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Abstract When setting up a computer experiment, it has
become a standard practice to select the inputs spread out
uniformly across the available space. These so-called space-
filling designs are now ubiquitous in corresponding publi-
cations and conferences. The statistical folklore is that such
designs have superior properties when it comes to predic-
tion and estimation of emulator functions. In this paper we
want to review the circumstances under which this superior-
ity holds, provide some new arguments and clarify the mo-
tives to go beyond space-filling. An overview over the state
of the art of space-filling is introducing and complementing
these results.

Keywords Kriging · Entropy · Design of experiments ·
Space-filling · Sphere packing · Maximin design · Minimax
design

1 Introduction

Computer simulation experiments (see, e.g., Santner et al.
2003; Fang et al. 2005; Kleijnen 2009) have now become a
popular substitute for real experiments when the latter are
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infeasible or too costly. In these experiments, a determinis-
tic computer code, the simulator, replaces the real (stochas-
tic) data generating process. This practice has generated a
wealth of statistical questions, such as how well the simu-
lator is able to mimic reality or which estimators are most
suitable to adequately represent a system.

However, the foremost issue presents itself even before
the experiment is started, namely how to determine the in-
puts for which the simulator is run? It has become standard
practice to select these inputs such as to cover the available
space as uniformly as possible, thus generating so called
space-filling experimental designs. Naturally, in dimensions
greater than one there are alternative ways to produce such
designs. We will therefore in Sects. 2 and 3 briefly review
the most common approaches to space-filling design, tak-
ing a purely model-free stance. We will then (Sect. 4) in-
vestigate how these designs can be motivated from a statis-
tical modelers point of view and relate them to each other
in a meaningful way. Eventually we will show that taking
statistical modeling seriously will lead us to designs that
go beyond space-filling (Sect. 5 and 6). Special attention is
devoted to Gaussian process models and kriging. The only
design objective considered corresponds to reproducing the
behavior of a computer code over a given domain for its in-
put variables. Some basic principles about algorithmic con-
structions are exposed in Sect. 7 and Sect. 8 briefly con-
cludes.

The present paper can be understood as a survey focus-
ing on the special role of space-filling designs and at the
same time providing new illuminative aspects. It intends to
bring the respective sections of Koehler and Owen (1996) up
to date and to provide a more statistical point of view than
Chen et al. (2006).

mailto:pronzato@i3s.unice.fr
mailto:werner.mueller@jku.at


682 Stat Comput (2012) 22:681–701

2 State of the art on space-filling design

2.1 Geometric criteria

There is little ambiguity on what constitutes a space-filling
design in one dimension. If we define an exact design ξ =
(x1, . . . , xn) as a collection of n points and consider a sec-
tion of the real line as the design space, say X = [0,1] af-
ter suitable renormalization, then, depending upon whether
we are willing to exploit the edges or not, we have either
xi = (i − 1)/(n − 1) or xi = (2i − 1)/(2n) respectively.

The distinction between those two basic cases comes
from the fact that one may consider distances only amongst
points in the design ξ or to all points in the set X. We can
carry over this notion to the less straightforward higher di-
mensional case d > 1, with now ξ = (x1, . . . ,xn). Initially
we need to define a proper norm ‖.‖ on X = [0,1]d , Eu-
clidean distances and normalization of the design space will
not impede generality for our purposes. We shall denote

dij = ‖xi − xj‖
the distance between the two design points xi and xj of ξ .
We shall not consider the case where there exist constraints
that make only a subset of [0,1]d admissible for design, see
for instance Stinstra et al. (2003) for possible remedies; the
construction of Latin hypercube designs (see Sect. 2.2) with
constraints is considered in Petelet et al. (2010).

Let us first seek for a design that wants to achieve a high
spread solely amongst its support points within the design
region. One must then attempt to make the smallest distance
between neighboring points in ξ as large as possible. That
is ensured by the maximin-distance criterion (to be maxi-
mized)

φMm(ξ) = min
i �=j

dij .

We call a design that maximizes φMm(·) a maximin-distance
design, see Johnson et al. (1990). An example is given in
Fig. 1 (left). This design can be motivated by setting up the
tables in a restaurant such that one wants to minimize the
chances to eavesdrop on another party’s dinner talk.

In other terms, one wishes to maximize the radius of n

non-intersecting balls with centers in X. When X is a d-
dimensional cube, this is equivalent to packing rigid spheres
in X, see Melissen (1997, p. 78). The literature on sphere
packing is rather abundant. In dimension d = 2, the best
known results up to n = 10,000 for finding the maximum
common radius of n circles which can be packed in a square
are presented on http://www.packomania.com/ (the example
on Fig. 1 (left) is taken from there, with φMm(ξ) � 0.5359,
indicating that the 7-point design in Johnson et al. (1990) is
not a maximin-distance design); one may refer to Gensane
(2004) for best-known results up to n = 32 for d = 3.

Fig. 1 Maximin (left, see http://www.packomania.com/ and minimax
(right, see Johnson et al. 1990) distance designs for n = 7 points in
[0,1]2. The circles have radius φMm(ξ)/2 on the left panel and radius
φmM(ξ) on the right one

Among the set of maximin-distance designs (when there
exist several), a maximin-optimal design ξ∗

Mm is such that
the number of pairs of points (xi ,xj ) at the distance dij =
φMm(ξ∗

Mm) is minimum (several such designs can exist, and
measures can be taken to remove draws, see Morris and
Mitchell (1995), but this is not important for our purpose).

Consider now designs ξ that attempt to make the maxi-
mum distance from all the points in X to their closest point
in ξ as small as possible. This is achieved by minimizing the
minimax-distance criterion

φmM(ξ) = max
x∈X

min
xi

‖x − xi‖ .

We call a design that minimizes φmM(·) a minimax-distance
design, see Johnson et al. (1990) and Fig. 1 (right) for an
example. (Note the slight confusion in terminology as it is
actually minimaximin.) These designs can be motivated by
a table allocation problem in a restaurant, such that a waiter
is as close as possible to a table wherever he is in the restau-
rant.

In other terms, one wishes to cover X with n balls of
minimum radius. Among the set of minimax-distance de-
signs (in case several exist), a minimax-optimal design ξ∗

mM

maximizes the minimum number of xi ’s such that mini ‖x−
xi‖ = φmM(ξ∗

mM) over all points x having this property.

2.2 Latin hypercubes

Note that pure space-filling designs such as ξ∗
mM and ξ∗

Mm

may have very poor projectional properties; that is, they
may be not space-filling on any of their meaningful sub-
spaces, see Fig. 1. The opposite is desirable for computer
experiments, particularly when some inputs are of no influ-
ence in the experiment, and this property was called non-
collapsingness by some authors (cf. Stinstra et al. 2003).
This requirement about projections is one of the reasons
that researches have started to restrict the search for designs
to the class of so-called Latin-hypercube (Lh) designs, see
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Fig. 2 Minimax-Lh and simultaneously maximin-Lh distance design
for n = 7 points in [0,1]2, see http://www.spacefillingdesigns.nl/. The
circles have radius φMm(ξ)/2 on the left panel and radius φmM(ξ) on
the right one

McKay et al. (1979), which have the property that any of
their one-dimensional projections yields the maximin dis-
tance sequence xi = (i − 1)/(n − 1). An additional advan-
tage is that since the generation of Lh-designs as a finite
class is computationally rather simple, it has become cus-
tomary to apply a secondary, e.g. space-filling, criterion to
them, sometimes by a mere brute-force enumeration as in
van Dam (2007). An example of minimax and simultane-
ously maximin Lh design is presented in Fig. 2 (note that
there is a slight inconsistency about minimax-Lh designs
in that they are maximin rather than minimax on their one-
dimensional projections).

Other distances than Euclidean could be considered;
when working within the class of Lh designs the situation
is easier with the L1 or L∞ norms than with the L2 norm, at
least for d = 2, see van Dam et al. (2007), van Dam (2007).
The class of Lh designs is finite but large. It contains (n!)d−1

different designs (not (n!)d since the order of the points is
arbitrary and the first coordinates can be fixed to {xi}1 =
(i − 1)/(n − 1)), and still (n!)d−1/(d − 1)! if we consider
designs as equivalent when they differ by a permutation of
coordinates. An exhaustive search is thus quickly prohibitive
even for moderate values of n and d . Most algorithmic meth-
ods are of the exchange type, see Sect. 7. In order to remain
in the class of Lh designs, one exchange-step corresponds
to swapping the j -th coordinates of two points, which gives
(d − 1)n(n− 1)/2 possibilities at each step (the first coordi-
nates being fixed). Another approach that takes projectional
properties into account but is not restricted to the class of
Lh designs will be presented in Sect. 3.3. Note that orig-
inally McKay et al. (1979) have introduced Lh designs as
random sampling procedures rather than candidates for pro-
viding fixed designs, those random designs being not guar-
anteed to have good space-filling properties. Tang (1993)
has introduced orthogonal-array-based Latin hypercubes to
improve projections on higher dimensional subspaces, the
space-filling properties of which were improved by Leary
et al. (2003). The usefulness of Lh designs in model-based

(as discussed in Sect. 4) examples was demonstrated in
Pebesma and Heuvelink (1999). The algorithmic construc-
tion of Lh designs that optimize a discrepancy criterion (see
Sect. 2.3) or an entropy based criterion (see Sect. 3.3) is
considered respectively in Iooss et al. (2010) and Jourdan
and Franco (2010); the algebraic construction of Lh designs
that minimize the integrated kriging variance for the particu-
lar correlation structure C(u,v;ν) = exp(−ν‖u − v‖1) (see
Sect. 4.1) is considered in Pistone and Vicario (2010).

2.3 Other approaches to space-filling

There appear a number of alternative approaches to space-
filling in the literature, most of which can be similarly dis-
tinguished by the stochastic nature of the inputs, i.e. whether
ξ is to be considered random or fixed.

For the latter, natural simple designs are regular grids.
Such designs are well suited for determining appropriate
model responses and for checking whether assumptions
about the errors are reasonably well satisfied. There seems
little by which to choose between e.g. a square grid or a tri-
angular grid; it is worth noting, however, that the former may
be slightly more convenient from a practical standpoint (eas-
ier input determination) but that the latter seems marginally
more efficient for purposes of model based prediction (cf.
Yfantis et al. 1987).

Bellhouse and Herzberg (1984) have compared optimum
designs and uniform grids (in a one-dimensional model
based setup) and they come to the conclusion that (depend-
ing upon the model) predictions for certain output regions
can actually be improved by regular grids. A comparison
in a multi-dimensional setup including correlations can be
found in Herzberg and Huda (1981).

For higher dimensional problems, Bates et al. (1996) rec-
ommend the use of (non-rectangular) lattices rather than
grids (they also reveal connections to model-based ap-
proaches). In the two-dimensional setup (on the unit square
[−1,1]2) the Fibonacci lattice (see Koehler and Owen 1996)
proved to be useful. The advantage of lattices is that their
projection on lower dimensions covers the design region
more or less uniformly. Adaptations to irregular design re-
gions may not be straightforward, but good enough approx-
imations will suffice. This is not the case for many other
systematic designs that are frequently proposed in the liter-
ature, such as central composite designs, the construction of
which relies on the symmetry of the design region.

It is evident that randomization can be helpful for mak-
ing designs more robust. On a finite grid X with N candidate
points we can think of randomization as drawing a single de-
sign ξ according to a pre-specified probability distribution
π(·). The uniform distribution then corresponds to simple
random sampling and more refined schemes (e.g., stratified
random sampling, see Fedorov and Hackl 1997), can be de-
vised by altering π(·). A comparison between deterministic

http://www.spacefillingdesigns.nl/
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selection and random sampling is hard to make, since for
a finite sample it is evident that for any single purpose it
is possible to find a deterministic design that outperforms
random sampling. Performance benchmarking for various
space-filling designs can be found in Johnson et al. (2008)
and Bursztyn and Steinberg (2006).

All of the methods presented above seem to ensure a rea-
sonable degree of overall coverage of the study area. How-
ever, there have been claims (see e.g. Fang and Wang 1993),
that the efficiency (with respect to coverage) of these meth-
ods may be poor when the number of design points is small.
To allow for comparisons between designs in the above re-
spect Fang (1980) (see also Fang et al. 2000) introduced
some formal criteria, amongst them the so-called discrep-
ancy

D(ξ) = max
x∈X

|Fn(x) − U(x)| . (1)

Here U(·) is the c.d.f. of the uniform distribution on X and
Fn(·) denotes the empirical c.d.f. for ξ . The discrepancy by
this definition is just the Kolmogorov-Smirnov test statis-
tic for the goodness-of-fit test for a uniform distribution.
Based upon this definition, Fang and Wang (1993) suggest to
find ‘optimum’ designs of given size n that minimize D(ξ),
which they term the U-criterion. For d = 1 and X = [0,1],
the minimax-optimal design ξ∗

mM with xi = (2i − 1)/(2n)

is optimal for (1), with D(ξ∗
mM) = 1/(2n). Note, however,

that D(ξ) ≥ 0.06 log(n)/n for any sequence of n points,
see Niederreiter (1992, p. 24). It turns out that for certain
choices of n lattice designs are U-optimum. Those lattice de-
signs are also D-optimum for some specific Fourier regres-
sions and this and other connections are explored by Ric-
comagno et al. (1997). An example in Santner et al. (2003,
Chap. 5) shows that the measure of uniformity expressed by
D(ξ) is not always in agreement with common intuition.

Niederreiter (1992) has used similar concepts for the
generation of so called low discrepancy sequences. Orig-
inately devised for the use in Quasi Monte Carlo sam-
pling, due to the Koksma-Hlawka inequality in numerical
integration, their elaborate versions, like Faure, Halton and
Sobol sequences, are increasingly used in computer exper-
iments (see, e.g., Fang and Li 2006). Santner et al. (2003,
Chap. 5) and Fang et al. (2005, Chap. 3) provide a good
overview of the various types of the above discussed de-
signs and their relations. Other norms than ‖·‖∞ can be
used in the definition of discrepancy, yielding Dp(ξ) =
(
∫
X

|Fn(x) − U(x)|p dx)1/p , and other types of discrepancy
(centered, wrap-around) may also be considered. Low dis-
crepancy sequences present the advantage that they can be
constructed sequentially (which is not the case for Lh de-
signs), although one should take care of the irregularity of
distributions, see Niederreiter (1992, Chap. 3) and Fang et
al. (2000) (a conjecture in number theory states that D(ξn) ≥

cd [log(n)]d−1/n for any sequence ξn with cd a constant de-
pending on d). It seems, however, that designs obtained by
optimizing a geometric space-filling criterion are preferable
for moderate values of n and that, for n large and d > 1,
the space-filling properties of designs corresponding to low-
discrepancy sequences may not be satisfactory (the points
presenting sometimes alignments along subspaces). Note
that Bischoff and Miller (2006) and related work reveal (in
the one-dimensional setup) relationships between uniform
designs and designs that reserve a portion of the observa-
tions for detecting lack-of-fit for various classical design cri-
teria.

2.4 Some properties of maximin and minimax optimal
designs

Notice that for any design ξ , X ⊂ ∪n
i=1B(xi , φmM(ξ)), with

B(x,R) the ball with center x and radius R. Therefore,
φmM(ξ) > [vol(X)/(nVd)]1/d = (nVd)−1/d , with Vd =
πd/2/�(d/2 + 1) the volume of the d-dimensional unit
ball. One may also notice that for any ξ , n ≥ 2, φmM(ξ) >

φMm(ξ)/2 since X cannot be covered with non-overlapping
balls. A sort of reverse inequality holds for maximin-optimal
designs. Indeed, take a maximin-optimal design ξ∗

Mm and
suppose that φmM(ξ∗

Mm) > φMm(ξ∗
Mm). It means that there

exists a x∗ ∈ X such that mini ‖x∗ − xi‖ > φMm(ξ∗
Mm). By

substituting x∗ for a xi in ξ∗
Mm such that dij = φMm(ξ∗

Mm)

for some j , one can then either increase the value of φMm(·),
or decrease the number of pairs of design points at distance
φMm(ξ∗

Mm), which contradicts the optimality of ξ∗
Mm. There-

fore, φmM(ξ∗
Mm) ≤ φMm(ξ∗

Mm).
Both φMm(ξ∗

Mm) and φmM(ξ∗
mM) are non-increasing

functions of n when X = [0,1]d (there may be equality
for different values of n, for instance, φMm(ξ∗

Mm) = √
2 for

n = 3,4 and d = 3, see Gensane 2004). This is no longer
true, however, when working in the class of Lh designs (see
e.g. van Dam 2007 who shows that φmM(ξ∗

mM) is larger for
n = 11 than for n = 12 when d = 2 for Lh designs).

The value of φMm(·) is easily computed for any design ξ ,
even when n and the dimension d get large, since we only
need to calculate distances between n(n−1)/2 points in R

d .
The evaluation of the criterion φmM(·) is more diffi-

cult, which explains why a discretization of X is often
used in the literature. It amounts at approximating φmM(ξ)

by φ̃mM,N(ξ) = maxx∈XN
mini ‖x − xi‖, with XN a fi-

nite grid of N points in X. Even so, the calculation of
φ̃mM,N(ξ) quickly becomes cumbersome when N increases
(and N should increase fast with d to have a fine enough
grid). It happens, however, that basic tools from com-
putational geometry permit to reduce the calculation of
maxx∈X mini ‖x − xi‖ to the evaluation of mini ‖zj − xi‖
for a finite collection of points zj ∈ X, provided that X is
the d-dimensional cube [0,1]d . This does not seem to be
much used and we detail the idea hereafter.
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Consider the Delaunay tessellation of the points of ξ , see,
e.g., Okabe et al. (1992), Boissonnat and Yvinec (1998).
Each simplex has its d+1 vertices at design points in the tes-
sellation and has the property that its circumscribed sphere
does not contain any design point in its interior. We shall
call those circumscribed spheres Delaunay spheres. When a
solution x∗ of the problem maxx∈X mini ‖x − xi‖ is in the
interior of [0,1]d , it must be the center of some Delaunay
sphere.

There a slight difficulty when x∗ is on the boundary of
X, since the tessellation directly constructed from the xi

does not suffice. However, x∗ is still the center of a Delau-
nay sphere if we construct the tessellation not only from the
points in ξ but also from their symmetric with respect to all
(d − 1)-dimensional faces of X, see Appendix A.

The Delaunay tessellation is thus constructed on a set of
(2d + 1)n points. (One may notice that X is not necessar-
ily included in the convex hull of these points for d ≥ 3, but
this is not an issue.) Once the tessellation is calculated, we
collect the radii of Delaunay spheres having their center in
X (boundary included); the value of φmM(ξ) is given by the
maximum of these radii (see Appendix A for the computa-
tion of the radius of the circumscribed sphere to a simplex).

Efficient algorithms exist for the computation of Delau-
nay tessellations, see Okabe et al. (1992), Boissonnat and
Yvinec (1998), Cignoni et al. (1998) and the references
therein, which make the computation of φmM(ξ) affordable
for reasonable values of d and n (the number of simplices
in the Delaunay tessellation of M points in dimension d

is bounded by O(M
d/2�)). Clearly, not all 2dn symmetric
points are useful in the construction, leaving open the possi-
bility to reduce the complexity of calculations by using less
than (2d + 1)n points.

Figure 3 presents the construction obtained for a 5-point
Latin-hypercube design in dimension 2: 33 triangles are con-
structed, 11 centers of circumscribed circles belong to X,
with some redundancy so that only 8 distinct points are
candidate for being solution of the maximization problem
maxx∈X mini ‖x−xi‖. The solution is at the origin and gives
φmM(ξ) = mini ‖xi‖ � 0.5590.

3 Model-free design

We continue for the moment to consider the situation when
we are not able, or do no want, to make an assumption about
a suitable model for the emulator. We investigate the proper-
ties of some geometric and other model-free design criteria
more closely and make connections between them.

3.1 Lq -regularization of the maximin-distance criterion

Following the approach in Appendix B, one can define regu-
larized forms of the maximin-distance criterion, valid when

Fig. 3 Delaunay triangulation for a 5-point Lh design (squares), the 8
candidate points for being solution of maxx∈X mini ‖x − xi‖ are indi-
cated by dots

q > 0 for any ξ such that φMm(ξ) > 0:

φ[q](ξ) =
[∑

i<j

d
−q
ij

]−1/q

,

φ[q](ξ) =
[∑

i<j

μij d
−q
ij

]−1/q

,

with μij > 0 for all i and
∑

i<j μij = 1, see (33), (34).

The criterion φ[q](·) satisfies φ[q](ξ) ≤ φMm(ξ) ≤ φ[q](ξ) ≤
μ−1/q φ[q](ξ) , q > 0 , with μ = mini<j μij , and the con-

vergence to φMm(ξ) is monotonic in q from both sides as
q → ∞. Taking μ as the uniform measure, i.e., μij = μ =
(
n
2

)−1 for all i < j , gives φ[q](·) = μ−1/q φ[q](·) and

φ[q](ξ) ≤ φMm(ξ) ≤
(

n

2

)1/q

φ[q](ξ) . (2)

It also yields the best lower bound on the maximin efficiency
of an optimal design ξ∗

[q] for φ[q](·),

φMm(ξ∗
[q])

φMm(ξ∗
Mm)

≥
(

n

2

)−1/q

, (3)

where ξ∗
Mm denotes any maximin-distance design, see Ap-

pendix B. One may define φ[0](ξ) as

φ[0](ξ) = exp

{(
n

2

)−1 [∑

i<j

log(dij )

]}

(4)
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and φ[2](·) corresponds to a criterion initially proposed by
Audze and Eglais (1977). Morris and Mitchell (1995) use
φ[q](·) with different values of q and make the observation

that for moderate values of q (say, q � 5) the criterion is
easier to optimize than φMm(·) in the class of Lh designs.
They also note that, depending on the problem, one needs
to take q in the range 20–50 to make the two criteria φ[q](·)
and φMm(·) agree about the designs considered best. Their
observation is consistent with the efficiency bounds given
above. According to the inequality (3), to ensure that the
maximin efficiency of an optimal design for φ[q](·) is larger

than 1 − ε one should take approximately q > 2 log(n)/ε

(independently of the dimension d). Note that the use of
φ[q](ξ) = [∑i �=j d

−q
ij ]−1/q would worsen the maximin ef-

ficiency bounds by a factor 2−1/q < 1 (but leaves φ[q](·)
unchanged when the uniform measure μij = [n(n − 1)]−1

is used).
We may alternatively write φMm(ξ) as

φMm(ξ) = min
i

d∗
i , (5)

where d∗
i = minj �=i dij denotes the nearest-neighbor (NN)

distance from xi to another design point in ξ . Following the
same technique as above, a Lq -regularization applied to the
min function in (5) then gives

φ[NN,q](ξ) ≤ φMm(ξ) ≤ n1/q φ[NN,q](ξ) = φ[NN,q](ξ) (6)

with

φ[NN,q](ξ) =
[

n∑

i=1

(d∗
i )−q

]−1/q

. (7)

The reason for not constructing φ[NN,q](ξ) from the decom-

position φMm(ξ) = mini minj>i dij is that the resulting cri-
terion [∑n

i=1(minj>i dij )
−q ]−1/q depends on the ordering

of the design points. One may also define φ[NN,0](ξ) as

φ[NN,0](ξ) = exp

{
1

n

[
n∑

i=1

log(d∗
i )

]}

, (8)

see Appendix B. One can readily check that using the gen-
eralization (36) with φ(t) = log(t) and q = −1 also gives
φ[NN,−1,log](ξ) = φ[NN,0](ξ). Not surprisingly, φ[NN,q](·)
gives a better approximation of φMm(·) than φ[q](ξ): an op-

timal design ξ∗
[NN,q] for φ[NN,q](·) satisfies

φMm(ξ∗
[NN,q])

φMm(ξ∗
Mm)

≥ n−1/q

which is larger than 1− ε when q > log(n)/ε, compare with
(3). Exploiting the property that, for a given i,

(∑

j �=i

d
−q
ij

)−1/q

≤ d∗
i ≤ (n − 1)1/q

(∑

j �=i

d
−q
ij

)−1/q

,

see (35), we obtain that

2−1/q φ[q](ξ) ≤ φ[NN,q](ξ) ≤ φMm(ξ)

φMm(ξ) ≤ n1/q φ[NN,q](ξ) ≤
(

n

2

)1/q

φ[q](ξ) .

Note that the upper bounds on φMm(·) are sharp (think of a
design with n = d +1 points, all at equal distance from each
other, i.e., such that dij = d∗

i is constant).
Figure 4 presents the bounds (2) (dashed lines, top) and

(6) (dashed lines, bottom) on the value φMm(ξ) (solid line)
for the 7-point maximin-distance design of Fig. 1 (left). No-
tice the accuracy of the upper bound n1/q φ[NN,q](ξ) (note
the different scales between the top and bottom panels); the
situation is similar for other maximin-distance designs since
d∗
i = φMm(ξ∗

Mm) for many i.
Oler (1961) indicates that for d = 2 φMm(ξ∗

Mm) ≤
[1 +

√
1 + 2 (n − 1) /

√
3]/(n − 1). The equivalence with

sphere-packing gives φMm(ξ∗
Mm) < [(nVd)1/d/2 − 1]−1

with Vd the volume of the d-dimensional unit ball; this
bound becomes quite loose for large d and can be im-
proved by using results on packing densities of densest
known packings (which may be irregular for some d > 3),
yielding φMm(ξ∗

Mm) ≤ (31/4√n/2 − 1)−1 for d = 2 and
φMm(ξ∗

Mm) ≤ [(n/
√

2)1/3 − 1)−1 for d = 3. Bounds for
maximin Lh designs in dimension d can be found in van
Dam et al. (2009).

3.2 Lq -regularization of the minimax-distance criterion

The same type of relaxation can be applied to the criterion
φmM(ξ). First, φ(x) = minxi

‖x − xi‖ is approximated by
φq(x) = (

∑
i ‖x − xi‖−q)−1/q with q > 0. Second, when

X is discretized into a finite grid XN = {x(1), . . . ,x(N)},
maxx∈XN

φq(x) = [minx∈XN
φ−1

q (x)]−1 can be approxi-

mated by [∑N
j=1 φ

p
q (x(j))]1/p with p > 0. This gives the

following substitute for φmM(ξ),

φ[p,q](ξ) =
{

N∑

j=1

[
n∑

i=1

‖x(j) − xi‖−q

]−p/q}1/p

with p,q > 0, see Royle and Nychka (1998). Note that the
xi are usually elements of XN . When X is not discretized,
the sum over x(j) ∈ XN should be replaced by an integral
over X, which makes the evaluation of φ[p,q](ξ) rather cum-
bersome.
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Fig. 4 Upper and lower bounds (dashed lines) on the value φMm(ξ)

for the 7-point maximin-distance design of Fig. 1 (left): (2) on the top,
(6) on the bottom; the value of φMm(ξ) is indicated by a solid line,
φ[0](ξ) (4) and φ[NN,0](ξ) (8) are in dotted lines, respectively on the
top and bottom panels

3.3 From maximin-distance to entropy maximization

Suppose that the n points xi in ξ form n i.i.d. samples of
a probability measure with density ϕ with respect to the
Lebesgue measure on X. A natural statistical approach to
measure of the quality of ξ in terms of its space-filling prop-
erties is to compare it in some way with samples from the
uniform measure on X. Using discrepancy is a possibility,
see Sect. 2.3. Another one relies on the property that the
uniform distribution has maximum entropy among all distri-
butions with finite support. This is the approach followed in
this section.

The Rényi (1961) entropy of a random vector of R
d hav-

ing the p.d.f. ϕ (that we shall call the Rényi entropy of ϕ) is

defined by

H ∗
α (ϕ) = 1

1 − α
log

∫

Rd

ϕα(x) dx , α �= 1 . (9)

The Havrda–Charvát (1967) entropy (also called Tsallis
1988 entropy) of ϕ is defined by

Hα(ϕ) = 1

α − 1

(

1 −
∫

Rd

ϕα(x) dx
)

, α �= 1 . (10)

When α tends to 1, both Hα and H ∗
α tend to the (Boltzmann-

Gibbs-) Shannon entropy

H1(ϕ) = −
∫

Rd

ϕ(x) log[ϕ(x)]dx . (11)

Note that H ∗
α = log[1 − (α − 1)Hα]/(1 −α) so that, for any

α, d(H ∗
α )/d(Hα) > 0 and the maximizations of H ∗

α and Hα

are equivalent; we can thus speak indifferently of α-entropy
maximizing distributions.

The entropy Hα is a concave function of the density ϕ

for α > 0 (and convex for α < 0). Hence, α-entropy max-
imizing distributions, under some specific constraints, are
uniquely defined for α > 0. In particular, the α-entropy max-
imizing distribution is uniform under the constraint that the
distribution is finitely supported. The idea, suggested by
Franco (2008), is thus to construct an estimator of the en-
tropy of the design points xi in ξ , considering them as if in-
dependently drawn with some probability distribution, and
use this entropy estimator as a design criterion to be maxi-
mized. Note that this use of entropy (for a distribution in the
space of input factors) is not directly connected Maximum-
Entropy Sampling of Sect. 4.3 (for a distribution in the space
of responses).

Many methods exist for the estimation of the entropy
of a distribution from i.i.d. samples, and one may refer
for instance to the survey papers (Hall and Morton 1993;
Beirlant et al. 1997) for an overview. We shall consider
three, because they have either already been used in the con-
text of experimental design or are directly connected with
other space-filling criteria. In a fourth paragraph, entropy de-
composition is used to avoid the collapsing of design points
when considering lower dimensional subspaces.

Plug-in method based on kernel density estimation The
approach is in two steps. First, one construct an estimator
of the p.d.f. ϕ by a kernel method as

ϕ̂n(x) = 1

nhd
n

n∑

i=1

K

(
x − xi

hn

)

, (12)

where K(·) denotes the kernel and hn the window width.
The choices of K(·) and hn are important issues when the
objective is to obtain an accurate estimation of ϕ and there
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exists a vast literature on that topic. However, this should not
be too critical here since we only need to get an entropy esti-
mator that yields a reasonable space-filling criterion. A com-
mon practice in density estimation is to take hn decreasing
with n, e.g. as n−1/(d+4), see Scott (1992, p. 152), and to
use a p.d.f. for K(·), e.g. that of the standard normal distri-
bution in R

d . A kernel with bounded support could be more
indicated since X is bounded, but the choice of the window
width might then gain importance. When a kernel-based pre-
diction method is to be used, it seems natural to relate K(·)
and hn to the kernel used for prediction (to the correlation
function in the case of kriging); this will be considered in
Sect. 4.3.

In a second step, the entropy H ∗
α or Hα is estimated by

replacing the unknown ϕ by the estimate ϕ̂n in the defini-
tion. In order to avoid the evaluation of multidimensional
integrals, a Monte-Carlo estimator can be used, namely
Ĥ n

1 = −∑n
i=1 log[ϕ̂n(xi )] for Shannon entropy, and

Ĥ n
α = 1

α − 1

[

1 −
n∑

i=1

ϕ̂α−1
n (xi )

]

(13)

for Hα with α �= 1. A surprising result about normal den-
sities is that when K(·) is the p.d.f. of the normal N (0, I),
then

∫

Rd

ϕ̂2
n(x) dx = 1

2dπd/2n2hd
n

∑

i,j

exp

[

−‖xi − xj‖2

4h2
n

]

;

that is, a Monte-Carlo evaluation gives the exact value of the
integral in (9, 10) for ϕ = ϕ̂n when α = 2. This is exploited
in Bettinger et al. (2008, 2009) for the sequential construc-
tion of an experiment with the objective of inverting an un-
known system.

Nearest-neighbor (NN) distances The following estimator
of Hα(ϕ) is considered in Leonenko et al. (2008)

Ĥn,k,α = 1 − [(n−1)Ck Vd ]1−α

n

∑n
i=1 (d∗

k,i )
d(1−α)

α − 1
, (14)

where Vd = πd/2/�(d/2 + 1) is the volume of the unit ball
B(0,1) in R

d , Ck = [�(k)/�(k + 1 − α)]1/(1−α) and d∗
k,i

is the k-th nearest-neighbor distance from xi to some other
xj in the sample (that is, from the n− 1 distances dij , j �= i,
we form the order statistics d∗

1,i = d∗
i ≤ d∗

2,i ≤ · · · ≤ d∗
n−1,i ).

The L2-consistency of this estimator is proved in Leonenko
et al. (2008) for any α ∈ (1, (k + 1)/2) when k ≥ 2 (respec-
tively α ∈ (1,1 + 1/[2d]) when k = 1) if f is bounded. For
α < 1, one may refer to Penrose and Yukich (2011) for the
a.s. and L2 convergence of Ĥn,k,α to Hα(ϕ); see also the
results of Yukich (1998) on the subadditivity of Euclidean
functionals.

For α = 1 (Shannon entropy), the following estimator is
considered in Kozachenko and Leonenko (1987), Leonenko
et al. (2008)

Ĥn,k,1 = d

n

n∑

i=1

logd∗
k,i + log(n − 1) + log(Vd) − Ψ (k) ,

where Ψ (z) = �′(z)/�(z) is the digamma function.
Maximizing Ĥn,1,α for α > 1 thus corresponds to maxi-

mizing φ[NN,q](ξ) with q = d(α−1), see (7). For 1−1/d ≤
α ≤ 1, the criterion Ĥn,1,α , is still eligible for space-filling,
its maximization is equivalent to that of φ[NN,q](ξ) with

q ∈ [−1,0]; for instance, the maximization of ĤN,1,1 is
equivalent to the maximization of φ[NN,0](ξ), see (8).

Several comments should be made, however, that will
temper the feeling that Lq -regularization of maximin-
distance design and maximization of NN-estimates of en-
tropy are equivalent.

First, these estimators rely on the assumption that the xi

are i.i.d. with some p.d.f. ϕ. However, optimizing the loca-
tions of points with respect to some design criterion makes
the corresponding sample completely atypical. The associ-
ated value of the estimator is therefore atypical too. Consider
for instance the maximin-distance design ξ∗

Mm on [0,1], de-
fined by xi = (i − 1)/(n − 1), i = 1, . . . , n. Direct calcu-
lation gives Ĥn,1,α(ξ∗

Mm) = [1 − 21−α/�(2 − α)]/(α − 1),
which is greater than 1 for 0 < α < 2, with a maximum
γ + log(2) � 1.2704 when α tends to 1. On the other hand,
the maximum value of H(ϕ) for ϕ a p.d.f. on [0,1] is ob-
tained for the uniform distribution ϕ∗(x) = 1 for all x, with
H(ϕ∗) = 0.

Second, even if the design points in ξ are generated ran-
domly, using k-th NN distances with k > 1 does not make
much sense in terms of measuring the space-filling perfor-
mance. Indeed, when using Ĥn,k,α with k > 1, a design ob-
tained by fusing sets of k points will show a higher entropy
than a design with all points separated. This is illustrated by
the simple example of a maximin-distance design on the real
line. For the design ξ∗

Mm with n points we have

Ĥn,2,α(ξ∗
Mm) = 1 − 21−α

�(3−α)
[1 + 2(21−α−1)

n
]

α − 1
.

Suppose that n = 2m and consider the design ξ̃∗
Mm obtained

by duplicating the maximin-distance design with m points;
that is, xi = (i − 1)/(m − 1), i = 1, . . . ,m, and xi = (i −
m − 1)/(m − 1), i = m + 1, . . . ,2m. We get

Ĥn,2,α(ξ̃∗
Mm) = 1 − 21−α

�(3−α)
[2 + 1

m−1 ]1−α

α − 1

and Ĥn,2,α(ξ̃∗
Mm) > Ĥn,2,α(ξ∗

Mm) for α ∈ (0,3). We should
thus restrict our attention to Ĥn,k,α with k = 1. The range of
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values of α for which the strong consistency of the estima-
tor is ensured is then restricted to α < 1 + 1/[2d]. Strictly
speaking, it means that the maximization of φ[NN,q](ξ) can
be considered as the maximization of a NN entropy estima-
tor for q < 1/2 only.

Minimum-spanning-tree Redmond and Yukich (1996),
Yukich (1998) use the subadditivity of some Euclidean func-
tionals on graphs to construct strongly consistent estimators
of H ∗

α (ϕ) (9) for 0 < q < 1, up to some bias term indepen-
dent of ϕ and related to the graph properties. Their approach
covers the case of the graph of k-th NN (where the bias con-
stant depends on the value of k through Ck , see (14)), but
also the graphs corresponding to the solution of a traveling
salesman problem, or the minimum spanning tree (MST). In
each case, the entropy estimate is based on

∑M
i=1 d

d(1−α)
i ,

where the di denote the lengths of the M edges of the graph,
with M = n − 1 for the MST and M = n for the traveling-
salesman tour and NN graphs.

The MST constructed from the xi has already been advo-
cated as a useful tool to assess the quality of designs in terms
of their space-filling properties: in Franco et al. (2009), the
empirical mean and variance of the lengths of edges di of
the MST are used to characterize classes of designs (such
as random, low discrepancy sequences, maximin-distance
and minimax-distance designs); designs with large empirical
means are considered preferable. With the same precautions
as above for NN entropy estimation, the maximization of the
function (

∑n−1
i=1 d

−q
i )−1/q in the MST constructed from the

xi is related to the maximization of an entropy estimator of
the distribution of the xi ; in particular, the maximization of
the empirical mean of the edge lengths (q = −1) forms a
reasonable objective.

Entropy decomposition to avoid collapsing on projections
Let u and v be two independent random vectors respectively
in R

d1 and R
d2 . Define x = (u�,v�)� and let ϕ(u,v) de-

note the joint density for x. Let ϕ1(u) and ϕ2(v) be the
marginal densities for u and v respectively, so that ϕ(u,v) =
ϕ1(u)ϕ2(v). It is well known that the Shannon and Rényi
entropies (11) and (9) satisfy the additive property H ∗

α (ϕ) =
H ∗

α (ϕ1) + H ∗
α (ϕ2), α ∈ R (extensivity property of Shannon

and Rényi entropies) while for the Tsallis entropy (10) one
has Hα(ϕ) = Hα(ϕ1) + Hα(ϕ2) + (1 − α)Hα(ϕ1)Hα(ϕ2)

(non-extensivity Tsallis entropy, with α the parameter of
non-extensivity).

Now, when ϕ is the p.d.f. of the uniform distribution
on the unit cube X = [0,1]d , one can consider all one-
dimensional projections {x}i , i = 1, . . . , d , and H ∗

α (ϕ) =∑d
i=1 H ∗

α (ϕi) with ϕi the density of the i-th projection {x}i .
This can be used to combine a criterion related to space-
filling in X with criteria related to space-filling along one-

dimensional projections. Consider for instance the NN esti-
mator of H ∗

α (ϕ) of Leonenko et al. (2008) (for α �= 0),

Ĥ ∗
n,k,α = log{ [(n−1)Ck Vd ]1−α

n

∑n
i=1 (d∗

k,i )
d(1−α)}

1 − α
. (15)

For k = 1 (k > 1 does not fit with the space-filling require-
ment, see the discussion above), we have

Ĥ ∗
n,1,α = 1

1 − α
log

[
n∑

i=1

(d∗
i )d(1−α)

]

+ A(α,d,n) ,

where A(α,d,n) is a constant that does not depend on ξ .
A suitable criterion (to be maximized) that simultaneously
takes into account the space-filling objectives in X and along
all one-dimensional projections is thus

1

1 − α

{

(1 − γ ) log

[
n∑

i=1

(d∗
i )d(1−α)

]

+γ

d∑

j=1

log

[
n∑

i=1

(dj
∗
i
)(1−α)

]⎫
⎬

⎭
,

with γ ∈ (0,1) and dj
∗
i
= mink �=i |{xi}j − {xk}j |, or equiva-

lently, setting q = d(α − 1),

φq,1P (ξ) = (1 − γ ) log[φ[NN,q](ξ)]

+ γ

d

d∑

j=1

log[φ[NN,q/d,j ](ξ)],

where φ[NN,q](ξ) is given by (7) and φ[NN,q,j ](ξ) =
[∑n

i=1(dj
∗
i
)−q ]−1/q . Letting q tend to infinity, we get the

following compromise between maximin-distance designs
on X and on its one-dimensional projections

φ∞,1P (ξ) = (1 − γ ) log[φMm(ξ)] + γ

d

d∑

j=1

log[φMmj (ξ)] ,

with φMmj (ξ) = mini dj
∗
i

= mink �=i |{xi}j − {xk}j |. One
should note that there exists a threshold γ ∗ = γ ∗(d,n) such
that the optimal design associated with any γ ≥ γ ∗ is a max-
imin Lh design.

When α = 1 (Shannon entropy), identical develop-
ments lead to the same criterion φq,1P (ξ) as above with
q set to zero, φ[NN,0](ξ) defined by (8) and φ[NN,0,j ](ξ) =
exp{[∑n

i=1 log(dj
∗
i
)]/n}.

Other combinations of criteria are possible; one may
for instance maximize a space-filling criterion in X un-
der constraints on the space-filling properties along one-
dimensional projections. Also, projections on higher dimen-
sional subspaces can be taken into account in a similar way
using the appropriate decomposition of the entropy of joint
densities.
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4 Model-based design: the case of kriging

In the following we assume that we have a reasonable sim-
plified model (the so called emulator) for the unknown func-
tion f (·), whose evaluation at a given point x relies on a
computer code (evaluations at the design points in ξ form a
computer experiment).

4.1 Gaussian-process model and kriging

In particular, consider the following spatial random field

Y(x) = f (x) = η(x, β) + Z(x), (16)

where β is an unknown vector of parameters in R
p and

the random term Z(x) has zero mean, (unknown) variance
σ 2

Z and a parameterized spatial error correlation structure
such that E{Z(u)Z(v)} = σ 2

Z C(u,v;ν). It is often assumed
that the deterministic term has a linear structure, that is,
η(x, β) = r�(x)β , and that the random field Z(x) is Gaus-
sian, allowing the estimation of β,σZ and ν by Maximum
Likelihood. This setup is used in such diverse areas of spa-
tial data analysis (see Cressie 1993) as mining, hydroge-
ology, natural resource monitoring and environmental sci-
ence, etc., and has become the standard modeling paradigm
in computer simulation experiments, following the semi-
nal paper of Sacks et al. (1989). Here, limv→u C(u,v;ν) =
C(u,u;ν) = 1 for all u ∈ X.

Denote by Ŷ (x|ξ) the Best Linear Unbiased Predictor
(BLUP) of Y(x) based on the design points in ξ and as-
sociated observations y(ξ) = [Y(x1), . . . , Y (xn)]�. Optimal
design in this context is usually performed by minimizing
a functional of var[Ŷ (x|ξ)] = E[(Ŷ (x|ξ) − Y(x))2] at x, the
unconditional Mean-Squared Prediction Error (MSPE), also
called the kriging variance. Keeping ν fixed, then in the lin-
ear setting (universal kriging, with η(x, β) = r�(x)β , gen-
erally a polynomial in x), the BLUP takes the form

Ŷ (x|ξ) = r�(x)β̂ + c�
ν (x)C−1

ν [y(ξ) − Rβ̂] , (17)

where {cν(x)}i = C(x,xi;ν), {Cν}ij = C(xi ,xj ;ν), i, j =
1, . . . , n, and β̂ = β̂ν is the weighted least-squares estimator
of β in the linear regression model, that is,

β̂ν = [R�C−1
ν R]−1R�C−1

ν y(ξ) ,

with R = [r(x1), . . . , r(xn)]�. Notice that Ŷ (x|ξ) does not
depend on σZ and that Ŷ (xi |ξ) = Y(xi ) for all i (the predic-
tor is a perfect interpolator). We can write

Ŷ (x|ξ) = v�
ν (x)y(ξ)

where

vν(x) = C−1
ν [In − R(R�C−1

ν R)−1R�C−1
ν ]cν(x)

+ C−1
ν R(R�C−1

ν R)−1r(x) (18)

with In the n-dimensional identity matrix. The MSPE is
given by

MSPEξ (x, σ 2
Z, ν) = σ 2

Z

{
1 − c�

ν (x)C−1
ν cν(x)

+g�
ν (x)[R�C−1

ν R]−1gν(x)
}

with gν(x) = r(x) − R�C−1
ν cν(x). Note that the MSPE de-

pends on (σ 2
Z, ν), with σ 2

Z intervening only as a multiplica-
tive factor. We shall denote by ρ2(x) = ρ2

ξ (x, ν) the normal-
ized kriging variance,

ρ2
ξ (x, ν) = MSPEξ (x, σ 2

Z, ν)/σ 2
Z (19)

and omit the dependence in ξ and ν when it does not lead to
ambiguities. Note that ρ2

ξ (xi , ν) = 0 for all i.
We suppose for the moment that ν is known (the in-

vestigation of the (more realistic) situation where ν is un-
known is postponed to Sect. 5) and omit the dependence on
ν in the notations. It is sufficient in many circumstances to
take η(x, β) = β , that is, to model the unknown function as
the realization of a stochastic process with unknown mean
value. In that case, the normalized kriging variance is simply

ρ2(x) = 1 − c�(x)C−1c(x) + [1 − c�(x)C−11]2

1�C−11
, (20)

with 1 the n-dimensional vector of ones.
A natural approach for designing an experiment is to

choose ξ that minimizes a functional of the kriging vari-
ance, for instance its integrated value φA(ξ) = ∫

X
ρ2(x) dx

(generally evaluated by a discrete sum over a finite grid) or
the G-optimality criterion (by analogy with G-optimal de-
sign for regression models, see Kiefer and Wolfowitz 1960)

φG(ξ) = max
x∈X

ρ2(x) . (21)

Johnson et al. (1990) show that a minimax-optimal design
is asymptotically G-optimal when the correlation function
has the form Ck(·) with k tending to infinity (i.e., it tends
to be G-optimal for weak correlations). See also Joseph
(2006) who motivates the use of minimax-optimal designs
for his limit-kriging approach. The evaluation of φG(ξ) at
any given ξ requires the solution of a maximization prob-
lem over X, which makes the optimization of φG(·) a rather
exhausting task. Replacing the optimization over X by a grid
search over a finite subset XN ⊂ X is often used; another op-
tion is to perform a Delaunay tessellation of the points in ξ

plus the vertices of X = [0,1]d and initialize a local search
for the maximum of ρ2(x) at the center of each Delaunay
simplex (see Sect. 2.4). A third option, considered below,
consists in using an upper bound on φG(ξ).
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4.2 Upper bounds on the kriging variance

We only consider isotropic processes, with correlation de-
pending on the Euclidean distance between points, i.e. sat-
isfying E{Z(u)Z(v)} = σ 2

Z C(‖u − v‖;ν), (u,v) ∈ X2. The
extension to the non-isotropic case should not raise major
difficulties through an appropriate change of metric in X.
We suppose that the radial correlation function C(·;ν) is
non-increasing and non-negative on R

+. Denote CMm =
C(φMm), CmM = C(φmM) (we omit the dependence in ξ

where there is no ambiguity) and

ρ2
0(x) = 1 − c�(x)C−1c(x)

the (normalized) kriging variance when β is known. The
objective of this section is to construct upper bounds on
maxx∈X ρ2

0(x) and maxx∈X ρ2(x), see (20).
From the developments given in Appendix C, we obtain

the bound

ρ2
0(x) ≤ 1 − C2

mM

λmax(C)
,

for the case where β is known and, for a weak enough cor-
relation, the approximate bound

ρ2(x) ≤ 1 − C2
mM

λmax(C)
+ (1 − CmM u)2

1�C−11
,

where u = mini{C−11}i when β is unknown.
Using further approximations, one can obtain bounds that

depend on CmM and CMm but not on C, see Appendix C. We
obtain

ρ2
0(x) ≤ ρ̄2

0(x) = 1 − c̄(x)2

1 + (n − 1)CMm

, (22)

where c̄(x) = maxi{c(x)}i , and thus

max
x∈X

ρ2
0(x) ≤ ρ̄2

0 = 1 − C2
mM

1 + (n − 1)CMm

. (23)

Also, when the correlation is weak enough,

ρ2(x) ≤ ρ̄2(x) = ρ̄2
0(x) + 1 + (n − 1)CMm

n
R2(x) (24)

with ρ̄2
0(x) given by (22) and

R2(x) =
[

1 − c̄(x)
1 − (n − 1)CMm

1 − (n − 1)C2
Mm

]2

,

which gives

max
x∈X

ρ2(x) ≤ ρ̄2 = ρ̄2
0 +

[

1 − CmM

1 − (n − 1)CMm

1 − (n − 1)C2
Mm

]2

Fig. 5 Kriging variance (normalized) and bounds with, in solid lines
from top to bottom, ρ̄2(x) given by (24) and the exact (normalized)
kriging variance ρ2(x); the values of ρ2

0 (x) and of its upper bound
ρ̄2

0 (x) (22) are indicated in dotted lines; x = (0 , 0)� + γ (1 , 1)�

× 1 + (n − 1)CMm

n
, (25)

with ρ̄2
0 given by (23). More accurate bounds are given in

Griffith (2003) when the points in ξ follow a regular pattern.
Similar ideas could be applied to the limit kriging predictor
of Joseph (2006).

Example 1 We consider a two-dimensional example with
four design points, three at the corners (1,0), (1,1), (0,1)

and one in the center (1/2,1/2) of X = [0,1]2. Prediction
is considered along the diagonal going from the origin to
the corner (1,1), with x = (0 , 0)� + γ (1 , 1)�, γ ∈ [0,1].
The correlation function is C(t) = (1 − t)4 (1 + 4t) with
C(t) = 0 for t ≥ 1, see Wendland (2005). Notice that C
has the form (41) with CMm = C(

√
2/2) � 0.0282. Fig-

ure 5 presents the (normalized) kriging variances ρ2
0(x)

and ρ2(x) together with the bounds constructed above. We
have ρ2(x) = ρ2

0(x) = 0 at the design points (1/2,1/2) and
(1,1). Note that the bounds ρ̄2(x) and ρ̄2

0(x) although not
tight everywhere (in particular, they are pessimistic at the
design points) give a reasonable approximation of the be-
havior of ρ2(x) and ρ2

0(x) respectively. Also note that the
global bounds (23) and (25) (reached at x = (0,0)) are rather
tight.

Example 2 We consider a one-dimensional example with
the 5-point minimax-optimal design ξ∗

mM = (0.1, 0.3, 0.5,
0.7, 0.9) in X = [0,1] for the correlation C(t) = exp(−10 t).
Figure 6 presents the (normalized) kriging variances ρ2

0(x)

and ρ2(x) together with the bounds constructed above as x

varies in X. The bounds ρ̄0(x) given by (22) and ρ̄(x) given
by (24) are nowhere tight (neither are the global bounds
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Fig. 6 Kriging variance (normalized) and bounds for the 5-point mini-
max-optimal design with, in solid lines from top to bottom, ρ̄(x) given
by (24) and the exact (normalized) kriging variance ρ2(x); the values
of ρ2

0 (x) and of its upper bound ρ̄0(x) (22) are indicated in dotted lines

Fig. 7 Kriging variance (normalized) and bounds for the 5-point max-
imin-optimal design with, in solid lines from top to bottom, ρ̄(x) given
by (24) and the exact (normalized) kriging variance ρ2(x); the values
of ρ2

0 (x) and of its upper bound ρ̄0(x) (22) are indicated in dotted lines

ρ̄2 and ρ̄0 given by (23) and (25)), but the behavior of the
kriging variance as a function of x is satisfactorily repro-
duced. Figure 7 presents the same information for the 5-
point maximin-optimal design ξ∗

Mm = (0, 0.25, 0.5, 0.75, 1).

For a small enough correlation, a minimax-optimal de-
sign ensures a smaller value for maxx∈X ρ2(x) than a
maximin-optimal design, see Johnson et al. (1990). One
might hope that this tendency will also be observed when
using the upper bound ρ̄2 given by (25). This seems to be
the case, as the following continuation of Example 2 illus-
trates.

Fig. 8 maxx∈X ρ2(x) (solid line) and ρ̄2 (25) (dashed line) as func-
tions of α for the design ξ(α) when ν = 7 (left) and ν = 40 (right); the
maximin-optimal design corresponds to α = 0, the minimax-optimal
design to α = 0.1 (dotted vertical line)

Example 2 (Continued) We consider the following family
of 5-point designs: ξ(α) = (α,α + (1 − 2α)/4, α + (1 −
2α)/2, α + 3(1 − 2α)/4,1 − α), which includes ξ∗

Mm (for
α = 0) and ξ∗

mM (for α = 0.1). The correlation function is
C(t) = exp(−ν t). Figure 8 presents maxx∈X ρ2(x) and ρ̄2

given by (25) as functions of α in the strong (left, ν = 7) and
weak (right, ν = 40) correlation cases. Although the curves
do not reach their minimum value for the same α, they indi-
cate the same preference between ξ∗

Mm and ξ∗
mM .

4.3 Maximum-entropy sampling

Suppose that X is discretized into the finite set XN with N

points. Consider yN , the vector formed by Y(x) for x ∈ XN ,
and y(ξ), the vector obtained for x ∈ ξ . For any random y
with p.d.f. ϕ(·) denote ent(y) the (Shannon) entropy of ϕ,
see (11). Then, from a classical theorem in information the-
ory (see, e.g., Ash 1965, p. 239),

ent(yN) = ent(yξ ) + ent(yN\ξ |yξ ) (26)

where yN\ξ denotes the vector formed by Y(x) for x ∈
XN \ ξ and ent(y|w), the conditional entropy, is the expecta-
tion with respect to w of the entropy of the conditional p.d.f.
ϕ(y|w), that is,

ent(y|w) = −
∫

ϕ(w)

(∫
ϕ(y|w) log[ϕ(y|w)]dy

)

dw .

The argumentation in Shewry and Wynn (1987) is as fol-
lows: since ent(yN) in (26) is fixed, the natural objective
of minimizing ent(yN\ξ |yξ ) can be fulfilled by maximiz-
ing ent(yξ ). When Z(x) in (16) is Gaussian, ent(yξ ) =
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(1/2) log det(C) + (n/2)[1 + log(2π)], and Maximum-
Entropy-Sampling corresponds to maximizing det(C),
which is called D-optimal design (by analogy with opti-
mum design in a parametric setting). One can refer to Wynn
(2004) for further developments.

Johnson et al. (1990) show that a maximin-optimal de-
sign is asymptotically D-optimal when the correlation func-
tion has the form Ck(·) with k tending to infinity (i.e., it
tends to be D-optimal for weak correlations). We have con-
sidered in Sect. 3.3 the design criterion (to be maximized)
given by a plug-in kernel estimator Ĥ n

α of the distribution of
the xi , see (13) and (12). When α = 2, the maximization of
Ĥ n

α is equivalent to the minimization of

φ(ξ) =
∑

i,j

K

(
xi − xj

hn

)

.

A natural choice in the case of prediction by kriging
is K[(u − v)/hn] = C(‖u − v‖), which yields φ(ξ) =∑

i,j {C}ij . Since C has all its diagonal elements equal to
1, its determinant is maximum when the off-diagonal ele-
ments are zero, that is when φ(ξ) = n. Also note that

1 − (n − 1)CMm ≤ λmin(C) ≤ φ(ξ)

n
= 1�C1

n

≤ λmax(C) ≤ 1 + (n − 1)CMm .

The upper bound on λmax(C) is derived in Appendix C. The
lower bound is obtained from λmin(C) ≥ t − s

√
n − 1 with

t = tr(C)/n and s2 = tr(C2)/n − t2, see Wolkowicz and
Styan (1980). Since {C}ij = {C}ji ≤ CMm for all i �= j ,
we get tr(C) = n and tr(C2) ≤ n[1 + (n − 1)C2

Mm] which
gives the lower bound above. Note that bounds on λmin(C)

have been derived in the framework of interpolation with
radial basis functions, see Narcowich (1991), Ball (1992),
Sun (1992) for lower bounds and Schaback (1994) for upper
bounds. A maximin-distance design minimizes CMm and
thus minimizes the upper bound above on φ(ξ).

5 Design for estimating covariance parameters

We now consider the case where the covariance C used for
kriging (Sect. 4.1) depends upon unknown parameters ν that
need to be estimated (by Maximum Likelihood) from the
dataset y(ξ).

5.1 The Fisher information matrix

Under this assumption, a first step towards good prediction
of the spatial random field may be the precise estimation of
both sets of parameters β and ν. The information on them is
contained in the so-called Fisher information matrix, which
can be derived explicitly when the process Z(·) is Gaussian.

In this case the (un-normalized) information matrix for β

and θ = (σ 2
Z, ν�)� is block diagonal. Denoting Cθ = σ 2

ZCν ,
we get

Mβ,θ (ξ ;β, θ) =
(

Mβ(ξ ; θ) O
O Mθ (ξ ; θ)

)

, (27)

where, for the model (16) with η(x, β) = r�(x)β ,

Mβ(ξ ; θ) = 1

σ 2
Z

R�C−1R

with R = [r(x1), . . . , r(xn)]� and

{Mθ (ξ ; θ)}ij = 1

2
tr

{

C−1
θ

∂Cθ

∂θi

C−1
θ

∂Cθ

∂θj

}

.

Since Ŷ (x|ξ) does not depend on σZ and σ 2
Z only intervenes

as a multiplicative factor in the MSPE, see Sect. 4.1, we are
only interested in the precision of the estimation of β and ν.
Note that

Mθ (ξ ; θ) =
(

n/(2σ 4
Z) z�

ν (ξ ; θ)

zν(ξ ; θ) Mν(ξ ;ν)

)

with

{zν(ξ ; θ)}i = 1

2σ 2
Z

tr

(

C−1
ν

∂Cν

∂νi

)

{Mν(ξ ;ν)}ij = 1

2
tr

{

C−1
ν

∂Cν

∂νi

C−1
ν

∂Cν

∂νj

}

.

Denote

M−1
θ (ξ ; θ) =

(
a(ξ ; θ) b�

ν (ξ ; θ)

bν(ξ ; θ) Aν(ξ ;ν)

)

.

The block of Aν(ξ ;ν) then characterizes the precision of
the estimation of ν (note that Aν(ξ ;ν) = [Mν(ξ ;ν) −
2σ 4

Z zν(ξ ; θ)z�
ν (ξ ; θ)/n]−1 does not depend on σZ). The

matrix Aν(ξ ;ν) is often replaced by M−1
ν (ξ ;ν) and

Mβ,θ (ξ ;β, θ) by

Mβ,ν(ξ ;β, θ) =
(

Mβ(ξ ; θ) O
O Mν(ξ ;ν)

)

,

which corresponds to the case when σZ is known. This
can sometimes be justified from estimability considerations
concerning the random-field parameters σZ and ν. Indeed,
under the infill design framework (i.e., when the design
space is compact) typically not all parameters are estimable,
only some of them, or suitable functions of them, being
micro-ergodic, see e.g. Stein (1999), Zhang and Zimmerman
(2005). In that case, a reparametrization can be used, see e.g.
Zhu and Zhang (2006), and one may sometimes set σZ to an
arbitrary value. When both σZ and ν are estimable, there is
usually no big difference between Aν(ξ ;ν) and M−1

ν (ξ ;ν).
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Following traditional optimal design theory, see, e.g., Fe-
dorov (1972), it is common to choose designs that maximize
a scalar function of Mβ,ν(ξ ;β, θ), such as its determinant
(D-optimality). Müller and Stehlík (2010) have suggested to
maximize a compound criterion with weighing factor α,

�D[ξ |α] = (
det[Mβ(ξ ; θ)])α

(det[Mν(ξ ;ν)])1−α . (28)

Some theoretical results for special situations showing that
α → 1 leads to space-filling have been recently given in
Kiseľák and Stehlík (2008), Zagoraiou and Antognini (2009)
and Dette et al. (2008); Irvine et al. (2007) motivate the use
of designs with clusters of points.

5.2 The modified kriging variance

G-optimal designs based on the (normalized) kriging vari-
ance (19) are space filling (see, e.g., van Groenigen 2000);
however, they do not reflect the resulting additional uncer-
tainty due to the estimation of the covariance parameters. We
thus require an updated design criterion that takes that un-
certainty into account. Even if this effect is asymptotically
negligible, see Putter and Young (2001), its impact in finite
samples may be decisive, see Müller et al. (2010).

Various proposals have been made to correct the kriging
variance for the additional uncertainty due to the estimation
of ν. One approach, based on Monte-Carlo sampling from
the asymptotic distribution of the estimated parameters ν̂n,
is proposed in Nagy et al. (2007). Similarly, Sjöstedt-De-
Luna and Young (2003) and den Hertog et al. (2006) have
employed bootstrapping techniques for assessing the effect.
Harville and Jeske (1992) use a first-order expansion of the
kriging variance for ν̂n around its true value, see also Abt
(1999) for more precise developments and Zimmerman and
Cressie (1992) for a discussion and examples. This has the
advantage that we can obtain an explicit correction term to
augment the (normalized) kriging variance, which gives the
approximation

ρ̃2
ξ (x, ν) = ρ2

ξ (x, ν)

+ tr

{

M−1
ν (ξ ;ν)

∂v�
ν (x)

∂ν
Cν(ν)

∂vν(x)

∂ν�

}

, (29)

with vν(x) given by (18) (note that ρ̃2
ξ (xi , ν) = 0 for all i).

Consequently, Zimmerman (2006) constructs designs by
minimizing

φ̃G(ξ) = max
x∈X

ρ̃2
ξ (x, ν) (30)

for some nominal ν, which he terms EK-(empirical kri-
ging-)optimality (see also Zhu and Stein (2005) for a sim-
ilar criterion). The objective here is to take the dual effect
of the design into account (obtaining accurate predictions at

unsampled sites and improving the accuracy of the estima-
tion of the covariance parameters, those two objectives be-
ing generally conflicting) through the formulation of a sin-
gle criterion. One should notice that ρ̃2

ξ (x, ν) may seriously
overestimate the MSPE at x when the correlation is exces-
sively weak. Indeed, for very weak correlation the BLUP
(17) approximately equals r�(x)β̂ excepted in the neigh-
borhood of the xi due to the interpolating property Ŷ (xi |ξ)

= Y(xi ) for all i; v(x) then shows rapid variations in the
neighborhood of the xi and ‖∂v(x)/∂ν‖ may become very
large. In that case, one may add a nugget effect to the model
and replace (16) by Y(x) = η(x, β) + Z(x) + ε(x) where
the ε(xi ) are i.i.d. errors, also independent from the random
process Z(x), with zero mean and constant variance σ 2

ε . The
BLUP then no longer interpolates the data which renders
v(x) more stable; see e.g. Gramacy and Lee (2010) for other
motivations concerning the introduction of a nugget effect.

The minimization of (30) is a difficult task, even for
moderate d , due to the required maximizations of ρ̃2(x).
Similarly to Sect. 4.2, the derivation of an upper bound on
ρ̃2(x) could be used to form a simpler criterion. (Notice
that in the case considered in Sect. 4.2 where η(x, β) = β

we have vν(x) = C−1
ν Pνcν(x) + wν with Pν the projector

Pν = In − 11�C−1
ν /(1�C−1

ν 1) and wν = C−1
ν 1/(1�C−1

ν 1)

not depending on x.) An alternative approach that also takes
the effect of the unknown ν on predictions into account
would be to place Maximum-Entropy-Sampling of Sect. 4.3
into a Bayesian framework, setting a prior distribution on β

and ν. Also, the relationship between the criteria (28) and
(30) is explored by Müller et al. (2010) who show that, al-
though a complete equivalence can not be reached by a mere
selection of α in general, respective efficiencies are usually
quite high.

The strategy proposed in the next section tries to com-
bine space-filling model-free design, to be used in a first
stage, with estimation-oriented design, based on a model,
to be used in a second stage. The objective is to reach good
performance in terms of the modified kriging variance (29)
but keep the computational burden as low as possible.

6 Combining space-filling and estimation designs

A rather straightforward method for combining estimation
and prediction-based designs is suggested in Müller (2007).
First a design consisting of a certain number of points n0

is selected to maximize a criterion for the estimation of β ,
e.g. det[Mβ(ξ, θ)]; it is then optimally augmented by n1

points for a criterion related to the estimation of ν, e.g.
det[Mν(ξ, ν)], to yield a complete design with n = n0 + n1

points.
A similar idea can be exploited here and we suggest the

following strategy.
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Fig. 9 Contour plot for φ̃G(ξ)

on the 7-point minimax and
maximin Lh-design of Fig. 2
(left) and with the central point
shifted (right)

(1) Choose a space-filling, model-free, criterion φ0(·), e.g.,
φmM(·), φMm(·) or a criterion from Sect. 3.

(2) Determine a n-point optimal design ξ∗
n,0 for φ0(·), com-

pute φ̃G(ξ∗
n,0). Set n1 = 1.

(3) Determine a n0-point optimal design ξ∗
n0

for φ0(·),
with n0 = n − n1; augment ξ∗

n0
to a n-point design

ξ∗
n0,n1

by choosing n1 points optimally for the criterion

det[Mν(ξn0,n1;ν)], compute φ̃G(ξ∗
n0,n1

) (30).

(4) If φ̃G(ξ∗
n0,n1

) ≥ φ̃G(ξ∗
n0+1,n1−1), select the design

ξ∗
n0+1,n1−1, and stop; otherwise, increment n1 by 1 and

return to step 3).

Asymptotically, EK-optimal designs approach the typically
space-filling G-optimal designs since the correcting term in
(29) vanishes, see Putter and Young (2001). For n large and
φ0(·) in good agreement with G-optimality (e.g., φ0 = φmM )
we can thus expect the value of n1 in ξ∗

n0+1,n1−1 selected by
the strategy above to be relatively small.

Example 3 That step 3 of the above procedure makes sense
can be demonstrated on a simple example. Take the 7 point
Lh design from Fig. 2, which is simultaneously minimax and
maximin optimal. Setting ν = 7, we get φ̃G(ξ) � 1.913, ob-
tained for x � (0.049,0.951) or (0.951,0.049), see Fig. 9
(left), with Mν(ξ ;ν) � 2.41 × 10−3 (and A−1

ν (ξ ;ν) �
2.40×10−3). If we now shift the central point away from the
center towards the upper right (or lower left) corner, say to
the coordinate (3/4,3/4) as in the right panel of Fig. 9, the
criterion is improved to a value of φ̃G(ξ) � 1.511, attained
for x at the opposite corner, and Mν(ξ ;ν) is increased to
4.79 × 10−3 (and A−1

ν (ξ ;ν) to 4.71 × 10−3). This effect
is enhanced as we move the central point closer to one of
the non-central points and as we increase the value of ν and
clearly shows the need to go beyond space-filling in this
scenario.

7 Algorithms

Sequential and adaptive design In the sequential construc-
tion of a design, points can be introduced one-at-a-time (full
sequential design) or by batches of given size m > 1. At
each stage, all points introduced previously are fixed, which
means in particular that the associated observations can be
used to better select new points. The design is called adap-
tive when this information is used. This is especially use-
ful in model-based design, when the criterion depends on
some unknown parameters, for instance ν in the kriging
variance (19) or (29). Suppose that φ(·) is a criterion to be
minimized. At stage k of a full-sequential design one con-
structs ξk+1 = (ξk,xk+1), with ξk = (x1, . . . ,xk) already de-
termined, by choosing

xk+1 = arg min
x∈X

φ[(ξk,x)] . (31)

It should be noticed that such a construction is not always
suitable. In particular, for G-optimality (21) a xk+1 chosen
in this way will usually be in the close vicinity of a point
already present in ξk , due to the fact that φG(ξ) only de-
pends on a local characteristic (the value of ρ2(x) at its max-
imizer). The much simpler construction

xk+1 = arg max
x∈X

ρ2
ξk

(x) (32)

is often used for that reason. Note that when the cor-
relation tends to zero, this xk+1 tends to be as far as
possible from the points already present, similarly to the
greedy algorithm for maximin-optimal design for which
xk+1 = arg maxx∈X minxi∈ξk

‖x − xi‖. The design obtained
by (32) will thus tend to be of the maximin-distance rather
than minimax-distance type, and thus different from a G-
optimal design (in particular, (32) tends to push points to
the boundary of X). When φ(ξ) = φ(ξ ;ν) depends on
some unknown parameters ν, the construction (31) is eas-
ily made adaptive by using a forced-certainty-equivalence



696 Stat Comput (2012) 22:681–701

adaptation rule (see, e.g., Pronzato 2008) that replaces at
stage k the unknown ν by ν̂k estimated from ξk and the
associated observations y(ξk). One then chooses xk+1 =
arg minx∈X φ[(ξk,x); ν̂k]; the adaptive version of (32) is
simply xk+1 = arg maxx∈X ρ2

ξk
(x, ν̂k).

Non-sequential design The direct minimization of a func-
tion φ(·) with respect to ξ = (x1, . . . ,xn) is a rather
formidable task even for moderate values of n and d when
φ(·) is not convex and local minimizers exist, which is al-
ways the case for the criteria considered here. Instead of
performing a direct optimization with respect to ξ ∈ R

nd (or
over a finite class in the case of Lh designs, see Sect. 2.2),
most approaches combine heuristics with an exchange al-
gorithm. The methods are abundant, ranging from genetic
algorithms and tabu search (see e.g., Glover et al. 1995)
to simulated annealing (Morris and Mitchell 1995). Some
are more adapted to combinatorial search (and thus useful
when working in the class of Lh designs, see van Dam et
al. (2007) for a branch-and-bound algorithm for maximin
Lh designs and Jin et al. (2005) for a stochastic evolution-
ary method). One may refer to Husslage et al. (2006) for a
recent survey on optimization methods, including numer-
ical constructions of Lh maximin designs (up to d = 10
and n = 300). Recent methods suggested for purely geo-
metric problems, see, e.g., Cortés and Bullo (2009), could
be transferred to more statistically-based space-filling cri-
teria. Software can be obtained for instance from Royle
and Nychka (1998), Walvoort et al. (2010), see also the
packages DiceDesign (http://www.dice-consortium.fr/) by
Franco, Dupuy and Roustant or lhs by Carnell (2009). We
simply indicate below a prototype algorithm and mention its
main ingredients.

One of the simplest, but not very efficient, algorithm is
as follows: generate a random sequence of designs ξk , se-
lect the best one among them in terms of φ(·). Note that one
does not need to store all designs, only the best one found so
far, say ξ∗

k after k designs have been generated, and its as-
sociated criterion value φ(ξ∗

k ) have to be remembered. This
procedure is often used for Lh designs, for instance to gener-
ate good designs in terms of minimax or maximin distance.
Note that it may help to generate the random sequence {ξk}
according to a particular process, see Franco (2008), Franco
et al. (2008) who use the Strauss point process, accounting
for repulsion between points and thus favorizing maximin-
distance designs. Also note that each ξk generated can be
used as starting point for a local search algorithm (using gen-
eralized gradients when φ(·) is not differentiable). A more
sophisticated version of this idea is as follows.

Let ξk denote the design at iteration k and φ(·) be a cri-
terion to be minimized. Consider an algorithm for which at
iteration k one exchanges one point xi of ξk with a new one

x∗, see Fedorov (1972), Mitchell (1974) for exchange algo-
rithms originally proposed for optimal design in a paramet-
ric setting. Three elements must then be defined: (i) how to
select xi? (ii) how to construct x∗? (iii) what to do if the
substitution of x∗ for xi in ξk , possibly followed by a local
search, does not improve the value of φ(·)?

Typically, the answer to (i) involves some randomness,
possibly combined with some heuristics (for instance, for
maximin-optimal design, it seems reasonable to select xi

among the pairs of points at respective distance φMm(ξ)).
For (ii), the choice of x∗ can be purely random (e.g., a ran-
dom walk in X originated at xi ), or based on a determin-
istic construction, or a mixture of both. Finally, for (iii), a
simulated-annealing method is appropriate: denote ξ+

k the
design obtained by substituting x∗ for xi in ξk , set ξk+1 = ξ+

k

when φ(ξ+
k ) < φ(ξk) (improvement) but also accept this

move with probability Pk = exp{−[φ(ξ+
k ) − φ(ξk)/Tk]}

when φ(ξ+
k ) > φ(ξk). Here Tk denotes a ‘temperature’ that

should decrease with k. Note that keeping trace of the best
design encountered, ξ∗

k at step k, facilitates the proof of con-
vergence to an optimal design: indeed, lim supk→∞ φ(ξk)

may not converge to its minimal value φ∗ = minξ φ(ξ)

(and there might not be a reversible measure for the tran-
sition kernel from ξk to ξk+1), but it is easy to prove that
limk→∞ φ(ξ∗

k ) = φ∗ when there is enough randomness in
(i) and (ii). One may refer to (Morris and Mitchell 1995) for
indications on how to choose the initial temperature T0 and
make it decrease with k. See e.g. Schilling (1992) and Ange-
lis et al. (2001) for the use of a similar algorithm in a related
framework.

8 Concluding remarks

The design of computer experiments has been a rapidly
growing field in the last few years, with special emphasis
put on the construction of criteria quantifying how spread
out a design is: geometric measures, related to sphere cover-
ing and sphere packing (minimax and maximin distance de-
signs), statistical measures of uniformity (discrepancy and
more recently entropy). Much work remains to be done to
determine which approaches are more suitable for computer
experiments and to construct efficient algorithms tailored to
specific criteria (some being easier to optimize than the oth-
ers).

The paper has also drawn attention on the importance
of going beyond space filling. The estimation of parame-
ters in a model-based approach calls for designs that are
not uniformly spread out. A simple procedure has been pro-
posed (Sect. 6), but here also much remains to be done. We
conclude the presentation by mentioning some recent re-
sults that might help reconciliating the space-filling and non-
space-filling points of view. When a model selection strategy

http://www.dice-consortium.fr/
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using a spatial information criterion is employed, Hoeting et
al. (2006) note that clustered designs perform the best. When
different levels of accuracy are required, nested space-filling
designs have shown to be useful (cf. Qian et al. 2009;
Rennen et al. 2010) and non-space fillingness arises natu-
rally in some sequentially designed experiments (see Gra-
macy and Lee 2009). Picheny et al. (2010) induce it by fo-
cusing their attention towards particular target regions.

More generally, Dette and Pepelyshev (2010) observe
that the kriging variance for a uniform design on [0,1] is
(in general) larger near the boundaries than near the center,
so that a G-optimal design tends to put more points near the
boundaries (note, however, that this is not true for the expo-
nential covariance function, see Figs. 6 and 7, due to the par-
ticular Markovian structure of the Ornstein-Uhlenbeck pro-
cess on the real line). Similarly, an optimal experiment for
polynomial regression (D-optimal for instance) puts more
points near the boundary of the domain as the degree of the
polynomial increases; in the limit, the design points are dis-
tributed with the arc-sine distribution. These observations
speak for space-filling designs that do not fill the space uni-
formly, but rather put more points near its boundaries. Since
such designs will place some points close together, they may
help the estimation of covariance parameters in kriging, and
thus perhaps kill two birds with one stone.
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Appendix A: Computation of the minimax distance
criterion via Delaunay tessellation

Let x∗ be a point of X satisfying mini ‖x−xi‖ = φ(ξ∗
mM). If

x∗ is in the interior of X, it is at equal distance of d +1 points
of X that form a non-degenerate simplex; it is therefore the
center of a circumscribed sphere to a simplex in the Delau-
nay tessellation of the points of ξ (which we call a Delaunay
sphere).

Suppose now that x∗ lies on the boundary of X. It then
belongs to some (d −q)-dimensional face Hq of X, 1 ≤ q ≤
d (a 0-dimensional face being a vertex of X, a 1-dimensional
face an edge, etc., a (d − 1)-dimensional face is a (d − 1)-
dimensional hyperplane). Also, it must be at equal distance
D∗ from m = d + 1 − q points of ξ and no other point from
ξ can be closer. Consider now the symmetric points of those
m points with respect to the q different (d − 1)-dimensional
faces of X that define Hq ; we obtain in this way m(q + 1)

points that are all at distance D∗ from x∗. No other point
from ξ , or any symmetric of a point of ξ with respect to a
(d − 1)-face of X, is at distance from x∗ less than D∗. Since
m(q + 1) = (d + 1 − q)(q + 1) ≥ d + 1 (with equality when

q = d , that is when x∗ if one of the 2d vertices of X), x∗ is
always at the center of a Delaunay sphere obtained from the
tessellation of the points in ξ and their 2d + 1 symmetric
points with respect to the (d − 1)-dimensional faces of X.
(The tessellation obtained is not unique in general due to the
enforced symmetry among the set of points constructed, but
this is not an issue.)

The center z∗ and radius R of the circumscribed sphere to
a simplex defined by d +1 vectors z1, . . . , zd+1 of R

d is eas-
ily computed as follows. Since (z∗ − zi )

�(z∗ − zi ) = R2 for
all i, 2 z�

i z∗ − z�
i zi = z�∗ z∗ − R2 is a constant. Denote this

constant by γ and the vector formed by the squared norm of
the zi by w, so that {w}i = z�

i zi for all i. We thus have, in
matrix form, [2Z� − 1] (z�∗ γ )� = w with Z the d × (d +1)

matrix (z1, . . . , zd+1) and 1 the (d + 1)-dimensional vector
of ones. Note that the singularity of the matrix [2Z� − 1]
would imply that all zi lie in a (d − 1)-dimensional hyper-
plane; the matrix is thus of full rank when the zi form a
non-degenerate simplex. The values of z∗ and γ are directly
obtained from the equation above and R is then given by√

z�∗ z∗ − γ .

Appendix B: Regularization through Lq norms

Consider a design criterion φ(·) which can be written as the
minimum of a set of criteria, φ(ξ) = mini φi(ξ) .

Suppose that this set of criteria φi(·) is finite (extensions
to infinite sets and generalized classes of criteria indexed by
a continuous parameters are possible but useless here for our
purpose), so that i ∈ {1, . . . ,M} for some finite M . The min
function makes φ(·) non smooth even when the φi(·) are.
Different regularization methods can be used in that case to
construct a smooth approximation of φ(·).

Suppose that φ(ξ) > 0 and define

φ[q](ξ) =
[

M∑

i=1

φ
−q
i (ξ)

]−1/q

. (33)

From a property of Lq norms, φ[q2](ξ) ≤ φ[q1](ξ) for any

q1 > q2 > 0, so that φ[q](ξ) with q > 0 forms a lower bound

on φ(ξ) which tends to φ(ξ) as q → ∞. φ[q](ξ) is also an
increasing function of q for q < 0 but is not defined at q =
0 (with limq→0− φ[q](ξ) = +∞ and limq→0+ φ[q](ξ) = 0).

Note that φ[−1](ξ) = ∑M
i=1 φi(ξ) ≥ φ(ξ).

Consider now the criterion

φ[q](ξ) =
[

M∑

i=1

μi φ
−q
i (ξ)

]−1/q

, (34)

where μi > 0 for all i and
∑M

i=1 μi = 1 (the μi define a
probability measure on the index set {1, . . . ,M}). Again, for
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any ξ such that φ(ξ) > 0, φ[q](ξ) → φ(ξ) as q tends to ∞.
The computation of the derivative ∂φ[q](ξ)/∂q gives

∂φ[q](ξ)

∂q
= φ[q](ξ)

q2
∑M

i=1 μi φ
−q
i (ξ)

×
{[

M∑

i=1

μi φ
−q
i (ξ)

]

log

[
M∑

i=1

μi φ
−q
i (ξ)

]

−
M∑

i=1

μi φ
−q
i (ξ) log[φ−q

i (ξ)]
}

≤ 0 for any q ,

where the inequality follows from Jensen’s inequality (the
function x → x logx being convex). The inequality is strict
when the φi(ξ) take at least two different values and φ[q](ξ)

then decreases monotonically to φ(ξ) as q → ∞. Similarly
to the case of φ[q](·), we have φ[−1](ξ) = ∑M

i=1 μi φi(ξ) ≥
φ(ξ). Moreover,

lim
q→0

φ[q](ξ) = exp

{
M∑

i=1

μi log[φi(ξ)]
}

,

which, by continuity can be defined as being φ[0](ξ).
Define μ = min{μi , i = 1, . . . ,M}. We have, for any ξ

such that φ(ξ) > 0 and any q > 0,

φ[q](ξ) ≤ φ(ξ) ≤ φ[q](ξ) ≤ μ−1/qφ[q](ξ) , (35)

so that

0 ≤ φ(ξ) − φ[q](ξ) ≤ (μ−1/q − 1)φ(ξ∗) ,

0 ≤ φ[q](ξ) − φ(ξ) ≤ (μ−1/q − 1)φ(ξ∗) ,

where ξ∗ is optimal for φ(·) and μ−1/q tends to 1 as q → ∞.

The convergence of φ[q](·) and φ[q](·) to φ(·), respectively
from below and from above, is thus uniform over any set of
designs such that φ(ξ) is bounded away from zero. More-
over, we can directly deduce from (35) that the φ-efficiency
of optimal designs optimal for φ[q](·) or φ[q](·) is at least

μ1/q . Indeed, let ξ∗, ξ∗
[q] and ξ

∗
[q] respectively denote an op-

timal design for φ, φ[q](·) and φ[q](·); (35) implies that

φ(ξ∗
[q]) ≥ φ[q](ξ

∗
[q]) ≥ φ[q](ξ

∗) ≥ μ1/qφ(ξ∗)

φ(ξ
∗
[q]) ≥ μ1/qφ[q](ξ

∗
[q]) ≥ μ1/qφ[q](ξ∗) ≥ μ1/qφ(ξ∗) .

The best efficiency bounds are obtained when μ is max-
imal, that is, when μ is the uniform measure and μ =
1/M . In that case, φ[q](ξ) = M1/qφ[q](ξ) and φ[0](ξ) =
[∏M

i=1 φi(ξ)]1/M .
An obvious generalization of the regularization by

Lq norm is as follows. Let ψ(·) be a strictly increasing

function and ψ←(·) denote its inverse. Then, φ(ξ) =
ψ←{mini ψ[φi(ξ)]} , and, applying the Lq regularizations
above to the min function, we can define

φ[q,ψ](ξ) = ψ←
{[

M∑

i=1

μi {ψ[φi(ξ)]}−q

]−1/q}

, (36)

φ[q,ψ](ξ) = ψ←
{[

M∑

i=1

{ψ[φi(ξ)]}−q

]−1/q}

. (37)

A case of special interest is ψ(t) = exp(t), which gives

φ[q,exp](ξ) = − 1

q
log

{
M∑

i=1

exp[−qφi(ξ)]
}

,

and is appealing in situations where one may have φi(ξ) ≤
0, see Li and Fang (1997).

Appendix C: Derivation of bounds on the kriging
variance

β is known We have ρ2
0(x) ≤ 1 − maxi{c(x)}2

i /λmax(C),
with λmax(C) the maximum eigenvalue of C. Since C(·)
is non-increasing, {C}ij ≤ CMm for all i �= j . We denote
by C the set of matrices C satisfying 0 ≤ {C}ij = {C}ji ≤
CMm for i �= j . A classical inequality on matrix norms
gives λmax(C) = ‖C‖2 ≤ (‖C‖1 ‖C‖∞)1/2, where ‖C‖1 =
maxj

∑
i |{C}ij | = ‖C‖∞. Therefore, any C ∈ C satisfies

λmax(C) ≤ 1 + (n − 1)CMm and

ρ2
0(x) ≤ ρ̄2

0(x) = 1 − c̄(x)2

1 + (n − 1)CMm

, (38)

where c̄(x) = maxi{c(x)}i . Since mini ‖x − xi‖ ≤ φmM for
all x ∈ X, we have c̄(x) ≥ CmM for all x and

max
x∈X

ρ2
0(x) ≤ ρ̄2

0 = 1 − C2
mM

1 + (n − 1)CMm

. (39)

Note that the bound (39) will become worse as n increases
since the bound 1 + (n− 1)CMm on λmax(C) becomes more
and more pessimistic. Also, (38) can be tight only for those x
such that c(x) corresponds to the direction of an eigenvector
associated with λmax(C).

β is unknown We need to bound the second term in ρ2(x)

given by (20). Our first step is to enclose the feasible set
for c(x) into a set C of simple description. Notice that
‖x − xi‖ < φMm/2 for some i implies that ‖x − xj‖ >

φMm/2 for all i �= j . Therefore,

C ⊂ [0,1]n \ P(φMm)
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Fig. 10 The set [0,1]3 \ P(φMm)

with P(φMm) = {c ∈ [0,1]n : ∃i �= j with {c}i > C̄Mm and
{c}j > C̄Mm}, where C̄Mm = C(φMm/2), see Fig. 10 for an
illustration when n = 3. Notice that φmM > φMm/2 implies
that C̄Mm = C(φMm/2) ≥ CmM (with also C̄Mm ≥ CMm).
Next, since c̄(x) = maxi{c(x)}i ≥ CmM , we have

C ⊂ [0,1]n \ [0, c̄(x)]n ⊂ [0,1]n \ [0,CmM ]n . (40)

Consider T (x) = c�(x)C−11. Notice that {c(x)}i = 1 for
some i implies that x = xi , and that C−1c(xi ) = ei , the
i-th basis vector, so that T (xi ) = 1. Also, if {c(x)}i = 1
for some i, then ‖x − xj‖ ≥ φMm and thus {c(x)}j ≤ CMm

for all j �= i. When the correlation is weak enough, 0 <

{C−11}i ≤ 1 for all i (which is true for some processes
whatever the importance of the correlation, it is the case
for instance for the one-dimensional Ornstein-Uhlenbeck
process). This gives T (x) ≤ c�(x)1 ≤ 1 + (n − 1)C̄Mm.
Also, (40) implies that the minimum of T (x) is larger than
c̄(x) e�

1 C−1∗ 1 with

C∗ =
(

1 CMm1�
n−1

CMm1n−1 In−1

)

(41)

where In−1 and 1n−1 respectively denote the (n − 1)-
dimensional identity matrix and vector of ones, which gives

T (x) ≥ c̄(x)
1 − (n − 1)CMm

1 − (n − 1)C2
Mm

.

Since 1�C−11 ≥ n/λmax(C) ≥ n/[1 + (n − 1)CMm], we fi-
nally obtain

ρ2(x) ≤ ρ̄2(x) = ρ̄2
0(x) + 1 + (n − 1)CMm

n
R2(x) (42)

with ρ̄2
0(x) given by (38) and R2(x) = max[R2

a(x),R2
b]

where

R2
a(x) =

[

1 − c̄(x)
1 − (n − 1)CMm

1 − (n − 1)C2
Mm

]2

and R2
b = (n − 1)2C̄2

Mm. It should be noticed that the upper
bound R2

b is very pessimistic. In fact, maxx T (x) seldom ex-
ceeds one (it may do so marginally when C(t) is concave at
t = 0), see for instance Joseph (2006), and for that reason it
is sufficient to use R2(x) = R2

a(x).
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