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In an effort to speed the development of new products and processes, many compa-
nies are turning to computer simulations to avoid the time and expense of building
prototypes. These computer simulations are often complex, taking hours to complete
one run. If there are many variables affecting the results of the simulation, then
it makes sense to design an experiment to gain the most information possible from
a limited number of computer simulation runs. The researcher can use the results
of these runs to build a surrogate model of the computer simulation model. The
absence of noise is the key difference between computer simulation experiments
and experiments in the real world. Since there is no variability in the results of
computer experiments, optimal designs, which are based on reducing the variance of
some statistic, have questionable utility. Replication, usually a ‘good thing’, is clearly
undesirable in computer experiments. Thus, a new approach to experimentation is
necessary. Published in 2009 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

‘

In the 21st century computer simulation experiments will replace physical experiments for many appli-
cations.’ With this provocative assertion, Professor Jeff Wu began his keynote address at an international
conference on statistics in Tianjin, China in the summer of 2006. At first blush this seems like hyperbole

for emphasis. But there are several reasons why it may not be as much an overstatement as it seems. For
one, as quality, reliability, and productivity improvement efforts move into the design phase, the use of
computer models becomes more attractive. This is because in design phase the creation of prototypes can
be expensive and time consuming. Using computer models avoids the necessity of building a large number
of prototypes. Another reason is that some systems do not allow for physical experimentation. For example,
many people would be outraged by experimentation with hospital procedures in an intensive care unit.
As another example, the national economy is an important system to understand, yet deliberate factorial
experimentation would be infeasible. In both of the above cases, a computer simulation model could provide
substantial insight.
A short list of current applications of computer simulation models includes circuit simulation, stress

analysis testing, hurricane tracking, and turbulent flow studies. Currin et al.1 describe an integrated circuit
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simulation that was also presented and studied in Currin et al.2 and Sacks et al.3. Allen et al. 4 describe a finite
element analysis (FEA) model used for designing an ‘interference fit’ plastic seal for which the response of
interest was the insertion force needed to fully engage the tongue with the groove. Modeling of short-term
and long-term weather is another important application area for computer simulation. Several papers on
the modeling and analysis of computer hurricane models include Johnson and Watson5, Iman et al.6, and
Watson and Johnson7. Xiao et al.8 use computational fluid dynamics (CFD) models to simulate turbulent
mixing in jet engines; these models are used to predict turbulent mixing properties in a physical experiment.
Similar to physical experiments, the researcher performs a computer experiment by making a number of

systematic changes to the parameters of a computer simulation model of the system under study. Computer
experiments provide several advantages over physical experimentation. Computer experiments only require
the programming of the model and are limited only by the speed of the processor(s). Prototypes used for
physical experimentation are generally expensive and require substantial time to build. Computer experiments
are comparatively cheap, only involving the cost of a computer and the time it takes to build the model.
However, the one disadvantage of the computer experiments is their questionable ability to accurately predict
the real world. Physical experiments have empirical validity, but whether a computer model is an adequate
surrogate for the real system is an important consideration.
Current research addresses the calibration, verification, and validation of computer experiments via sophis-

ticated statistical techniques. These three processes are critical to the delivery of computer simulation models
that are adequate for predicting the behavior of real processes.
Model calibration deals with the issue of choosing the model parameters of a computer code so that the

physical data are well approximated by the computer model. This problem is addressed in Park9, Craig
et al.10, and Kennedy and O’Hagan11. Discrepancies between the output results from the computer model and
physical experiments are analyzed and the computer model is often tuned until the measure of discrepancy
is at or below a specified value. There are several different metrics for discrepancy. Examples can be found
in Trucano et al.12 and Pilch et al.13.
While model validation and verification are often combined, we prefer to define them separately. Model

verification involves comparing computer-generated output with a theoretical mathematical analysis of the
system. Model validation aims to determine the degree to which data from a computer model approximate
the data generated from the physical system it is representing. Model verification is done either prior to the
model validation or iteratively with model validation. Roache14, Hills and Trucano15, and Pilch et al.13 all
present detailed discussion of various methods and strategies used for model verification.
Model validation is key to the development of a computer model. Bayarri et al. 16 recommend a framework

for the validation of computer models. In this paper the authors state that the most important question in
evaluation of a computer model is whether or not the computer model adequately represents reality. A
model that adequately represents reality is one that provides sufficiently accurate predictions for the intended
use. The authors also state that, ‘in practice, the processes of computer model development and validation
often occur in concert; aspects of validation interact with and feed back to development; for example, a
shortcoming in the model uncovered during the validation process may require a change in the mathematical
implementation.’ While this phase of the model development is crucial, there are many issues surrounding
the validation process as discussed in Berk et al.17. Sometimes it may be impossible to collect physical data.
In these cases, alternate methods for validation must be used as described in Berk et al.17, Sacks et al. 18,
and Santner et al.19

Assuming that a computer simulation has been calibrated, verified, and validated, it can be used to
make predictions about the behavior of the physical system it models. The use of designed experiments is
equally important when studying a computer simulation as it is for understanding physical systems. Properly
planned experimentation on a computer simulation is necessitated by the complexity of the underlying
model. Computer simulations, while cheap compared with physical experiments, can often have very long
run times. Allen et al.4 point out that, ‘even though FEA is intended to reduce costs compared with physical
experimentation, finite element experiments are often time consuming and costly.’ Moreover, computer
simulations often depend on many variables. Exploring a multidimensional factor space requires efficient
experimentation. For graphical exploration in this multidimensional space it is convenient to develop a

Published in 2009 by John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2009; 25:515–524
DOI: 10.1002/qre



THE DESIGN AND ANALYSIS OF THE GAUSSIAN PROCESS MODEL 517

simpler surrogate for the computer simulationmodel. A useful surrogate model is a closed-formmathematical
expression that relates the input variables to the output response. Using a surrogate model of the computer
simulation model allows for very fast (microsecond) predictions of new responses at design points not
yet tested. The surrogate model then provides a cheap alternative to running the computer code, which
may take hours or days. However, using a surrogate model requires verification that it provides adequate
approximations of the computer simulation model.
Design augmentation is a way to provide this verification. Design augmentation involves adding runs

to a design to gain extra knowledge. One typical goal of augmentation is to locate an optimum response.
Another is to reduce the uncertainty of prediction in a region of interest. Design augmentation is common in
physical experimentation, but there is limited literature discussing how to augment designs for deterministic
computer simulation. Sacks et al.3 discuss a sequential design algorithm for the Gaussian Process integrated
mean-square error (IMSE) criterion. They mention the theoretical hardships associated with this technique
and describe an algorithm that overcomes some of the pitfalls. Johnson et al.20 discuss a design augmentation
technique for space-filling designs used to fit high-order polynomials. They demonstrate the effectiveness
of this design augmentation technique with respect to the prediction variance properties of the polynomial
design.
The Gaussian Process model is a surrogate model that is widely used in the computer simulation research.

In this paper, we describe the Gaussian Process model and present an example of its use. In Section 2, we
discuss the Gaussian Process model and its prediction properties. In Section 3, we discuss designs used for
computer simulation models and their pros and cons. In Section 4, we demonstrate an application of the
design and analysis of a computer simulation via a test function. In Section 5, we present conclusions.

2. THE GAUSSIAN PROCESS MODEL

Gaussian Process (GASP) models are a currently popular choice for use as a surrogate for computer simu-
lation models. They are flexible, meaning that they can fit a wide variety of surfaces, from very simple to
quite complex. They are parsimonious in the number of parameters. For the correlation structure we use,
the GASP model has only as many parameters as variables in the model plus a parameter to estimate the
mean and another to estimate variance. A desirable feature of these models is that there is no error for input
settings where you have observed responses. That is, GASP models interpolate the data.
Sacks et al.3 proposed the GASP model for use as a surrogate for simulation output results. The GASP

model is a statistical model adopted from the spatial statistics literature. For a specific choice of the correlation
function, the Gaussian Process model is the kriging model21. The GASP model treats the deterministic
output response as a realization of a random stochastic process; specifically a multivariate normal. The
output response is represented as an n×1 data vector y(x) with mean �1n (also n×1) and covariance

Var(y)=�2 R(X,�)

where R(X,�) is an n×n correlation matrix. The correlation matrix R(X,�) is a function of the design
space, design points, and unknown thetas. There are a variety of forms that can be used for this correlation
function (see Sacks et al.3), but we will use the following form:

Ri j (X,�)=exp

(
−∑

k
�k(xik−x jk)

2
)

where �k ≥0. If �k =0, then the correlation is 1.0 across the range of the kth factor and the fitted surface is
flat in that direction. Large �k correspond to low correlation in the kth factor and the fitted surface will be
very bumpy (or wiggly) in that direction. The parameters �,�, and � may be fit using maximum likelihood.
If we represent the maximum likelihood estimates by �̂, �̂, and �̂, the prediction equation is

ŷ(x)= �̂+r ′(x, �̂)R−1(X, �̂)(y− �̂1n)
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where ri (x, �̂) is an n×1 vector of estimated correlations of the unobserved y(x) at a new value of the
explanatory variables with the observations in the data, y(x). The form of ri (x, �̂) is

ri (x, �̂)=exp

{
−

p∑
k=1

�k(xk−x jk)
2
}

Note that r has same form as the correlation matrix. If we replace the vector x above with the matrix X
of the data, then r becomes R, which cancels with R−1. Hence, ŷ(x) equals y and thus the GASP model
interpolates the data.
For the GASP model, the relative prediction variance discounting error in estimating parameters is

Var(ŷ(x))

�2
=1−r ′(x, ĥ)R−1(X, ĥ)r(x, ĥ)+ (1−1′R−1(X, ĥ)r(x, ĥ))2

1′R−1(X, ĥ)1

Once results are available, the prediction equation and the variance of prediction are useful for building
plots of the predictions as a function of each simulation parameter.

3. DESIGN OF EXPERIMENTS FOR COMPUTER SIMULATIONS

Computer experiments are different from physical experiments in that they have no random error and they
deal with functions that are thought to have more complex behavior than can be adequately modeled by
a low-order polynomial. As a result of these differences, the design approach for computer experiments
cannot use the same principles that guide the scientist in creating the physical experiments.
Because there is no random error involved in computer experiments, replication is not desirable. In

fact, replicated points cause the correlation matrix, introduced in the previous section, to become singular.
Hence, replication for GASP models creates problems. Because the underlying system is deterministic,
randomization and blocking are also no longer useful.
For physical experiments, low-order polynomial functions are generally adequate for model fitting and

response optimization. But for computer experiments, low-order polynomial approximation may not be
adequate. Hence, traditional designs based on minimizing variance with respect to lower-order Taylor series
expansions may not be useful since there is no variance to minimize.
These inherent differences between computer and physical experiments have led to the development

of families of experimental designs specifically for use in computer modeling. These designs are known
as space-filling designs. Examples of space-filling designs include the sphere packing design, the Latin
Hypercube design, the uniform design, the maximum entropy design, and the GASP IMSE design.
The sphere packing design, or maximin design, maximizes the minimum distance between pairs of designs

points. This design was developed in Johnson et al. 22. The sphere packing design maximizes the minimum
inter-site distance and is specified by

max
D

min
u,v∈Dd(u,v)= min

u,v∈D∗
d(u,v)

where d(u,v) is a distance that is greater than or equal to zero, and D represents the design points. Examples
of applications of the maximin designs can be found in Jank and Shmueli23, Liefvendahl and Stocki 24, Chen
et al.25, Roux et al.26, and Bursztyn and Steinberg27. Sphere packing designs are impressive at filling space,
but their drawback is that they do not maintain uniform spacing when projecting into a lower-dimensional
space. This is a desirable property for computer experiments because, as in physical experiments, many
factors often prove to be unnecessary. Removing these factors from the design is the same as projection.
If, as a result of this projection, two design points fall on top of each other, the result is pseudo-replication
and the GASP model for this smaller number of factors will have a singular correlation matrix.
The Latin hypercube design was developed by McKay et al.28. It is defined in Fang et al.29 as, ‘A Latin

hypercube design (LHD) with n runs and s input variables, denoted by LHD(n,S), is an n×s matrix, in
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Figure 1. Examples of 2 factors, 10 run designs for 5 space-filling designs

which each column is a random permutation of {1,2, . . . ,n}.’ Examples of applications of LHDs can be
found in Bayarri et al.16, Welch et al.30, Mease and Bingham31, Tyre et al.32, and Storlie and Helton33.
The Latin hypercube designs are by far the most widely used. Because of their construction they project
uniformly onto each factor so pseudo-replication is never a problem. However, these designs do not fill the
space as well as the sphere packing design.
The uniform design was created by Fang34 and Wang and Fang35. The goal of uniform design is to

find the set of points that most closely approximates a continuous uniform distribution. A measure of how
close a given set of points comes to a perfect approximation is discrepancy. For a given number of points,
the optimal uniform design minimizes the discrepancy. Fang29 defines discrepancy. Let F(x) be a uniform
distribution on Cs (the unit cube) and FDn(x) is the empirical distribution of the design Dn ,

FDn (x)=
1

n

n∑
k=1

{xk1≤ x1, . . . , xks ≤ xs}

where x=(x1, . . . , xs) and I {A}=1 if A occurs, or 0 otherwise. In this paper, the software used to create
designs displayed in Figure 1 uses the centered L2 discrepancy found in Hickernell36. The L2 discrepancy
can be treated as an objective function which can be minimized in continuous space. An example of the
application of a uniform design is found in Bursztyn and Steinberg27. Uniform designs are clearly useful
for approximating the integral of an arbitrary function. It remains unclear how well they perform when the
function to be fit is the GASP model.
The maximum entropy design, developed in Shewry and Wynn37, uses entropy as the optimality criterion.

Entropy is a measure of the amount of information contained in a data set. They show that the expected
change in information is maximized by the design D that maximizes the entropy of the observed responses
at the points in the design. If the data are assumed to be from a normal (m,�2R) distribution, where R is

Ri j =e

(
−

∑
k �(xik−x jk)2

)

which is the correlation of responses at two design points, then the design maximizes the determinant of
R(|R|) (Sacks et al.3). An application of this design can be found in Ko et al.38. The maximum entropy design
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Figure 2. Example of two LHDs demonstrating the need for a secondary criterion

is analogous to the D-optimal design for GASP models. Applications of these designs are not widespread,
but they could be useful because of the direct connection of their objective function to the GASP model.
The GASP IMSE was proposed by Sacks et al.3. The IMSE criterion chooses the design to minimize

∫
k
MSE[ŷ(x)]dx

where MSE[ŷ(x)] is given by the prediction variance equation shown in Section 2. Like the maximum
entropy designs, these designs have an objective criterion that is directly connected to the GASP model to
be fit. One problem with these designs is that as the number of factors increases, they require substantially
more points to do an adequate job of filling space.
Figure 1 shows plots of two factor, 10 run designs for sphere packing, Latin Hypercube, Uniform,

Maximum entropy, and GASP IMSE designs.
Currently, the most popular design for computer experiments is the LHD. We use this design for our

example in the next section to illustrate the design and analysis of a computer experiment. As previously
mentioned, in an LHD each column is a permutation of the numbers from 1 to n. Thus, there are poten-
tially a huge number of LHDs for any given number of factors and runs. To make the design unique, a
secondary criterion is usually specified. Examples are maximin LHDs that maximize the minimum distance
between points, and orthogonal LHDs that minimize the column correlations. Note that using random LHDs
may not be a good idea as seen by examining Figure 2.

4. EXAMPLE OF THE DESIGN AND ANALYSIS OF A COMPUTER EXPERIMENT

In the introduction, we gave several examples of computer experiments. They include FEA models, CFD
models, and circuit simulation models. These models are often based on a large set of differential equations
that are simultaneously evaluated. One way to investigate the properties of designs and analyses for computer
simulations is through a known test function. This test function acts in place of a computer simulation
model. The test function in this example is the F quantile function. The noncentral F cumulative distribution
function (cdf) is

F(x |v1,v2,�)=
∞∑
j=0

⎛
⎜⎜⎜⎝

(
1

2
�

)2

j ! e−�/2

⎞
⎟⎟⎟⎠ I

(
v1x

v2+v1x

∣∣∣∣ v1

2
+ j,

v2

2

)
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Figure 3. Percent error summaries of each of the four design and analysis cases using the F quantile test function. This
figure is available online at www.interscience.wiley.com/journal/qre

where I (x,a|b) is the incomplete beta function with parameters a and b. The function can be found in
Johnson and Kotz39. A graph of the function, with noncentrality parameter, �=10, is shown in Figure 3.
The noncentral F cdf provides the probability of observing a value more extreme than x , given �1, �2, and
�. The F quantile function is the inverse function of the F cdf. That is, it provides the critical value, x ,
given p,�1,�2, and �.

The usefulness of any computer simulation experiment depends on both the design and the model that
is fit. We consider two designs and two modeling approaches. The two designs are the maximin LHD and
a D-optimal design for fitting the full cubic model. Both designs include the four factors, which are the
parameters of the F quantile function (p,�1,�2, and �) and both have 35 points. The two models are the
GASPmodel and the cubic polynomial response surface model. Note that the cubic model has 35 parameters,
hence the least-squares fit of the 35 point design will interpolate the data. The combinations of design and
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model lead to the four test cases below:

• LHD-GASP: Latin Hypercube design fit with the GASP model.
• LHD-CP: Latin Hypercube design fit with the cubic polynomial model.
• RSM-GASP: D-optimal design fit with the GASP model.
• RSM-CP: D-optimal design fit with the cubic polynomial model.

We evaluate the design of each case using percent error. To do this we first created a 204 point grid of
parameter values for p,�1,�2, and �. We used the prediction model derived from each of the four cases to
predict the value of these 160 000 points in the design space and calculated the percent error. Note that since
this is a known function, we can calculate the exact F-quantile for each of these 160 000 points.
Figure 3 displays the results graphically and numerically. The left-most histogram in Figure 3 (percent

LHD error) shows the percent error for the LHD fit with the GASP model (LHD-GASP). Moving to the
right, the next histogram in Figure 3, labeled Percent RSM error, shows the percent error generated by
the D-optimal design fit with the cubic polynomial model (RSM-CP). The next histogram, labeled Percent
RSM/GASP Error, shows the percent error for the D-optimal design fit with the GASP model (RSM-GASP).
The right most histogram, labeled Percent LHD/Cubic Model Error, shows the percent error of the LHD fit
with the cubic polynomial model (LHD-CP). From the histograms and the descriptive statistics below them,
we conclude that the LHD combined with the GASP model far outperforms the other alternatives. Note,
however, that there is a strong interaction involving the design and analysis strategy. The worst performing
combination also involves the LHD but fit with the cubic regression model.

5. CONCLUSIONS

The design and analysis of computer experiments are research areas with growing impact. Our goal in this
paper was to provide an accessible introduction to the area. An example demonstrates that traditional design
and analysis techniques may not perform as well as the newer methods discussed. Our example employed
a fairly well behaved test function. It is notable that an LHD fit with a GASP model performed much better
than an optimal design for a low-order polynomial combined with a least-squares fit of that polynomial.
Finally, it is important to keep in mind the strong relationship between the design and the model used to

fit the data. The design and the model should match. The LHD worked best when coupled with a GASP
model. When coupled with a cubic regression model, it performed worst of all. Similarly, the D-optimal
design for a cubic model worked better when the cubic model was fit. Results were less desirable when
fitting a GASP model to a D-optimal design.
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Paper

Jones and Johnson (JJ) offer a clear and helpful introduction to ideas and methods currently used in the
design and analysis of computer experiments, especially those based on Gaussian Stochastic Process (GaSP)
models. I will briefly mention some additional points of importance regarding analysis (related to their
presentation in Section 2), design (Section 3), and a final note on computing.

1. ANALYSIS

JJ describe prediction derived from aGaSPmodel, concluding Section 2 with the form of the point predictions
and relative prediction variances based on ‘plugging in’ the maximum likelihood estimates of �, �, and �’s
as if they were the actual parameter values. This approach is relatively simple, and often works quite well in
practice. Much recent work is based on a full Bayesian approach, including the specification of priors for the
GaSP parameters, and resulting in predictions that more fully account for parameter uncertainty. While the
required computing is more intensive than with the ‘plug-in’ approach, it is generally quite feasible using
modern Bayesian computing techniques, and software for accomplishing this is now widely available (e.g.
GEM-SA, available at http://ctcd.group.shef.ac.uk/gem.html).
Many computer models produce outputs that are functional, rather than scalar-valued. For example, climate

model output is indexed both by time and space, a common feature of models of dynamic systems. In
some cases, it may be adequate to reduce the functional outputs to one or a few scalar-valued variables so
that methodology similar to that described by JJ can be employed. However, these relatively few summary
values must contain enough information to accurately reconstruct the functional output if the surrogate is
to be used for prediction. Fortunately, the functional outputs of many models have similar overall structure
from run to run, and techniques based on principal component representations can be very effective; see for
example Higdon et al.1.
Computer models often describe functions that are fairly well-behaved over most of the design region,

but may be more erratic here and there. For example, if one input is temperature, the behavior of a physical
system including water may be reasonably predictable above or below the freezing point, but the transition
between the two regions may behave in a substantially different fashion. In other cases, models display the
beginning of asymptotic behavior in some inputs; outputs may be quite sensitive to changes in small values
of x , but become relatively stable toward the upper end of the input’s range. When this occurs, stationary
GaSP covariance structures such as the one described by JJ, and used in most applications of GaSP models
to computer experiments, can sometimes lead to predictions of poor quality. However the prior specification
of a more appropriate non-stationary form is usually impractical. Drignei and Morris2 present one solution
to this problem for computer models that evaluate systems of differential equations, in which a stationary
GaSP is used to model intermediate results called numerical truncation errors that in turn are nonlinearly
transformed to output predictions, effectively allowing the data to determine the form of an appropriate
non-stationary process. Gramacy and Lee3 develop a more general purpose approach in which the input
space is partitioned and a (potentially) different stationary GaSP is used in each partition.

Copyright q 2009 John Wiley & Sons, Ltd.



526 DISCUSSION

2. DESIGN

To augment JJ’s description of the maximin (Mm) distance criterion and the entropy criterion, it is worth
noting that these two are actually closely related, as discussed in Johnson, Moore, and Ylvisaker (1990,
JMY). Briefly and in JJ’s notation, the entropy criterion leads to the selection of a design that maximizes
the determinant of the prior n×n correlation matrix at the design points, R (requiring that �’s be known
or that values for them be stipulated for design purposes). The Mm distance design criterion, as defined
by JMY, leads to the selection of a design for which the smallest Euclidean distance between two design
points is maximized and, from among the designs that accomplish this, the number of pairs of design points
separated by this distance is minimized. (Euclidean distance is tied to the correlation function used by JJ;
other distance measures are associated with other correlation forms.) The theory presented by JMY shows
that as the correlation over any fixed distance becomes weak (i.e. the �’s in JJ’s notation approach infinity),
the Mm-optimal design is also entropy-optimal in the limit. So, especially in cases where it is expected that
all inputs have substantial influence on the output, the Mm criterion may be a good substitute for the entropy
criterion, which requires � values to be specified, and for which the computing required for construction of
an optimal design can be relatively demanding.
As noted by JJ, sequential computer experiments are often employed to determine the input values that

lead to maximized or minimized output. Design and analysis are necessarily combined in this context since
interim analyses are used to guide the evolving experimental design. The sequential expected improvement
criterion described by Jones et al.4 is developed for this situation.

3. COMPUTING

The degree of the computational burden involved in estimating GaSP parameters, or finding an optimal design
via the entropy criterion, is largely determined by the size of the matrix R (n×n). The ‘inner loop’ of these
calculations involves the computing of an inverse and/or determinant of this dense and often numerically
ill-conditioned matrix. As a result, it can be very difficult or impossible to perform unmodified GaSP-related
calculations for data sets of more than a few hundred model runs. While this is usually not a major limitation
for the computer models that are expensive to execute, it is often practical to generate far more runs when
the model executes quickly, and large computer experiments can be required to adequately characterize
functions with a large number of active inputs. Research leading to practical GaSP-like predictions in high
dimension, based on relatively large data sets, will be a valuable contribution to computer experiments
methodology.
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We congratulate Jones and Johnson for their interesting article. They have presented a useful survey of the
design and analysis of Gaussian process (GP) models for computer experiments, along with a case study. As
commonly done in the literature, this article assumes that all the factors involved in a computer experiment
are quantitative. However, computer modeling can also include qualitative factors. Consider, for example,
the data-center computer experiment described by Schmidt et al.1 The configuration variables that determine
the thermal properties of a data center can be either quantitative or qualitative. Examples of quantitative
variables are rack temperature rise, rack heat load, and total diffuser flow rate. Examples of qualitative
variables are diffuser location, return air vent location, and rack heat load non-uniformity. To complement
this article, we report some new GP models with qualitative and quantitative factors, followed by a brief
discussion of the related design issue.
In Qian et al.2, a general approach is proposed to build a single GP model across different values of

qualitative and quantitative factors so as to borrow strength from all the observations. Suppose a computer
experiment involves factorsw=(xt,zt)t, where the factors in x=(x1, . . . , xI )t are quantitative, and the factors
in z=(z1, . . . , z J )t are assumed to be categorical, but not ordinal. The response y(w) at the input value w
is assumed to be

y(w)=btf(w)+�(w) (1)

where f(w)=( f1(w), . . . , fl(w))t is the vector of l pre-specified functions (e.g. polynomials) and b=
(�1, . . . ,�l)

t is the vector of unknown coefficients. The residual �(w) is assumed to be a GP with mean
zero, variance �2, and some correlation function. Construction of a ‘valid’ correlation function for �(w) is
not straightforward because such a function needs to be defined in the space involving both qualitative and
quantitative factors and the notion of ‘distance’ is absent for categorical factors.
Now we discuss the construction of correlation functions for �(w). First, consider the case with one

qualitative factor, z1, with m1 levels, denoted by 1, . . . ,m1. To define the correlation function of �(w),
where w=(xt, z1)t, let �u(x)=�((xt,u)t), for u=1, . . . ,m1, and envision a mean-zero m1-variate process
e∗(x)=(�1(x) . . .�m1(x))

t. Then we only need to define correlation and cross-correlation functions for e∗(x).
A convenient approach is to assume that e∗(x)=Ag(x), where A=(a1, . . . ,am1)

t is an m1×m1 non-
singular matrix with unit row vectors (i.e. atuau =1 for u=1, . . . ,m1), and g(x)=(�1(x), . . . ,�m1

(x))t, where
�1(x), . . . ,�m1

(x) are independent stochastic processes with the same variance �2 and correlation function
K/. Then for input values wi =(xti , z1i )

t (i=1,2), the correlation function is

cor(�(w1),�(w2))=atz11az12K/(x1,x2) (2)

Let �r,s =atras , where r,s=1, . . . ,m1. Then T1=(�r,s)=AAt is an m1×m1 positive-definite matrix with
unit diagonal elements (abbreviated to PDUDE). Next consider the general case with J qualitative factors
z=(z1, . . . , z J )t, where z j has m j levels, denoted by 1, . . . ,m j , for j =1, . . . , J . Here a correlation function
for �(w) can be constructed as

cor(�(w1),�(w2))=
J∏

j=1
[� j,z j1,z j2K/ j

(x1,x2)] (3)
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Table I. The matrix B

Run # x1 x2 x3 x4 x5

1 1 1 1 1 1
2 1 3 3 5 7
3 1 5 5 8 4
4 1 7 7 4 6
5 1 8 8 7 2
6 1 6 6 3 8
7 1 4 4 2 3
8 1 2 2 6 5
9 3 1 3 3 3
10 3 3 1 7 5
11 3 5 7 6 2
12 3 7 5 2 8
13 3 8 6 5 4
14 3 6 8 1 6
15 3 4 2 4 1
16 3 2 4 8 7
17 5 1 5 5 5
18 5 3 7 1 3
19 5 5 1 4 8
20 5 7 3 8 2
21 5 8 4 3 6
22 5 6 2 7 4
23 5 4 8 6 7
24 5 2 6 2 1
25 7 1 7 7 7
26 7 3 5 3 1
27 7 5 3 2 6
28 7 7 1 6 4
29 7 8 2 1 8
30 7 6 4 5 2
31 7 4 6 8 5
32 7 2 8 4 3
33 8 1 8 8 8
34 8 3 6 4 2
35 8 5 4 1 5
36 8 7 2 5 3
37 8 8 1 2 7
38 8 6 3 6 1
39 8 4 5 7 6
40 8 2 7 3 4
41 6 1 6 6 6
42 6 3 8 2 4
43 6 5 2 3 7
44 6 7 4 7 1
45 6 8 3 4 5
46 6 6 1 8 3
47 6 4 7 5 8
48 6 2 5 1 2
49 4 1 4 4 4
50 4 3 2 8 6
51 4 5 8 5 1
52 4 7 6 1 7
53 4 8 5 6 3
54 4 6 7 2 5
55 4 4 1 3 2
56 4 2 3 7 8
57 2 1 2 2 2
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Table I. Continued

Run # x1 x2 x3 x4 x5

58 2 3 4 6 8
59 2 5 6 7 3
60 2 7 8 3 5
61 2 8 7 8 1
62 2 6 5 4 7
63 2 4 3 1 4
64 2 2 1 5 6

where T j =(� j,r,s) is an m j ×m j PDUDE. One popular choice of K/ j
(x1,x2) is exp{−∑I

i=1�i j

(xi1−xi2)p}.
Next we discuss the estimation of the foregoingmodels. Suppose the data consist of n different input values,

Dw =(w0
1, . . . ,w

0
n)

t, and the corresponding responses, y=(y1, . . . , yn)t. The parameters to be estimated are
b=(�1, . . . ,�l)

t, �2, /=(�1, . . . ,�I )
t, and T={T1, . . . ,TJ }. We use the method of maximum likelihood for

estimation, and denote the resulting estimators by b̂, �̂2, /̂, and T̂. The log-likelihood of y is proportional to

(− 1
2 )[n ln�2+ ln |R|+(y−Fb)tR−1(y−Fb)/�2] (4)

where F=(f(w0
1), . . . , f(w

0
n))

t is an n×l matrix;R is the correlation matrix, which depends on the correlation
parameters / and T, and its (i, j)th entry is cor(�(w0

i ),�(w
0
j )). The estimates can be obtained by iterating

between two steps:
Regression fitting: Given /̂ and T̂, b̂ and �̂2 are obtained as follows:

b̂=(Ft[R(/̂, T̂)]−1F)−1Ft[R(/̂, T̂)]−1y and �̂2=(1/n)(y−F̂b)tR−1(y−F̂b)

Correlation fitting: Given b̂ and �̂2, let ui =(yi − b̂tf(wi ))/̂�, for i=1, . . . ,n. Then fit the proposed GP model
with mean 0, variance 1, and correlation matrix R to the data u=(u1, . . . ,un)t, and estimate / and T using
semi-definite programming techniques (Wolkowicz et al.3).
The empirical best linear unbiased predictor (BLUP) of y at the point w0 is

ŷ(w0)= b̂tf(w0)+ r̂t0R̂
−1(y−F̂b) (5)

where r̂0=(ĉor(y(w0), y(w0
1)), . . . , ĉor(y(w0), y(w0

n)))
t and this predictor smoothly interpolates all the

observed data points.
Now we report a new type of design, called sliced space-filling designs (SSFDs), that accommodate both

qualitative and quantitative factors, taken from Qian and Wu4. First we define a special type of orthogonal
arrays (OAs). The definition of OAs can be found in Wu and Hamada5. Let B be an OA(N1,k,s1, t).
Suppose that the N1 rows of this array can be partitioned into � subarrays each with N2 rows, denoted
by Bi , and the s1 levels of B can be collapsed into s2 levels with s1>s2 according to a rule 	. Further,
suppose that Bi is an OA(N2,k,s2, t) if the s1 levels of B are collapsed according to 	. Then B is a sliced
orthogonal array.
Let B be a sliced orthogonal array defined above. Construction of an SSFD is as follows. The array B

is used to generate an OA-based Latin hypercube design D6 for the quantitative factors, where the points
corresponding to Bi are denoted by Di . Then Di ’s are associated with different level combinations of the
qualitative factors. The array D is an SSFD. The proposed designs are intuitively appealing. They possess
good space-filling properties when collapsed over the qualitative factors. Also, for any qualitative factor-level
combination, the design points for the quantitative factors achieve uniformity in low dimensions.
For illustration, consider an example with five quantitative factors x1 to x5 and two qualitative factors z1 and

z2 at two levels − and +. Table I presents a sliced orthogonal array B, where B11, B12, B21, B22 correspond
to runs 1–4, 9–12, 17–20, 25–28; runs 57–60, 49–52, 41–44, 33–36; 5–8, 13–16, 21–24, 29–32; and runs
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Figure 1. Bivariate projections among x1, x2, x3 of D11. This figure is available in color online
at www.interscience.wiley.com/journal/qre

61–64, 53–56, 45–48, 37–40, respectively. We use B to construct an OA-based Latin hypercube design
D for x1 to x5. Now partition D into Di j with points corresponding to Bi j , where i and j are 1 and 2.
Finally D11, D12, D21, D22 are associated with the level combinations (z1, z2)=(−,−), (z1, z2)=(−,+),
(z1, z2)=(+,−), and (z2, z2)=(+,+), respectively. For illustration, the bivariate projections of D11 are
given in Figure 1, where the points achieve uniformity on 4×4 grids in two dimensions.
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We commend Jones and Johnson for providing a clear and concise introduction to the quickly expanding
field of statistical design and analysis of computer experiments. Our own experiences confirm that computer
models are widely used in many areas of science and engineering, and the need to understand the performance
of these models is critical. This is particularly true in light of the fact that with improving model fidelity,
they are increasingly used to certify complex engineering systems with decreasing reliance on expensive
physical experiments.
As the authors indicate, many computer models are sufficiently complex that only a small budget of

model runs is allowed for any given application. Therefore, concepts of statistical experiment design become
relevant for the purpose of intelligently selecting runs to inform the development of a statistical surrogate
for model output—often referred to as an emulator—that will serve as the basis for statistical inference.
There are several practical issues with emulating any computer model. Is the standard Gaussian Process
(GP) model a good choice for general applications? What mean and covariance structure should one choose?
How should the budget of runs be expended? The authors addressed these issues effectively in their article.
We provide some additional perspective in what follows.
Extensive literature (see Sacks et al.1, Santner et al.2) and experience suggest that the GP model is

an ideal candidate for building an emulator. Ben-Ari and Steinberg3 conducted an extensive simulation
study comparing the GP model with a large class of competing models and found that GP-based emulation
performs well in many situations. There are several practical considerations that must be addressed when
using the GP model. Arguably the most important is how many runs are needed to adequately emulate
the computer model. Loeppky et al.4 argue that the often quoted rule of ‘n=10d’ (i.e. 10 model runs per
dimension) generally provides sufficient information for emulation. The design chosen for the example
of this article comes close to attaining this target, at 8.75d . In addition to run size considerations, it is
important to calculate diagnostics that directly assess the quality of model fit. The root mean square error
(RMSE) is an obvious criterion; however, holdout samples are often unavailable in practice. In such cases
the cross-validated (CV)-RMSE (see Welch et al.5) and the individual CV residuals are useful.
The remainder of this discussion is structured to draw attention to additional connections between tradi-

tional response surface methodology (RSM) and analysis of computer experiments using the GP model.
In particular, we focus on two basic components of response surface methods (see Box and Wilson6) for
which recent developments have made analogues available for analysis of computer experiments: sensitivity
analysis and sequential optimization. Sensitivity analysis refers to measuring the impact of input variations
on output uncertainty. In particular, output uncertainty can be decomposed into main and interaction effects
analogous to traditional analysis of variance (ANOVA), and sensitivity indices measuring the contribu-
tion of these individual effects to the total output variance can be computed (see Saltelli et al.7, Oakley
and O’Hagan8, Schonlau and Welch9). Sequential optimization of computer models based on the expected
improvement criteria has proven efficient and effective (see Jones et al.10). These optimization algorithms
are global in the sense that they explore regions of the input space in which prediction is poor (potential for
optima), while focusing in on regions of space containing optima with high probability.
Goodness-of-fit diagnostics, sensitivity analysis and sequential optimization are explored with two anal-

yses of the example using the F-quantile function presented in this article. The first analysis (referred to as
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ML for Maximum Likelihood) adopts a constant mean and a power exponential covariance structure with
smoothness parameters fixed at 2.0 (infinitely differentiable realizations). All parameters (mean, variance,
correlation range) are fit using maximum likelihood (see Sacks et al.1). The second analysis (referred to
as FB for Full Bayes) adopts a zero mean (calculations are centered) and a power exponential covariance
structure with smoothness parameters fixed at 2.0. All parameters (variance, range) are sampled from their
joint posterior distribution based on a full Bayes analysis (see Higdon et al.11, Williams et al.12).
The CV-RMSE from the ML analysis is small (0.59); however, a plot of the CV residuals shows one

large value. This may indicate a problem with goodness-of-fit. This example has the benefit of holdout
calculations for assessing out of sample prediction quality. The RMSE is small at 1.44 (relative to a range of
62); however, further inspection shows that the maximum absolute error is 43. These values are consistent
with those obtained from the FB analysis, where the mean RMSE is 1.59 with a 99% credible interval of
(1.41, 2.23) based on 1000 posterior samples. The mean maximum absolute error is 46 with a 99% credible
interval of (43, 55). This presents additional cause for concern regarding emulator fidelity based on the
35-run design.
Figure 1 shows the main effect functions for the four inputs based on the FB analysis. In the FB analysis,

the main effect variation in probability p accounts for 65.3% of the total variation, while the denominator
degrees of freedom v2 accounts for an additional 9.5%. Table I presents the main, interaction and total effect
sensitivity indices based on the FB analysis. The total effect of an input is defined to be the amount of output
variance attributable to all effects involving that input. In particular, note the strong two-factor interaction
(21.1%) between v2 and p. ANOVA results based on a full-factorial design are presented, showing that the
35-run design with FB analysis is unable to correctly partition variance between the main effect of p and the
interaction effect between p and v2, although the variance summed over these two effects is approximately
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Figure 1. Main effect functions for the four inputs to the F-quantile function based on the FB analysis. The solid and
dashed lines are the posterior mean and pointwise ±2 standard deviation bounds, respectively
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Table I. Main (on-diagonal) and interaction (off-diagonal) effects for the four inputs to the
F-quantile function based on the FB analysis. Total effects for each input are presented

in the last column. ANOVA results are presented in boldface

v1 (%) v2 (%) p (%) � (%) Total effect (%)

v1 (%) 0.60 0.15 1.15 0.0 2.240.31 0.04 0.67 0.08

v2 (%) 9.46 21.08 0.09 31.319.49 54.54 0.10

p (%) 65.26 0.63 88.6532.88 0.34

� (%) 1.04 1.980.28

Iteration  1 2

1 2.0  2.0  0.99 2.0 

2 2.0  2.0  0.99 0.0 

3 9.575  2.0  0.99 1.99

4 2.0  2.0  0.99 2.0 
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Figure 2. Points added by the EGO algorithm (left panel); EI absolute (solid) and relative (dashed) criteria
as a function of iteration (right panel)

the same in both analyses. This confirms the inadequacy of the 35-run design for emulation in at least a
subspace of the input domain. In practice, it will not generally be possible to perform this ANOVA check of
the emulator-based sensitivity analysis due to the large number of direct model runs required. However, as
in this example, the observation of significant differences between ML- and FB-based sensitivity analyses
provides an indication of emulator inadequacy.
In the ML analysis, the maximum error occurs at (v1,v2, p,�)=(2.2,2.2,0.97775,1.95). In fact, the 100

largest absolute errors occur for (v2, p)=(2.2,0.97775), while v1 and � range from 2.2 to 7.4 and 0.65 to
1.95, respectively, consistent with results from the sensitivity analysis that v2 and p explain most of the
variation in the F-quantile function, while v1 and � are minor contributors. We note that the complexity in
the F-quantile function for ‘large p’ and ‘small v2’ (the F-distribution does not even have a variance for
v2≤4) would be more effectively emulated with a design strategy that sequentially adds points to an initial
set of runs for improving global fit (see Lam et al.13).
In addition to visualization one can also efficiently optimize the computer model sequentially. Figure 2

shows the results of applying the Efficient Global Optimization (EGO) algorithm of Jones et al.10, using the
Stochastic Process Analysis of Computer Experiments (SPACE) software provided by Dr. Matthias Schonlau
(http://www.schonlau.net/space.html), to maximize the F-quantile function over the assumed input domain.
The left panel gives the four points added by this algorithm, while the right panel shows the progression of
the expected improvement (EI) criteria. The values of v2 and p added by the EGO algorithm at each step

Copyright q 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2009; 25:535–539
DOI: 10.1002/qre



538 DISCUSSION

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

nominal coverage

em
pi

ric
al

 c
ov

er
ag

e

Figure 3. Plot of empirical coverage vs nominal coverage for the ML plug-in
predictor (dashed) and the FB predictor (dotted)

are identical (2.0 and 0.99, respectively). The first point added is actually the optimum, selected because
it is a good candidate for maximizing the output based on having large predicted response as well as large
prediction uncertainty. The next two iterates explore changes to � and v1, and the last iteration returns to the
vicinity of the optimum with values of both the absolute and relative EI criteria small enough to terminate
the algorithm.
One of the major concerns with the GP is estimation of the parameters. The authors discuss the ML

estimator, and indeed this estimator is frequently applied in practice. Furthermore, the ML estimator is often
‘plugged-in’ to the kriging prediction and variance formulas for the purpose of computer model emulation
at unsampled inputs; however, it is well known that plug-in predictors tend to drastically underestimate
the prediction error. As an alternative, an FB analysis generally provides superior coverage as parameter
uncertainty is accounted for. Figure 3 illustrates these concepts on the 160 000 out of sample calculations
provided by the authors. In this example, the ML plug-in analysis does not achieve nominal coverage at
higher levels, while the FB analysis tends to be conservative although it is close to nominal coverage for levels
often chosen in practice (e.g. 90, 95, 99%). As an alternative to FB, Nagy et al.14 proposed an approximate
Bayesian solution that is based on the ML parameter estimates and avoids some of the potential problems
in properly tuning a Markov chain Monte Carlo sampler. Simulation studies show that this approximate
method attains a remarkable match between actual and nominal coverage across the complete spectrum
of levels.
We conclude by affirming the power of the GP model for emulation of computer models as pointed out by

the authors. However, as highlighted by the analysis of this discussion, it is necessary to carefully examine
multiple diagnostics for the purpose of assessing quality-of-fit. Cross validation is a useful technique in this
regard, and out of sample validation is desirable if additional model runs can be made available. Techniques
for conducting sensitivity analysis and sequential design for global prediction and optimization—analyses
fundamental to traditional RSM—have been developed for computer experiments. Therefore, the flexibility
of the RSM toolkit is available to practitioners who desire to take full advantage of GP emulation for computer
experiments. Finally, we note the advances in prediction methodology for GP emulation that provides
prediction uncertainties with good frequentist coverage properties, desirable in particular for external reviews
of results based on GP modeling.
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Discussion Discussion (4):Jones–Johnson
Paper

Jones and Johnson describe the use of computer simulators in experimentation, with emphasis on issues and
criteria for good design and on the Gaussian Process (GASP) approach to modeling the data. They have
done an excellent job of providing a readable and convincing introduction.
Computer simulation has become the experimental test bench in many scientific and engineering projects.

Kenett and Steinberg1 described a number of applications—design of an aircraft to improve structural
strength, crash-safety tests for automobiles, and achieving a robust high-pressure compressor for an aero-
nautic engine. Thomke2 provided an interesting business perspective on how computer experiments can
accelerate the development process. Another important area of application is sensitivity analysis3; I will
discuss an example later.
On the design side, Jones and Johnson discuss the implications of some special features that are common

in computer experiments. With a deterministic simulator, repeat runs at the same input settings produce
identical output and replication is foolish. Of course, not all simulators are deterministic. For example,
simulators of queueing systems invariably have stochastic components representing the arrival and service
times of jobs or customers. Results of these simulators thus include random errors (though often not with
equal variance) and here standard design methods, including replication, are useful4.
The experimental plans cited by Jones and Johnson use many levels for each factor; in the popular Latin

hypercube (LHC) design, the number of levels is equal to the size of the sample. Note the sharp contrast
to classical factorial designs, where typically just a few levels are used. The wisdom here is that the design
should look more or less uniform, not just at the multi-factor level, but also if it is projected onto just a
few ‘active factors’; unique levels can help to achieve this goal. There is also a logistic aspect, with a tacit
assumption that the levels of a simulator input, unlike those in a physical experiment, can be set on an
arbitrarily fine grid, with no cost or inconvenience. This is not always the case, however. I was recently
involved in a project where two of the factors described the geometry of the region under study and new
levels for either of those factors required preparation of a new finite element scheme for the simulator.
We used three levels for one factor and four for the other, thus needing 12 finite element grids. In another
application, on the design of an airplane wing, each experimental setting had to be translated, manually,
into a CAD diagram of the wing for use with the simulator. Here the size of the computer experiment was
limited by the engineering time needed for the CAD layout of each run, not by the simulation time.
Jones and Johnson emphasize the value of statistical design and analysis when the simulation time is long.

Are the ideas only relevant when the simulator is slow? In discussing these methods with engineers, I am
sometimes told that their simulator takes only seconds per run and that they can find solutions by simply
making massive numbers of runs. If the only goal is to find ‘the’ optimum factor settings, I agree that these
engineers can succeed quite well from exhaustive simulation. Often, though, other goals are also relevant,
such as identifying the most important factors, characterizing regions of good response (and not just point
optima), and finding robust operating regions (see Bates et al.5, for a discussion). In all of those settings,
good statistical design and analysis can play an important role even with fast run times. With many factors,
as Jones and Johnson note, a sequential approach may be needed: first find the influential factors and then
model their effects on the response. More work is needed on comparing design and analysis methods for the
initial screening phase. Are LHC designs really more effective for screening than orthogonal array designs
with a small number of levels for each factor?
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The GASP approach has proven very effective in modeling data from computer experiments. In the
example shown by Jones and Johnson, the GASP model with the LHC design clearly gives the best predic-
tions. Other non-parametric regression methods are natural alternatives to GASP models. Neumann Ben-Ari
and Steinberg6 compared GASP models with projection pursuit regression7 and MARS8 on a suite of
problems and found that GASP gave the best predictions.
As described by Jones and Johnson, the GASP approach models dependence of the response on the

input factors entirely via the correlation function, as in Welch et al.9. The original formulation of this
model by Sacks et al.10 also included some regression terms (e.g. linear regression on each factor). Are
the regression terms needed? Steinberg and Bursztyn11 provided some useful insight. They showed that the
dominant modes of variation captured by the correlation function in Section 2 of Jones and Johnson are
in fact low-degree polynomial trends. Linear dependence, if present, can be represented very well by the
correlation function, so no explicit linear regression terms are needed in the model. The same holds for
quadratic trends or first-order interactions. Large values of �k in the correlation function will occur when
there is strong linear dependence and need not correspond to non-smooth dependence, as stated by Jones
and Johnson. Frequently, good surrogate models can be obtained with no regression functions. There is one
important caveat. The correlation function will reflect smooth polynomial trends only within the range of
the experimental input data; it will not extrapolate those trends outside the range of the data. If extrapolation
is necessary, then inclusion of some additional ‘fixed effect’ regression functions is essential. An interesting
compromise in this direction is the ‘blind kriging’ approach of Joseph, Hung and Sudjianto12, which uses
an initial GASP model to identify regression functions for inclusion in a final model.
In spite of the empirical successes of GASP, some words of caution are important. In particular, I want

to stress that computer experiments, like all regression settings, can benefit greatly from statistical tools
for probing high-dimensional data, both graphically and by modeling. Often transformations, either to the
response or the predictors, can greatly improve predictions; don’t expect GASP to ‘automatically’ find them.
I will illustrate the above comments by reference to a recent collaboration to study migration of radionu-

clides into ground water from a nuclear waste repository. This was a ‘sensitivity analysis’ whose goal
was to identify which site properties (lithology, soil distribution coefficients, etc.) were most influential in
affecting the level of water contamination. The time frame was 10 000 years ahead; field data clearly cannot
capture that scale and computer simulation is the only route for scientific study. Ranges for many of the
factors in our study reflected wide scientific uncertainty as to their true values at the site. Further research
to better determine the values of the factors was costly, so it was important to concentrate such effort only
on the most influential factors. We used the RESRAD simulator developed at Argonne National Laborato-
ries (http://web.ead.anl.gov/resrad/). Our experiment included 27 input factors and 900 observations from
concatenating 3 LHC’s, each with 300 runs, an option built in to RESRAD. The results showed that there
was no migration at all at 76% of the input settings. Migration at the remaining sites had a strongly skewed
distribution. Efforts to directly predict the level of migration were heavily influenced by a small number
of settings with very large responses. We decided, in consultation with the engineers on the team, that the
analysis should focus on identifying the factors that were most highly predictive of having no migration at
all, rather than focusing on the extent of migration; after all, eliminating migration is the desired response.
Methods for classification thus replaced the GASP model as the main tools for analysis.
Computer simulation will continue to be a major component in many scientific and engineering investiga-

tions. GASPmodels, in conjunction with sound data analysis and exploration, can enhance our understanding
of how the factors affect the response and can provide fast emulators. These methods will lead to useful
solution of many problems. Those problems where the methods don’t work should be excellent sources for
stimulating new ideas for design and analysis.
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Discussion Discussion (5):Jones–Johnson
Paper

The paper by Jones and Johnson succeeds in its goal to provide an accessible introduction to the Gaussian
Process model that has become widely used in the area of the design and analysis of computer experiments.
Page limitations require that the paper be a broad-based overview. Here, I would like to make some additional
comments, some of which arise from my own experience.
One area that the authors discuss is that of model calibration. Model calibration has developed in two

slightly different directions. One is choosing parameters that are unique to the computer code (and have
no counterpart in the physical process being studied) so that the computer code well approximates the
physical data. This is what the authors discuss and it is sometimes referred to as tuning the computer code.
An example of such a parameter might be the mesh size in a finite element model. The other direction
is finding values of unknown physical parameters (for example, rate constants in chemical reactions) that
appear in the code and whose values must be specified in the code. This is often done by finding the values
that bring the code into agreement with physical data and assuming that these values are good estimates of
these unknown physical constants. This is sometimes referred to as calibration. An important assumption is
that the mathematical model on which the code is based is a very good description of the actual physical
process, so that if the correct values of the physical constants are supplied to the code, the code will agree as
closely as possible with the physical data. Unfortunately, in many applications I believe this assumption is
not warranted because our mathematical models are at best only reasonable approximations. Furthermore,
when there are many such unknown physical constants it may be that many combinations of values do an
equally good job of making the code agree with physical measurements. The tuning problem is well-defined,
but not the calibration problem. See Loeppky et al.1 for more details.
I also point out that the references provided by the authors are generally Bayesian approaches to calibration.

An earlier non-Bayesian approach can be found in the paper by Cox et al.2.
The authors make the excellent point that there is a strong relationship between the design and the

model used to fit the data. This is a topic that I have explored in some detail. When a Gaussian Process
model is used, Marin3 shows that, for purposes of prediction, there is little difference in the performance
of various space-filling designs (maximin LHDs, uniform designs, good lattice point designs, scrambled
nets, Niederreiter sequences, and Sobol sequences) when compared with a broad range of true response
functions. However, space-filling designs generally outperform designs that are not space-filling, such as
classical D-optimal designs for low-order polynomial models. This agrees with the finding of the authors in
their example.
The authors mention design augmentation as a useful strategy. In my opinion, sequential experimentation

(when possible) is superior to one-stage designs such as space-filling designs for fitting Gaussian Process
models. The general approach is to develop a design criterion (sometimes called an improvement criterion)
appropriate to the particular goal of the experiment and then use this criterion to choose designs points
based on what one has learned from previous runs of the computer code. Some of the earliest papers
employing sequential strategies are those for finding the optimum of the code: see Schonlau4, Jones et al.5,
Williams et al.6, and Huang et al.7. Jin et al.8, Lehman9, Fahrang-Mehr and Azarm10, Marin3, Ranjan
et al.11, Lam12, Kumar13, and Roy14 investigate sequential strategies in a variety of contexts and, in general,
these sequential approaches are superior to using a fixed one-stage design. This is not surprising because
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sequential approaches allow one to use what one has learned from previous runs about the functional form
of the computer code output to decide where next to run the code.
Developing some intuition about the Gaussian Process model and the related predictor

ŷ(x)= �̂+r ′(x, �̃)R−1(X, �̃)(y− �̂1n)

given in the paper can be difficult. In my experience, fitting these models (i.e. finding estimates of the model
parameters and then computing the predictor given above) to a variety of test functions and comparing
the results with those obtained using regression is a useful exercise and helps to develop such intuition.
Section 4 of the paper is an example of such an exercise. Proc Mixed in SAS and JMP are two commercial
software packages that allow one to fit Gaussian Stochastic process models. I have found R and Matlab
useful for writing my own code to fit these models. Writing simple code and using it to fit test functions
provides additional insight. Interesting test functions include a simple planar surface, polynomials, sinusoidal
functions with high frequency, and surfaces that are flat around the boundaries but have a few central peaks.
The latter surfaces do not look stationary and because the Gaussian Process model assumes stationarity, it
is interesting to see how well one can fit such surfaces. One discovers that such test functions can often
be fit quite well with sufficient observations. One also discovers that there are numerical issues that must
be dealt with. For example, the likelihood can be quite flat and optimization algorithms may not converge.
Also, the maximum likelihood estimates of the correlation parameters can produce a fitted model that is
less than ideal. By trial and error one can often find estimates of the correlation parameters that provide
better fit. Cross-validation is an alternative to maximum likelihood, as is some sort of penalized likelihood
approach. See Li and Sudjianto15. Exploring the piston slap data in Li and Sudjianto15 is a good exercise.
Although not discussed in Li and Sudjianto15, finding the correlation parameter estimates that minimize the
cross-validation error produces results superior to those using penalized likelihood.
The correlation function

Ri j (X,�)=exp(−�k�k(xik−x jk)
2)

given in the paper is sometimes referred to as the Gaussian correlation function. Some of the numerical
problems arise from the exponential nature of the Gaussian correlation function. For large values of the
correlation parameters (the �k in the above equation), the correlation goes to 0 quite rapidly as points
get farther and farther apart. For a design that has a few points clustered very closely together but the
remainder more widely spread out, large values of the correlation parameters capture the local variation
at the clustered points in the sense that if (xik−x jk)2 is very small, exp(−�k(xik−x jk)2) can take on a
reasonable value (0.8 for example). But for points where (xik−x jk)2 is not small, exp(−�k(xik−x jk)2)
will be nearly 0 and this can produce a fitted model that has a very ‘spikey’ shape away from the clustered
points. One often encounters this problem when one begins to fit Gaussian Process models to test data in
order to develop some intuition about the models. At the other extreme, when fitting the model to data
lying on a plane, the correlation parameters are driven to 0 and this can lead to a correlation matrix that is
near singular. One way to avoid some of these numerical problems is the following. Place bounds on the
correlation parameters so that they cannot be too close to 0 and so that they are not allowed to be too large.
Restrict the maximum likelihood search within these bounds. This can often produce a predictor that fits
reasonably well. A Bayesian approach that uses these bounds in the priors for the correlation parameters
may be effective. An alternative to the Gaussian correlation function is the cubic correlation function. See
Santner et al.16 for more on the cubic correlation. In my experience the cubic correlation function is better
behaved (leads to fewer numerical problems) than the Gaussian correlation function. In addition, using the
cubic correlation function produces a predictor that is a cubic spline. Practitioners may have better intuition
about cubic splines than predictors based on the Gaussian correlation function.
An area requiring much more research is the use of Gaussian Process models when the number of

explanatory variables is large. Numerical issues become a serious problem in this case as well as when there
are a large number of observations. I suspect that in practice one is likely to encounter computer models
having many explanatory variables. Factor screening can help if the computer model is relatively insensitive
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to a large proportion of the explanatory variables, because these can be fixed and only the few remaining
explanatory variables are varied.
I again thank the authors for providing a readable introduction to Gaussian Process models in computer

experiments. I hope this will stimulate readers to use and explore these models. This is a very interesting
area with lots of open questions and a need for innovative methodology.
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Rejoinder DesignandAnalysis for the
GaussianProcessModel:
aRejoinder‡

We appreciate the thoughtful responses of all the discussants. They have extended our content in several
useful ways.
Qian and Wu have provided a powerful methodology for extending the range of inquiry of computer

experiments to include categorical factors. They show how to incorporate them in both design and analysis.
We think this is impressive work and worthy of a standalone paper. We recommend that practitioners using
this approach consider whether the change across the levels of a prospective categorical factor makes a
fundamental change in the system being studied. If so, it might be preferable to run separate experiments.
If, as in their example, the level changes do not require a major reprogramming of the simulator, then using
their methods will result in substantial savings in computer time and the advantage of a global model instead
of separate models for each combination of categorical factor levels.
The discussions by both Morris and Loeppky and Williams point out that the uncertainty intervals on

unsampled points generated by using our ‘plug-in’ approach from maximum likelihood estimates may be
too short. The full Bayes approach they advocate incorporates the uncertainty about the parameters in these
intervals making them longer and more realistic. We look forward to implementation of the full Bayes
approach in commercial software. In the meantime the GEM software is available through the web site
referenced by Morris.
Most of the discussants point out that GASPmodels depend on stationarity. That is, the correlation between

pairs of points the same distance apart in every coordinate does not depend on their location in space. If the
response surface is dramatically different in one region then this assumption is violated and the resulting
fitted GASP model may not perform well in that region. Notz, however, points out that given sufficient
observations, the GASP model often performs adequately despite apparent nonstationarity. Nevertheless,
the assumption of stationarity has implications in both design and analysis.
Suppose, the researcher suspects in advance that the response behaves in a dramatically different way in

a region of the hypercube of interest. We think that the development of space filling designs for constrained
factor spaces will be a fruitful area of future research. Can the Latin Hypercube design be modified to
accommodate linear inequality constraints involving multiple factors? If, as Steinberg points out, the possible
design points must lie on a coarse grid, then the ever popular Latin Hypercube design is not a viable
alternative.
Often the nonstationarity of the response surface is discovered in the course of the analysis. Loeppky

and Williams discovered some indication of nonstationarity in our example that models the F Quantile
function. There is not yet any definitive methodology for dealing with this problem. A practical approach
is to fit separate GASP models in the different regions. If there is not enough data in a region of interest,
the augmentation approach of Loeppky and Williams may be useful. We also recommend their use of cross
validation and model diagnostics to indicate possible problem areas in the design region.
We thought Morris’s discussion of the relationship of maximin and maximum entropy designs was inter-

esting and deserves further investigation.

‡This article is a U.S. Government work and is in the public domain in the U.S.A.
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Steinberg points out that sometimes a computer simulation run is not expensive. In such cases, researchers
sometimes generate thousands of runs in a brute force attempt to find an optimum. Fitting GASP models
becomes painfully slow when the sample size is larger than a few hundred runs mentioned by Morris.
The current estimation methods are limited by the need to invert nxn matrices. When n>10000, this is
infeasible. Should researchers be encouraged to generate less data that are more strategically placed? This
begs the question of what to do if you are actually presented with such a data set. The development of an
interpolating model that can handle large multidimensional data sets would be a huge contribution.
Large sample size is not the only problem in the analysis of GASP models. Notz also mentions the

difficulty in fitting GASPmodels when there are many factors. Though the correlation function we introduced
in the paper is probably the most popular, Notz advises that the cubic correlation function can often result
in smoother fits and faster computation. This agrees with our own experience.
There are still differences of opinion about the value of including regression terms in the GASP model.

Some authors prefer just fitting the mean and letting the correlation structure handle everything else. Others
like to add linear or other fixed effect terms to the model. We would like to point out that the GASP model
prediction goes to the mean when prediction is made far from the data in any direction. If there are strong
reasons to prefer different asymptotic behavior, then this needs to be a part of the fixed effects model.
Steinberg points out that we should not forget everything we know about data analysis just because there is

no stochastic component in deterministic computer models. Certainly, power transformations of the response
may result in better fitting models leading to better intuition about how the process works. In situations
involving functional responses, it may be necessary to do a substantial amount of preprocessing to avoid
the tedium (not to mention dubious practice) of fitting a separate model to individual responses.
We thank the discussants for their many valuable insights. The various issues they raise emphasize that

computer simulation experimentation is a wide open and vibrant research area. General solutions in the
remaining problem areas are of vital importance because the use of computer simulation will continue to
explode either with or without statistical input.
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