
emulator; these are shown in Fig. 5.

5. DISCUSSION

In situations where running the simulator a modest number of times is so computationally
expensive that emulation through standard procedures is infeasible, the emulation techniques
developed in this paper can offer time savings as the single-step function does not need to be
evaluated so often. However, there can be a much greater cost when building an emulator based on
the single-step function. This cost is application-specific, and our methods will have the greatest
efficiency gains when employed on simulators that are slow to evaluate a single time-step.

Gaussian computer code emulation 673

(a) (b) (c)
150 10 - 3
7z [
I
100 fo S I 2 A
Py R - . | |
< ﬁr\\/ <0 7 = Ih \\/’/
50 /4‘ 61 e /N :‘// \
Z S~ P N
/_(::::/ 5 \\‘\\\\\\‘7<>_7’/// 0 ‘I::::::::,__,’/ N \\\7/// A
0 ! 4
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Fig. 5. Posterior 95% credible intervals (dashed) for 25 time-steps including uncertainty about the simulator inputs,
for (a) A, (b) hgy and (c) A,

Another benefit of using a single-step emulator is the potential to handle better any numerical
error in the simulator. If the simulator involves systems of differential equations, numerical
methods typically have to be used to evaluate the single-step function that can introduce numerical
error. If we are only running the code over a single time-step, this gives us an opportunity to
reduce or remove potential error by obtaining more accurate numerical solutions. However, this
may not be practicable if we are running the simulator over many time-steps.

The method that has been presented in this paper has the potential to help a user to under-
stand all the uncertainty surrounding a dynamic computer code. By reducing the simulator to
the single-step function that dictates how the state inside the model evolves, we have an op-
portunity to link the model to reality through potentially simpler expert judgements and data
assimilation at different time-points. This would be a shift from the current methods for dealing
with the model-to-reality discrepancy, which add on the discrepancy at a fixed time-point as set
out in Kennedy & O’Hagan (2001), to a scheme where the discrepancy is considered at every
time-step.

ACKNOWLEDGEMENT

The work in this paper is part of the activities of the Managing Uncertainty in Complex Models
project that is funded by a Research Councils UK grant. We thank Peter Reichert for providing the
details of the rainfall-runoff model analyzed in this paper. We would also like to thank Professor
D. M. Titterington and the anonymous referees for their helpful and stimulating comments on
earlier drafts of this paper.

APPENDIX
Calculation of the approximation to exact emulation

We use the theory of § 2 to emulate the single-step simulator f(-), but the p-dimensional argument x
of this function is partitioned into the (p — ¢)-dimensional z and the g-dimensional y. We partition each
of the training-set input vectors s, into the first p — ¢ and last ¢ components by s; = (s, s;’). Similarly,
R’ = diag{(#")~2} and R” = diag{(6”)~?} are the upper-left (p — q) x (p — q) and the lower-right ¢ x ¢
submatrices of the diagonal matrix R.

The following result will be invoked for appropriate G € R, ,, g € R?, B e Ry, and b € R*:

E[(BY, + b)exp{—(Y, — g)' G(Y; — @] = [2V,G + I,I"*{B(2G + ¥V, ")) ' (2Gg + ¥ 'ju,) + b}
xexp{ — (i — 'V +G) (w — o).

674 S. ConTl, J. P. GOSLING, J. E. OAKLEY AND A. O’HAGAN

From (4), the equation for p,; is given by

i1 = E{f(zi41, Yo) | DY = E{m™(z,41, Y)) | D}
= B"E{h(z11,Y,) | DY+ (D — HBY' A" E{t(z;1, Y;) | D}.

(A1)

The first expectation in (Al) will depend on the form of %(-), but, when A(x)" = (l,xT), we have

E{h(zi11, Y1) | DY = (1, 2/, i;)- The second expectation is a vector that forr = 1,...,nis

E{ty(z+1. Y,) | D, R} = exp{—(z+1 — 5,)' R (z111 — s))}E[exp{—(Yt —5,)'R"(Y; — 5,)} | D]

= ViR + 1172 exp{—(zs1 — 5 R 2141 — 5)))
x expl—(u — 5@V, + R~ (s —).

The equation for ¥;; can be decomposed into two parts as

I/t+1 = Var{f(zt+1a)ft) | Ds Ra E}
= var{m™(zi11, Y) | D, R} + E[¢™{(zi41, Y1), (i1, YO} | D, R]Z,

again by the law of iterated expectations. The first term in (A3) is given by

var{m**(z,41, ;) | D, R} = B'var{h(z,41, Y:) | D}B
+ BTcovih(ziy1, Yi), t(zis1, Y;) | D, RYA™N(D — HB)
+(D — HB) A 'cov{t(z,41, Y)), h(z,141, Y,) | D, R}B

+ (D — HB) A 'var{t(z,41, Y;) | D, R}A~'(D — HB).

Now, in the case /(x)" = (1, x7), it follows that

coc o
Noo

0
var {h(ze41, ¥) | D} = | O
0
0

cov{t(zit1, Y1), h(zi41, Yo) | D, R} = (0 0 cov{ty(zi41, Y1), Yy | D, R}).

(A2)

(A3)

(A4)

Then the elements of the remaining terms required for the evaluation of (A4) are derived using (A2) and

the following two results. First, forr,/ =1, ..., n,
E{t(zi11, Y)ti(zi11, Y1) | D, R}
= exp{—(zi11 —)" R'(zs1 — 57) — o1 —)" R (241 — 57))
x E[exp{—(Y; —s)'R"(Y; —s5,) — (Y; —s/)'R"(Y; = 5/)} | D, R]
” -1/2 1 ” IINT DI (I ”
=[4V;R" + I,|”/“ exp —E(Sr —5/)'R(s) —s;)
x exp{—(zs41 — S,{)TR/(ZH-I - S,/) — (2141 — S;)TR/(ZtH - 31,)}

1 " 1 ! 1 n—1 - 1 ” ”
- MI_E(S;« +5 2VI+ER /"LI_E(S;‘—i_S[)

X exp

Gaussian computer code emulation 675
Then, for/ =1, ...,n,
E{ti(zi41, Y)Y, | D, R} = exp{—(z;41 — 5))" R (z111 — 5))}
x E[exp{—(Y; —s/)'R"(Y; —s/)} | D, R]
= 2V,R" + [q|_l/2 exp{—(zi+1 — SI/)TR/(ZrH - Sz/)}
x exp{—(ur — /) 2Vi + R")7 — 57}

QR+ V) RS 4 1).

Finally, some linear algebra manipulations allow us to compute the second summand in (A3) via

E[c™{(z+1, Y0), (zi41, YD)} | D, R]
=1 —-t[{4d"' — A" HH AT " H) " H" A" YE{t (241, Yt (241, Y1) | D, R}]
+ul(H A~ H) E(h(z, YRz, Yo) | DY
—2u[A" " H(H" A~ " H) ' E{h(z,41, Y)t" (21, Y,) | D, R}].

These results are conditional on the unknown parameters in ¥ and R. As in §2, we advocate
simply plugging in an estimate of R. A method of marginalizing with respect to ¥ is documented
below.

Marginalization with respect to the dispersion matrix X. The complicated way in which the dispersion
and length scale matrices ¥ and R enter formulae (A1) to (A3) precludes any closed-form marginal-
ization. The Student process given in (5) can be defined equivalently as follows: mix the distribution of
[/() | R, D] ~ Ny{m**(-), ¢**(-)X} with the density function of [X | R, D] ~ Wq_l{(n - m)f);n —m}
ormix [f(-) | £, R, D1~ N {m**(-), €¢**(-)D"GD},where G = A" — A" '"H(H'"A"'H} "H" 4™, with
an auxiliary random variable & ~ x,2,.

It becomes possible to marginalize X out of formulae (A1) to (A3) just by applying the law of iterated
expectations while conditioning on £ rather than on ¥. In practical terms, in the above derived formulae
the dispersion matrix X should be replaced by £ D"G D, and thereafter the auxiliary quantity £ can be
integrated out via some one-dimensional numerical techniques. For instance, we have

E{f(zi+1, Y) | R, D} = E[E{f(z+1,Y,) | £, R, D} | R, D]
= E[B"E{h(z;+1,Y,) | &, R, D} + (D — HB)'4™!
X E{I(th, YZ) | 57 Rv D} | Rv D]s

where, for example, E{t(z;,+1, ¥;) | £, R, D} = E{t(z;+1, V1) | £ =&D'GD, R, D}.
Marginalization with respect to the length scales. For simplicity, it is assumed that the length scales
are a priori independent of both B and X. Given the prior proposed in § 2 for (B, X), we have

(B, T, R) x mr(R)|Z|~+D/2,

with 7r(+) deliberately left unspecified. Use of this prior in combination with the matrix-normal likelihood
given in § 2 yields, via Bayes theorem, the full posterior for the hyperparameters,

7(B,%,R| D) x nr(R) | A |79? x© |~=mtatD/2

X exp <—;[tr(DTGDEl) +tr{(B— B)'H"A""H(B — é)zl}]> .

676 S. ConTl, J. P. GOSLING, J. E. OAKLEY AND A. O’HAGAN

We can integrate out the matrices B and X, and this yields the marginal posteriors
1
7(X,R | D) x mr(R)| 4 |*q/2 | H'A'H |*q/2 |z |*(n7m+q+1)/2 exp {—2tr(DTGD21)} ,

nR(R | D) o mr(R)| A |42 |H' AT H "> | D"GD |~""~™/2, (A5)

the latter being of direct interest for drawing inferences on the length scales. In our example of §4, we
found the mode of the distribution in (AS5) and used this estimate as our value for R. Characterizing the
smoothness of the code’s response surface by means of (AS) implies that input variables exhibit the same
degree of smoothness throughout the whole emulation. Although for many simulators this is arguably
realistic, accounting for time-dependent length scales would be computationally expensive.

REFERENCES

ABT, M. (1999). Estimating the prediction mean squared error in Gaussian stochastic processes with exponential
correlation structure. Scand. J. Statist. 26, 563-78.

BHATTACHARYA, S. (2007). A simulation approach to Bayesian emulation of complex dynamic computer models.
Bayesian Anal. 2, 783-816.

CRESSIE, N. A. (1993). Statistics for Spatial Data, rev. ed. New York: Wiley.

KENNEDY, M., ANDERSON, C., O’HAGAN, A., LoMAs, M., WOODWARD, F., GOSLING, J. & HEINEMEYER, A. (2008).
Quantifying uncertainty in the biospheric carbon flux for England and Wales. J. R. Statist. Soc. A 171, 109-35.

KENNEDY, M. & O’HAGAN, A. (2001). Bayesian calibration of computer models (with Discussion). J. R. Statist. Soc.
B 63, 425-64.

Kuczera, G., KAVETSKI, D., FRANKS, S. & THYER, M. (2006). Towards a Bayesian total error analysis of conceptual
rainfall-runoff models: characterising model error using storm-dependent parameters. J. Hydrol. 331, 161-77.

MORRIS, M. & MITCHELL, T. (1995). Exploratory designs for computer experiments. J. Statist. Plan. Infer. 43,381-402.

OAKLEY, J. & O’HAGAN, A. (2002). Bayesian inference for the uncertainty distribution of computer model outputs.
Biometrika 89, 769—84.

OAKLEY, J. E. & O’HAGAN, A. (2004). Probabilistic sensitivity analysis of complex models: a Bayesian approach.
J. R. Statist. Soc. B 66, 751-69.

O’HacaN, A. (2006). Bayesian analysis of computer code outputs: a tutorial. Reliab. Eng. Syst. Safety 91, 1290-300.

ROUGIER, J. (2008). Efficient emulators for multivariate deterministic functions. J. Comp. Graph. Statist. 17, 827-43.

SACKS, J., WELCH, W., MITCHELL, T. & WYNN, H. (1989). Design and analysis of computer experiments. Statist. Sci.
4, 409-23.

SALTELLI, A., CHAN, K. & ScorT, E. (Eds.) (2000). Sensitivity Analysis. New York: Wiley.

SANTNER, T., WILLIAMS, B. & Notz, W. (2003). The Design and Analysis of Computer Experiments. New York:
Springer.

STRASSEN, V. (1969). Gaussian elimination is not optimal. Numer. Math. 13, 354—6.

[Received June 2007. Revised November 2008]

	Introduction
	Emulation of complex simulators
	Emulation of dynamic simulators
	Iterative use of emulators
	Exact emulation of dynamic simulators
	Efficiency considerations
	Approximate emulation of dynamic simulators
	Uncertainty analysis of dynamic simulators

	Dynamic rainfall-runoff simulator
	Discussion

