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Summary. We consider prediction and uncertainty analysis for systems which are approximated
using complex mathematical models. Such models, implemented as computer codes, are often
generic in the sense that by a suitable choice of some of the model’s input parameters the code can
be used to predict the behaviour of the system in a variety of specific applications. However, in any
specific application the values of necessary parameters may be unknown. In this case, physical
observations of the system in the specific context are used to learn about the unknown parameters.
The process of fitting the model to the observed data by adjusting the parameters is known as
calibration. Calibration is typically effected by ad hoc fitting, and after calibration the model is used,
with the fitted input values, to predict the future behaviour of the system. We present a Bayesian
calibration technique which improves on this traditional approach in two respects. First, the pre-
dictions allow for all sources of uncertainty, including the remaining uncertainty over the fitted
parameters. Second, they attempt to correct for any inadequacy of the model which is revealed by a
discrepancy between the observed data and the model predictions from even the best-fitting
parameter values. The method is illustrated by using data from a nuclear radiation release at Tomsk,
and from a more complex simulated nuclear accident exercise.
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1. Overview

1.1. Computer models and calibration

Various sciences use mathematical models to describe processes that would otherwise be very
difficult to analyse, and these models are typically implemented in computer codes. Often, the
mathematical model is highly complex, and the resulting computer code is large and may be
expensive in terms of the computer time required for a single run. Nevertheless, running the
computer model will be much cheaper than making direct observations of the process. Sacks,
Welch, Mitchell and Wynn (1989) have given several examples. The codes that we consider
are deterministic, i.e. running the code with the same inputs always produces the same
output.

Computer models are generally designed to be applicable to a wide range of particular
contexts. However, to use a model to make predictions in a specific context it may be
necessary first to calibrate the model by using some observed data. To illustrate this process
we introduce a simple example. Two more examples are described in detail in Section 2.2.

To decide on a dose regime (e.g. size, frequency and release rates of tablets) for a new drug,
a pharmacokinetic model is used. This models the movement of the drug through various
‘compartments’ of the patient’s body and its eventual elimination (e.g. by chemical reactions
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or excretion). Such a model allows the consequences of any given dose regime to be explored.
However, to use the model for a particular drug it is necessary to specify rates with which it
moves between different body compartments, such as the rate of transfer from the stomach to
blood, or of elimination from the liver. Some or all of these rates will be specific to the drug in
question. and it is through requiring the user to specify them as inputs to the code that the
model achieves applicability to a wide range of drugs. These rates will, of course, not be
known for a given drug, and so experiments are performed to obtain observational data. It is
not possible to obtain the rates themselves. Instead, the data are observations of certain
outputs of the pharmacokinetic model, e.g. the concentration in blood or urine at certain time
points. Crudely put, calibration is the activity of adjusting the unknown rate parameters until
the outputs of the model fir the observed data.

More generally, a computer model will have a number of context-specific inputs that define
a particular situation in which the model is to be used. When, as is often the case, the values
of one or more of the context-specific inputs are unknown, observations are used to learn
about them. This is calibration.

In current practice, calibration invariably consists of searching for a set of values of the
unknown inputs such that the observed data fit as closely as possible, in some sense, to the
corresponding outputs of the model. These values are considered as estimates of the context-
specific inputs, and the model is then used to predict the behaviour of the process in this
context by setting these inputs to their estimates.

Clearly, this ‘plug-in’ prediction treats the context-specific inputs as if they were known.
The reality is that they are only estimated, and residual uncertainty about these inputs should
be recognized in subsequent predictions from the model.

We present in this paper a Bayesian approach to the calibration of computer models. We
represent the unknown inputs as a parameter vector 8. Using the observed data we derive the
posterior distribution of @, which in particular quantifies the ‘residual uncertainty’ about 6.
This uncertainty is fully accounted for when using the computer model subsequently for
prediction, by obtaining a predictive distribution. The principles of Bayesian predictive
inference are set out in Aitchison and Dunsmore (1975), but the problem of computer code
calibration has some complicating features.

Our approach treats the computer code as simply a ‘black box’. We make no use of
information about the mathematical model implemented by the code, except in so far as this
may be represented through the prior information about the relationship between inputs and
outputs. Clearly, methods that open up the black box and exploit its structure might prove to
be more powerful than our approach, but they would be correspondingly more complex to
apply. This is a potentially important topic for future research.

1.2. Outline of this paper
Section 2 provides a detailed analysis of issues associated with computer codes. In particular,
there are several other sources of uncertainty in the use of computer codes besides uncertainty
about context-specific inputs, and calibration for the purpose of prediction is just one of
several topics in the statistical analysis of computer code outputs. Section 2 begins with
a careful study of uncertainties in computer models, illustrating the possible sources with
some detailed examples. It ends with a review of previous work on calibration and related
problems.

Our Bayesian method is built on a general Bayesian approach to inference about unknown
functions. A review of the relevant theory and published work is given in Section 3. Our basic
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model and analysis is presented in Section 4, and practical application issues are addressed in
Section 5. Section 6 presents a case-study based on real data. Section 7 offers some conclusions
and directions for further work.

2. Statistical analysis of computer code outputs

2.1.  Uncertainties in computer models

The widespread application of computer models is accompanied by a widespread concern
about quantifying the uncertainties prevailing in their use. The following is one way of
classifying the various sources of uncertainty.

2.1.1. Parameter uncertainty

We have already discussed the matter of uncertainty about the values of some of the computer
code inputs. We can think of those inputs as unknown parameters of the model. Generally,
they specify features of a particular application context, but they may also be more global
parameters, assumed to have a common value over a range of contexts or even in all contexts.

2.1.2.  Model inadequacy

No model is perfect. Even if there is no parameter uncertainty, so that we know the true
values of all the inputs required to make a particular prediction of the process being
modelled, the predicted value will not equal the true value of the process. The discrepancy is
model inadequacy. Since the real process may itself exhibit random variability, we define
model inadequacy to be the difference between the true mean value of the real world process
and the code output at the true values of the inputs. Note that this definition is not precise
until we understand what are meant by true values of inputs and the true value of the process.
Given that there is model inadequacy, we cannot think of the true input values as those which
lead to perfect predictions being outputted, so how can we define true values for the uncertain
input parameters? This issue is discussed in Section 4.3.

2.1.3. Residual variability

The model is supposed to predict the value of some real process under conditions specified by
the inputs. In practice, the process may not always take the same value if those conditions are
repeated. We call this variation of the process even when the conditions are fully specified
residual variability. There are really two sources of uncertainty combined in one here. The
process itself may be inherently unpredictable and stochastic, but it may also be that this
variation would be eliminated (or at least reduced) if only we could recognize and specify
within the model some more conditions. The latter is effectively another form of model
inadequacy, where the model lacks detail to discriminate between conditions which actually
lead to different process values. However, we define the true process value to be a mean value
averaged over these unrecognized conditions, as well as with respect to intrinsic random
variation; model inadequacy has been defined relative to this true mean value of the process.
The variability due to unrecognized conditions is deemed to be part of residual variability.

2.14. Parametric variability
It is often desired to use the model to predict the process when some of the conditions
specified in the inputs are uncontrolled and unspecified. In a sense, this is the opposite of the
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problem of the model inputs being insufficiently detailed, which contributes to residual
variability. Here, the inputs require more detail than we desire (or are able) to use. By leaving
some of the input parameters unspecified, and allowing them to vary according to an
appropriate joint distribution, the predicted process value acquires an extra uncertainty that
we shall call parametric variability.

2.1.5. Observation error

In tackling the calibration problem, we will be making use of actual observations of the
process. We should allow for the possibility of observation errors. This adds further un-
certainty in addition to residual variation, although in practice it may not be feasible to
separate them (see Section 4.2).

2.1.6. Code uncertainty

The output of the computer code given any particular configuration of inputs is in practice
not known until we actually run it with those inputs. In principle, we could say that it is not
really unknown because the output is a known function of the inputs. After all, there is a
mathematical model which, at least implicitly, defines that function. Nevertheless, in practice
the relationship is so complex that it needed to be implemented in a computer code (which
may even take hours to run), and it is not realistic to say that the output is known for given
inputs before we actually run the code and see that output. It may not be practical to run the
code to observe the output for every input configuration of interest, in which case uncertainty
about code output needs to be acknowledged. Examples are given in Section 2.2.

2.2. Examples

It is helpful to be able to relate the various concepts, definitions and notation in this paper to
some concrete examples of real computer codes. The following are just two of many examples
that could be given.

2.2.1. Gaussian plume model

In the field of radiological protection, a simple Gaussian plume model (Clarke, 1979) is used
to predict the dispersion and subsequent deposition of radioactive material following an
accidental release. Under these circumstances the detailed input information that is required
to run more complex models is not available.

The code inputs can be divided into those defining the atmospheric conditions at the time
of the accident (wind direction, wind speed and atmospheric stability) and those defining the
nature of the release (source term, source location, release height, release duration and
deposition velocity).

The dispersion of radionuclides is a highly complex process involving various chemical and
environmental processes which are not directly observable. Many simplifying assumptions
are made in the Gaussian plume model, typically resulting in a high degree of model
inadequacy. For example, the speed and direction of the wind are assumed to remain
constant during the travel time of the particles released.

Even for this simplified model many of the inputs have parameter uncertainty associated
with them. The source term, which represents the amount of material released, and the
deposition velocity, which is the rate at which material in the air at ground level is deposited
on the ground, are examples. The appropriate value for the deposition velocity is very
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difficult to determine (see Jones (1981)). Default values are often used based on the size of the
particles and the type of terrain over which the material passes. The height and duration of the
release, and the wind speed and direction may also have associated parameter uncertainty.

The Gaussian plume model is cheap. We can make many thousands of runs within a very
short space of time, so for practical purposes code uncertainty is not an issue and we can treat
the function as known. This is not true of more complex atmospheric dispersion models.

During the course of an actual release, measurements of deposition are made by different
organizations using a variety of devices. The process of making these measurements is not
straightforward. Typically a sample of grass is taken from a site and analysed in a laboratory.
Measurement error is introduced at each stage of the measurement process.

This discussion relates to the use of the plume model in a specific accident scenario where
parameter uncertainty represents beliefs about true values of the input parameters for an
actual release. We may also want to consider a risk assessment context, where we want to
predict possible contamination in the future. An accident could occur at any time, and
therefore the source term, wind speed and wind direction are random, and the inputs are
subject to parametric variability.

2.2.2.  Hydrological model

Hydrological models are used to predict ground-water flow, e.g. to predict the movement of
contaminants in the soil or the level of discharge from a stream after rainfall. We consider the
model described in Romanowicz et al. (1994), which predicts stream discharge. Inputs to the
model include a time series of measured rainfall data, the rate of evapotranspiration, the
average effective transmissivity of the soil 7, when the profile is just saturated and a constant
m which is related to the level of subsurface drainage.

Parameter uncertainty about 7, and m follows from the fact that the model is used to
predict water flows through complex geological structures which are not directly observable.
The measured rainfall data will include random measurement error, which is an example of
parametric variability. Model inadequacy arises from the simplifications that are introduced
by the modelling process, as with the Gaussian plume model.

Romanowicz et al. (1994) used measurements of actual stream discharge to learn about the
values of m and T,,. However, as they pointed out, it is not possible to measure the true value
of the flow process, since we can only make point measurements of the heterogeneous pattern
of flow. This relates to the idea of residual variability described in Section 2.1, and we would
define the ‘true flow’ to be an averaged value.

2.3. Statistical methods and previous work

Some of the early work in the field of statistical analysis of computer code outputs was
primarily concerned with interpolation, i.e., given data comprising outputs at a sample of
input configurations, the problem is to estimate the output at some other input configuration
for which the code has not yet been run. This is relevant when the code is particularly large
and expensive to run. An important review of this work is Sacks, Welch, Mitchell and Wynn
(1989), and some more recent references are Currin et al. (1991), Morris et al. (1993), Bates et
al. (1995) and Kennedy and O’Hagan (2000a).

The only form of uncertainty accounted for in this work is code uncertainty. Model
inadequacy, residual variation and observation errors are not relevant because there is no
attempt to predict the real process as distinct from the computer model output, and
observations of that process are not used. All input parameters are supposed known, and not
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subject to parameter uncertainty or parametric variation. The statistical approach that is
used in this work is based on representing the computer code output as an unknown function
of its inputs, and modelling that function as a stochastic process.

Another problem that has been tackled by statistical methods for a considerable time is
that of wuncertainty analysis. The objective of uncertainty analysis is to study the distribu-
tion of the code output that is induced by probability distributions on inputs. The input
parameter distributions may be formulations of parameter uncertainty, i.e. parameters whose
values are unknown, or of parametric variability, i.e. parameters whose values are left
unspecified. The simplest approach to uncertainty analysis is a Monte Carlo solution in
which configurations of inputs are drawn at random from their distribution. The code is then
run for each sample input configuration and the resulting set of outputs is a random sample
from the output distribution to be studied. See Helton (1993) for a review.

The Monte Carlo method for uncertainty analysis is simple but becomes impractical when the
codeis costly to run, because of the large number of runs required. More efficiency is claimed for
Latin hypercube sampling (McKay et al., 1979; Stein, 1987; Owen, 1992) compared with simple
Monte Carlo sampling; see for example Crick ez al. (1988) and Helton et al. (1991). Aslett et al.
(1998) combined a Monte Carlo approach to uncertainty analysis with statistical interpolation
of the code, effectively using the interpolator as a cheap surrogate for the code.

Haylock and O’Hagan (1996) presented quite a different Bayesian approach to uncertainty
analysis based on a Gaussian process prior model. They derived the posterior mean and
variance of the output distribution, and this is extended to posterior estimation of the distri-
bution function and the density function of the output distribution by Oakley and O’Hagan
(1998).

These methods of uncertainty analysis take account of parameter uncertainty and parametric
variation in addition to code uncertainty. However, the objective is still focused on the code
output, in this case in the form of the output distribution, rather than on the process itself.
There is therefore no treatment of model inadequacy, residual variation or observation error.

Another problem that is associated with computer codes is sensitivity analysis, whose goal
is to characterize how the code output responds to changes in the inputs, with particular
reference to identifying inputs to which the output is relatively sensitive or insensitive. A good
source for the large literature on this subject is Saltelli ez al. (2000). Although much of this
makes no use of statistical methods there are some notable exceptions. See for example
Helton (1993), Morris (1991), Iman and Conover (1980), Welch et al. (1992), Morris (1991),
Homma and Saltelli (1996) and O’Hagan et al. (1999). In Draper et al. (1999), sensitivity
analysis is applied across a range of ‘scenarios’, using the model averaging ideas of Draper
(1995). As with interpolation, these statistical approaches to sensitivity analysis only take
account of the source of uncertainty that is common to all statistical analyses of computer
code outputs, namely code uncertainty.

The final topic in our survey of this field is calibration. As discussed in Section 1.1, the
traditional way of estimating unknown parameters is by an ad hoc search for the best-fitting
values. Some account is thereby taken of observation errors, residual variation and model
inadequacy, but only implicitly through the measure of the discrepancy in fits. This measure
is not generally developed by modelling these error terms in any explicit way and is usually
entirely heuristic. Also, since the estimated values are then treated as if they were known, the
subsequent predictions take no account of the (remaining) parameter uncertainty.

In contrast, the generalized likelihood uncertainty estimation method of Romanowicz et al.
(1994) does allow fully for parameter uncertainty. The approach is effectively Bayesian. An
initial Monte Carlo sample is drawn from what amounts to the prior distribution of the
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unknown inputs and is then weighted by a likelihood term. Predictions are made using all
the sampled input configurations, and the result is a weighted sample from the posterior
predictive distribution. For instance, the weighted sample mean is an estimate of the mean of
this predictive distribution.

It would be possible within the generalized likelihood uncertainty estimation method to
allow for the code uncertainty arising from having only a sample of runs, and also to allow
for parametric variation by extending the Monte Carlo method to allow for draws from the
unspecified inputs at the prediction stage, but these are not done in the published literature to
date. As in the more traditional calibration approach, the likelihood is rather heuristic and
only very loosely based on modelling the discrepancy between code outputs and the real
process. Model inadequacy, residual variation and observation errors are not distinguished
or modelled explicitly. No account is taken of them in prediction, the objective still being to
estimate the code output rather than reality.

Another Bayesian approach to calibration is given by Craig et al. (1996, 2001). They
employed modelling for the relationship between code inputs and output that is akin to the
Gaussian process model mentioned in connection with much other work in this field. In Craig
et al. (1996), the primary objective is to make the search for a best-fit calibration more
efficient and systematic. Their modelling reflects the iterative nature of the search, and their
methods adopt the Bayes linear philosophy of Goldstein (1986, 1988) and Wooff (1992), as
opposed to a fully specified Bayesian analysis. The approach is extended in Craig et al. (2001)
to treat the question of prediction following calibration.

Cox et al. (1992) described a calibration method that is similar to the traditional search
for best-fitting parameters but which replaces an expensive code with the much cheaper
interpolator obtained using the Gaussian process model. Their method does not account for
remaining parameter uncertainty at the prediction stage. See also Cox et al. (1996).

An attempt to combine prior expert opinion on both the calibration parameters and the
model output is given by Raftery er al. (1995) using an approach that they called Bayesian
synthesis. This was criticized by Wolpert (1995) and Schweder and Hjort (1996), and in a
follow-up paper Poole and Raftery (1998) proposed an alternative called Bayesian melding.
Neither method explicitly recognizes model inadequacy and the underlying computer code is
supposed to be sufficiently simple for code uncertainty to be ignored.

Our analysis in this paper is the first attempt to model, and to take account of explicitly, a//
the sources of uncertainty arising in the calibration and subsequent use of computer models.
We freely acknowledge that our method as currently implemented is not fully Bayesian, be-
cause we estimate hyperparameters by (approximate) posterior modes. To take full account
of uncertainty in hyperparameters is another topic for further research, but we believe that
our present methodology is the fullest treatment to date of computer code uncertainties, and
we argue that it may be adequate in practice.

3. Bayesian inference for functions

3.1. Gaussian processes
The use of Gaussian processes has been mentioned several times in Section 2.3. They are being
increasingly used in current statistical research and will be employed in this paper to model both
the computer code output and model inadequacy. It is therefore appropriate to review the key
theoretical and practical issues, together with some discussion of alternative models.

Let f(-) be a function mapping an input x € X into an output y = f(x) in R. The input
space X can be arbitrary but is typically a subset of R? for some ¢, so we can write x as a
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vector X = (xy, X, . . ., x,). We constrain y to be a scalar, y € R, for simplicity here and
throughout this paper, but it is equally possible for y to be a vector in R?. We regard f(-) as
an unknown function, and in a Bayesian framework it therefore becomes a random function.
The Gaussian process is a flexible and convenient class of distributions to represent prior
knowledge about f(-). In a non-Bayesian framework, we might treat f(-) as if it were drawn
randomly from some population of functions and postulate a Gaussian process model for the
distribution of functions in that population. This is indeed the implied interpretation of the
non-Bayesian work in Sacks, Welch, Mitchell and Wynn (1989), for instance, although they
were clearly also aware of the Bayesian interpretation. In the present authors’ opinion, the
Bayesian interpretation is far more natural and will be used throughout this paper.

Formally, f(-) has a Gaussian process distribution if for every n =1, 2, 3,... the joint
distribution of f(x;), . . ., f(x,) is multivariate normal for all x,, . . ., x, € X. In particular,
f(x) is normally distributed for all x € X.

The distribution is characterized by its mean function m(-), where m(x) = E{f(x)}, and its
covariance function c(-, -), where c(x, x') = cov{ f(x), f(x')}. We use the notation f(-) ~ N{m(-),
¢(+, -)} to denote the assertion that f(-) has a Gaussian process distribution with mean func-
tion m(-) and covariance function c(-, -).

The use of Gaussian processes to represent prior distributions (or frequentist models) for
unknown functions dates back at least to Kimeldorf and Wahba (1970) and O’Hagan (1978).
Both used the Gaussian process effectively to model a regression function in a nonparametric
way. Although O’Hagan (1978) gave a very general treatment of a Gaussian process regression
function, the full potential for Gaussian process models did not begin to be exploited until
much later.

As we have seen in Section 2.3, their use to represent deterministic computer codes was
described by Sacks, Welch, Mitchell and Wynn (1989), who reviewed work of this kind over a
period of several years. Independently, Diaconis (1988) and O’Hagan (1991, 1992) described
their application for arbitrary deterministic functions and for the traditional problems of
numerical analysis—interpolation, integration and optimization. It is worth noting that the
numerical analysis literature also includes work on methods that are optimal for randomly
generated functions, including Gaussian processes. See Novak (1988), for example.

The Gaussian process also underlies, implicitly or explicitly, the methods of geostatistics,
also known as kriging. See Matheron (1963) for the classical non-Bayesian theory and Omre
(1987) and Handcock and Stein (1993) for Bayesian versions in which the Gaussian process
appears explicitly as a prior distribution. In geostatistics, the X-space is geographic, usually two
dimensional but occasionally three dimensional. The function f{(-) represents some character-
istic that might be measured at any point in some geographic region. A major concern in
geostatistics is the estimation of the covariance function or, equivalently, the semivariogram.
See in particular Stein (1999). Other examples of the use of Gaussian processes to model
unknown functions are reviewed in Neal (1999).

3.2. Modelling issues

The Gaussian process is used in practice for much the same reasons that normal distributions
are used so ubiquitously in statistical theory and modelling. They are convenient, flexible
and often quite realistic. It is, of course, important that normality, and specifically joint
normality, is a reasonable representation of prior knowledge or beliefs about f(-). Trans-
formations may be useful in this context, just as they are in other applications of normal
theory models.
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Given that a Gaussian process is a reasonable modelling choice, the mean and covariance
functions should then be specified to reflect detailed prior knowledge about f(-). For instance,
if stationarity was a feature of prior beliefs, so that the prior distribution of f(x) is the same as
that of f(x + d) for any d € X’ (and where the operation of addition on X’ is defined), m(-) will
be a constant and c¢(x, X') a function of x — x’ only.

In general, m(-) may be any function on X but ¢(-, -) must have the property that for every
n =1, 2,... the variance—covariance matrix of f(x,), f(x,), . . ., f(X,) (comprising elements
c(x;, X;)) is non-negative definite for all x;, . . ., x, € X. Some conditions for a covariance
function to be non-negative in this sense are given in Cressie (1991).

A useful device is to model m(-) and c(-, -) hierarchically. In the case of m(-) we can use the
linear model structure

m(-) =h()'B, e
where h(-) = (h;(-), (), . . ., h[,(-))T is a vector of p known functions over X and 8=
By, Bay o . oy ﬂp)T is a vector of p unknown coefficients which are given a prior distribution at

the next stage in the hierarchy. Thus h(-) describes a class of shapes and model (1) expresses
a belief that f(-) may be approximated by a function in this class. For instance h(x) =
(1, x, .. ., x™")T defines m(-) to be a polynomial of degree p — 1 when x is a scalar.

As a prior distribution for 3, the multivariate normal distribution is a convenient choice.
For instance, it has the property that f(-) remains a Gaussian process marginally after
integrating out 3. Of course, the prior distribution should be specified to reflect genuine belief
rather than convenience, but in practice prior information about hyperparameters such as 3
will typically be weak. The conventional representation of weak prior information through
the improper uniform density p(3) o 1 is therefore often used.

Note that we can separate the mean and covariance structures by writing

f(x) = m(x) + e(x) = h(x) "B + e(x) 2

using model (1), where e(x) is a zero-mean Gaussian process, with covariance function c(-, -).
The modelling of ¢(-, -) is very important because it is through correlation between f(x) and
f(x) that we express a view that f(x) and f(x') should be similar if x and x’ are sufficiently
close in X, and thereby express a belief in smoothness of f(-). In the following sections we
shall generally adopt a hierarchical model for ¢(-, -) with first stage

(-, ) = o’ r(x —x)), (3)

where r(-) is a correlation function having the property r(0) = 1. This formulation expresses
stationarity in prior information about e(-); we have a common (unknown) variance o” and
correlation that only depends on x — x'. The correlation function is further expressed in terms
of other unknown hyperparameters; for instance if x = (xy, . . ., x,) is a vector,

r(x —x') = exp { — iwj(x/ — x_,’)z}. @)

2 and the

Then at the next stage we would express prior distributions for the variance o
roughness parameters wy, . . ., w,.

Of course equation (4) is just one possible formulation. A more general expression that
has been widely used replaces (x; — x]f)2 by |x; — xj|*, where o may have a specified value
or be another hyperparameter. Even more generally, we can allow a different o; in each
dimension. Another generalization of equation (4) would be to set r(d) = exp(—d "Qd), where
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Q is an unknown symmetric positive definite matrix, which in equation (4) has the form
Q = diag(wy, . . ., w,).

In geostatistics it is normal to invest considerable effort in estimating o” r(x — x'), or
equivalently o*{r(0) — r(x — x')}, which is there known as the semivariogram. The geo-
statistics literature contains proposals for a wide range of semivariogram forms. See for
instance Cressie (1991), Handcock and Wallis (1994), Stein (1999) and Chilés and Delfiner
(1999).

3.3. Other Bayesian nonparametric models

The Gaussian process is a flexible and popular form for prior information about functions. It
is of course possible to model an unknown function parametrically, asserting that it is
definitely a member of some parametric family, so that prior information is expressed as a
prior distribution for the parameters. An obvious example is representing a regression func-
tion parametrically in a linear model. In contrast, Gaussian processes are nonparametric
because they do not constrain the function to be in a specific parametric family. The hier-
archical form may, however, be viewed via equation (2) as semiparametric, combining a
parametric underlying mean (h(-)"3) with a Gaussian process residual term (e(-)).

The literature of Bayesian nonparametric and semiparametric methods is growing rapidly.
In addition to work using Gaussian processes, already referred to, various other ways have
been proposed to express prior beliefs about functions. One alternative to Gaussian processes
for modelling general functions is to represent the function as a linear combination of
components of a set of basis functions. Smith and Kohn (1998) discussed this generally,
contrasting splines and other bases. In the same volume of Dey et al. (1998), Vidakovic (1998)
considered wavelet bases and Rios Insua and Miiller (1998) dealt with neural networks,
which employ sigmoidal basis functions. We can note here two connections between
Gaussian processes and the basis function approach. First, Neal (1996) has shown that
Gaussian processes can be viewed as neural networks with an infinite number of hidden
nodes. Second, the posterior mean from a Gaussian process is a linear combination of the set
of basis functions c(x, x;) formed by the correlation functions centred at the observations.

Another approach to modelling general functions is given by Liu and Arjas (1998), who
modelled a growth curve by a piecewise linear process. All these approaches may be applied
to other kinds of functions such as computer code outputs.

There is also a wide literature on more specialized models for unknown distributions; see
other papers in Dey et al. (1998) and the review of Walker et al. (1999). However, these are
not directly relevant to computer code outputs.

4. Bayesian calibration

4.1. Calibration and variable inputs

In the calibration problem we must distinguish between two groups of inputs to the computer
model. One group comprises the unknown context-specific inputs that we wish to learn
about; we refer to these as the calibration inputs. The calibration inputs are supposed to take
fixed but unknown values 8 = (,, . . ., 6,,) for all the observations that will be used for
calibration, and for all the instances of the true process that we wish to use the calibrated
model to predict. The other group comprises all the other model inputs whose values might
change when we use the calibrated model. These are referred to as the variable inputs. The
variable inputs are assumed to have known values for each of the observations that will be
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used for calibration. In any subsequent use of the model their values will either be known or
subject to parametric variability. For example in Section 2.2, variable inputs include the
(x, y) co-ordinates of the Gaussian plume model or rainfall levels in the hydrological model.

We denote the output of the computer model when the variable inputs are given values
X = (X, . . ., X,,) and when the calibration inputs are given values t = (7, . . ., 1,,) by (X, t).
Note that we distinguish between the unknown value 6 of the unknown calibration inputs,
that corresponds to the particular real process for which we wish to calibrate the model, from
the (known) value t that we set as inputs when running the model. We never observe output
from the model without knowing all the inputs specifying that run. We refer to 6 as the
(vector of) calibration parameters.

We denote the true value of the real process when the variable inputs take values x by {(x).
Only the variable inputs are needed here. For the computer code we can vary the calibration
inputs but they are fixed for the real process.

The calibration data comprise the n observations z = (zy, . . ., z,) ', where z, is an obser-
vation of {(x;) for known variable inputs x;, but subject to error. In addition, we have the
outputs y = (», . . ., yy)" from N runs of the computer code, where

yi =X, )

and both the variable inputs x}" and the calibration inputs t; are known for each run. The full
set of data that is available for the analysis is d” = (y", z"). Note that generally N will be
much larger than n, since even if the computer code is expensive or time consuming to run it
will still be much cheaper than obtaining observations of the real process.

A further comment in connection with variable inputs is that we are treating the computer
code output for any given set of inputs as a scalar. In practice, computer codes typically
produce many outputs for a given run. It is not generally necessary, however, to regard the
output as being multivariate. The reason is that we can define one or more variable inputs
to index the outputs. For instance, a Gaussian plume model will typically be implemented
in a computer code that, for a given run, outputs concentrations at every point in a two-
dimensional grid. Rather than thinking of this as a highly multivariate output, we can define
two variable inputs to index a given point on the grid. We can think of the variable inputs as
being augmented by these two new indexing inputs, and a run as producing a single output at
the specified point.

4.2. Model
We represent the relationship between the observations z;, the true process ((-) and the com-
puter model output 7(-, -) in the equation

z; = ((x) +¢; = pn(x;, O) +6(x;) + e, ®)

where ¢; is the observation error for the ith observation, p is an unknown regression parameter
and 6(-) is a model inadequacy function that is independent of the code output n(-, -).

Consider the observation error ¢; first. Strictly, this also includes any residual variation as
well as observation error (see Section 2.1). We do not imagine having replication of obser-
vations in circumstances where not only the variable inputs but also all the unrecognized
conditions were the same, so it is not possible to separate the two sources of uncertainty.
We shall suppose that the e;s are independently distributed as N(0, A). (The assumption of
normality may require a transformation of the raw data, as in our use of log-deposition in
Section 6.)
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Now consider the implication of equation (5) that

((x) = pn(x, 0) + 6(x), (6)

with 7(-, -) and 6(-) independent. This is, of course, merely one way of modelling the
relationship between the code output and reality. As a partial justification, it can be given a
formal derivation from a kind of Markov property, as follows. Assume that we know 8 and
can make as many runs of the code as we wish, to observe n(x, ) for various x. Suppose first
that to predict ((x') at some specific point X' we would regard it as sufficient to observe the
output n(x’, 0) of a single run at the same value x' of the variable inputs. This is the Markov
assumption and can be shown to imply equation (6) (see O’Hagan (1998)), except that p may
formally depend on x. The further assumption that p is constant seems natural and follows
if we have stationary processes 7(-, -), 6(-) and ((-). Despite this argument, we repeat that
equation (6) is just one possible formulation; equally cogent arguments could probably be
evinced in favour of other models. In the examples that we have tried, equation (6) seems
reasonable, but more experience is needed to explore this aspect of modelling.

The meaning of the true values @ of the calibration parameters is addressed in Section 4.3
below.

We represent prior information about both the unknown functions 7(:, -) and () by
Gaussian processes: 7(-, -) ~ N[m, (-, ), ¢;{(, -), (-, )}] and 6(-) ~ N{m,(-), ¢»(-, -)}. In each
case, we model the mean and variance functions hierarchically as in Section 3.2. Adopting
the linear model form (1) with weak prior distributions, we have m,(x, t) = h,(x, t)'3,,
my(x) = hy(x) "B, and

P(By, B;) x L. (7

We write the combined vector as 3 = (31, 83)". For the covariance functions we shall not
specify any particular forms at present, but we shall suppose that they are expressed in terms
of some further hyperparameters that we denote by . We also denote (p, A, 1) collectively
by ¢. The complete set of parameters therefore comprises the calibration parameters 6, the
location parameters 3 and the hyperparameters ¢. It is reasonable to suppose that prior
information about 6 is independent of the others, and with expression (7) we suppose that the
prior distribution takes the form

p(8, B. ¢) = p(0) p(). ®)

4.3. True parameter values

We raised the question of the meaning of true parameter values in Section 2.1. We now
discuss this important topic in the context of our model (6) for the true process ((+), although
the main points are relevant to any discussion of the calibration of computer models.

Our statistical model is formulated through equation (5), which can be viewed as defining a
non-linear regression model. (The analogy is not perfect but provides some useful insight.)
The computer code itself defines the regression function through the term p n(x;, 6), with
parameters p and 6. The other two terms can be viewed as together representing (non-
independent) residuals.

In this framework, we can see that the notion of a true value for € has the same meaning
and validity as the true values of regression parameters. The true 6 is a ‘best-fitting’ 0, in the
sense of representing the data z, . . ., z, faithfully according to the error structure that is
specified for the residuals.



Calibration of Computer Models 437

Now the developers of the computer model will generally have given concrete physical
meanings to the calibration inputs, but the true values of these physical quantities do not
necessarily equate to 6. This is inevitable in calibration when we do not believe that the model
can ever be a perfect fit. It may be that the physically true value of a calibration parameter
gives a worse fit, and less accurate future prediction, than another value. It is dangerous to
interpret the estimates of 6 that are obtained by calibration as estimates of the true physical
values of those parameters.

In regression modelling, assuming that one of the parameters is known corresponds to
fitting a simpler, more limited class of regression functions. Fixing a parameter constrains the
form of the regression function, whereas adding more unknown parameters increases the
flexibility of the class of regression functions and allows a better fit to the data. By analogy,
we see that if we claim to know the value of one of the calibration parameters in 6, even if this
is genuinely the true physical value of that parameter, we restrict the form of the code output
and may have a worse fit to the data. The discrepancy will of course be taken up by the model
inadequacy function 6(-) but may also lead to the calibrated estimates of other components of
0 being further from their true physical interpretations. We shall generally have far fewer real
observations with which to estimate 6(-) than code outputs with which to estimate (-, -), so it
makes sense to make the code fit as well as possible.

So it may be reasonable to treat an input as unknown, and therefore part of the calibration
parameter 6, even if we believe that its true physical value is known. Particularly if this is an
influential parameter (as might be revealed by a sensitivity analysis), allowing it to deviate
from the true physical value may produce an empirically better computer model of reality. Its
prior distribution would be centred at the true physical value, reflecting an expectation of the
model’s accuracy, but with a non-zero variance.

All models are wrong, and to suppose that inputs should always be set to their ‘true’ values
when these are ‘known’ is to invest the model with too much credibility in practice. Treating a
model more pragmatically, as having inputs that we can ‘tweak’ empirically, can increase its
value and predictive power.

4.4. Posterior distribution

In the remaining subsections of this section, we present the posterior analysis of the
calibration problem and subsequent prediction of the true phenomenon using the calibrated
code. For brevity, we give only an outline of the development here. For fuller mathematical
details the reader is referred to Kennedy and O’Hagan (2000b).

The first step is to derive the posterior distribution of the parameters 8, 8 and ¢. The full
data vector d is normally distributed given (0, 3, ¢), and this will yield the likelihood func-
tion. To express its mean vector and variance matrix we require some more notation.

We denote the set of points at which the code outputs y are available by D, =
((x¥, t)), .. ., (x¥, ty)}. Similarly, we denote the set of points for the observations z of the
real process by D, ={x,, ..., X,}. Augmenting cach of these points by the calibration
parameters 6, we define D,(0) = {(x;, 0), . . ., (x,, 8)}. If we now let H;(D,;) denote the
matrix with rows h,(x¥, t,)7, . . ., hy(x%, ty)", the expectation of y is H,(D,)3,. In analogous
notation, the expectation of z is

p H{D,(0)}8, + Hy(D,)3,.

Hence
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E(d|6, B, ¢) = m,(0) = H(6)0,

where

(WD) 0
H(6) = (le{Dxe)} H2<Dz)>'

To express the variance matrix of d, define V,(D,) to be the matrix with (j, /') element
C {(xj”‘, t), (x;-'f, t;)}, so that this is the variance matrix of y. Define V,{D,(0)} and V,(D,)
similarly, and let C,{D,, D,(8)} be the matrix with (j, /) element cl{(xj”‘, t,), (x;, 0)}. Then

_ _ Vl(Dl) pCl{Dls Dz(e)}T )
vardi, £, ¢) = Vf) = (pcl{Dl, DO} M, + 0> Vy(Dy(8)} + Va(Dy)

where I, is the n x n identity matrix.
With prior distribution (8) we now obtain the full joint posterior distribution

where f{-; m,(0), V,(0)} is the N{m,(60), V,(0)} density function. Note that we have explicitly
shown dependence on 6 but m (@) also depends on 3 and p, whereas V,(6) depends on all

of ¢.

4.5. Estimating hyperparameters

Since the exponent of expression (9) is quadratic in 3, we can integrate 3 out analytically to
give p(0, ¢|d). This, however, is an even more complex function of € and ¢ than expression
(9) is. A fully Bayesian analysis would now integrate out the hyperparameters ¢ as well to
leave the posterior distribution p(€|d) of the calibration parameters. However, p(8, ¢|d) is
a highly intractable function of ¢. Even with the most parsimonious parameterization of
ci{C, ), (-, )} and ¢, (-, -), tointegrate over ¢p numerically would entail at least a six-dimensional
quadrature. Since much of the methodology that we develop herein may be rather com-
putationally intensive even conditional on fixed values of ¢, the full Bayesian analysis
will not typically be practical. It is important to note also that p(0, ¢|d) will generally be
improper with respect to ¢ if p(¢) is improper. To adopt a fully Bayesian analysis will
therefore demand a full and careful consideration of prior information regarding the hyper-
parameters.

We propose instead to derive plausible estimates of the components of ¢ and then to act as
if these were fixed. Thus, for inference about 8 we shall use its conditional posterior given the
estimated values of ¢. We propose to estimate the hyperparameters in two stages. In the first
stage we use just the code output data y to estimate the hyperparameters v, of ¢, {(:, -), (-, -)}.
There is some information about %, in the observational data z, but

(a) z depends also on the other hyperparameters and
(b) the number n of observations in z will typically be very much smaller than the number
N of output values in y.

Therefore very little is lost by this simplification. In the second stage we use z to estimate p, A
and the hyperparameters 1, of ¢,(:, -), having now fixed v,.

Now we originally set out to model, and to account for explicitly, all the sources of
uncertainty identified in Section 2.1. The compromise proposed here means that we do not
account fully for all these sources.
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(a) By fixing A at an estimated value, we do not account fully for observation error and
residual uncertainty.

(b) By fixing p and the hyperparameters 1, of ¢,(:, ) at estimated values, we do not
account fully for model inadequacy.

(c) By fixing the hyperparameters v, of ¢{(-, -), (-, )} at estimated values, we do not
account fully for code uncertainty.

Nevertheless, we should stress that in each case it is only the ‘second-order’ effect of un-
certainty about hyperparameters that is neglected, and we believe that our analysis captures
the major part of all these sources of uncertainty. We therefore claim that our analysis does
recognize all sources of uncertainty, and that it is more important to ensure that all sources
are covered to this extent than to account for any missing hyperparameter uncertainty, at
the cost of very much increased computation.

In geostatistics, it is generally recognized that kriging estimates are reasonably robust to
the form of the covariance function, and even to roughness parameters in that function, but
that the prediction variance will typically be very sensitive to roughness parameter values.
Furthermore, such parameters are notoriously difficult to estimate. We are conscious that
these considerations may give cause for concern about our treatment of hyperparameters
and the choice of covariance structure. In our defence, we show in the example in Section 6
that our predictive variances calibrate well with held-back data, and this has been our
experience with other examples also. In Section 6.3 we present an investigation which shows
for those data that the effect of acknowledging uncertainty in roughness parameters is
small.

4.6. Calibration, prediction and uncertainty analysis

Having estimated the hyperparameters ¢ we now condition on the estimates ¢, so that we
regard the posterior distribution of the calibration parameters to be p(0|¢ = ¢, d)
(6, ¢|d). We can use this to make inference about 6, although its intractability means that
numerical methods must be used. We discuss appropriate techniques in Section 5.

In practice, we shall not generally be interested in inference about @ as such. The purpose
of calibration is to use the calibrated model for predicting the real process. We can think of
calibration as a preliminary to addressing the other statistical problems of interpolation,
sensitivity analysis and uncertainty analysis, described in Section 2.3. Thus, the problem of
predicting the true process ((x) at some specified variable inputs x can be seen as inter-
polating the function ((-).

The posterior distribution of {(-) conditional on the estimated hyperparameters ¢ and the
calibration parameters 6 is a Gaussian process. Its mean function is given by

E{z(x)|6., ¢, d} = h(x, 0)"B(6) + t(x, 6)"V,(0)"'{d — H(0)3(6)}. (10)
where
_ (ph(x. 0)
h(x, 6) = ( hlz(x) )
and

B pV {(X, 0), D }
tx, )= (Pz Vi{(x, 9)1 D,(6)} +1VZ(X’ DZ))‘
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Its covariance function is given by

cov{¢(x), ((X)IB, b, d} = p” c1{(x, 6), (X, O)} + cx(x, X) — t(x, 6) "V,(0)'t(X', 6)
+ (h(x, 6) — H(0)"V,(6)"'t(x, 6)) "'W(O){h(x, 6)
—H(0)'V,(6)'t(x, 9)},

where W(6) = {H(0) "V ,(0)'H(0)}'. By combining this distribution with p(6|¢, d), we can
make inferences about ((x), again using numerical computation methods. For instance to
estimate ((x) we might use its posterior mean E{((x)|¢, d} (for the estimated values of ¢),
obtained by integrating E{C(x)|0, ¢, d} with respect to p(0|¢, d).

Now suppose that we wish to predict the real process in the context where one or more of
the variable inputs is subject to parametric variability, as discussed in Section 2.1. Section 2.2
gives examples of computer codes for which inputs may be unspecified in this way. The
problem of uncertainty analysis is to study the (extra) uncertainty in model outputs induced
by this parametric variability. Although uncertainty analysis for computer codes is typically
formulated in this way, i.e. with concern for uncertainty in the code outputs, in the present
context the larger challenge is to study uncertainty in the real process z(-).

We therefore consider the random variable ((X), where the variable inputs X are now
random, having a distribution Gx(x). (In practice, only a subset of the variable inputs will be
subject to parametric variability, so Gx(-) will be degenerate in the other dimensions.) The
task of uncertainty analysis is now to make inference about the distribution of ((X). In
particular, we wish to make inference about properties of this distribution such as the mean

K= Ex(((X)) = L (%) dGy (),
the variance
L= vary[((X)} = K, — K2,

where K, = [, ¢(x)* dGx(x), or the value at some point g of the distribution function

Fo) = X <8 = | dGx(m,
2(x)<g
Inference about these or other summaries of the distribution of {(X) may be derived from the
posterior distribution of {(-). Details are given in Kennedy and O’Hagan (2000b).

It is equally straightforward to work in terms of an uncertainty analysis of the code output
n(x, 0), with respect to either or both of parametric variability in x and parametric un-
certainty (after calibration) in 6.

We do not explicitly deal with sensitivity analysis in this paper: appropriate techniques are
outlined in O’Hagan et al. (1999).

5. Implementation details

5.1. Design issues

We now consider some practical issues arising in the implementation of the theory in Section
4, beginning with the question of the choice of the sets of points at which the code is run and
at which observational data are observed. The set D, of values x; of the variable inputs for
the calibration data will often not be a matter of choice. In our example in Section 6, for
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example, the available data are given to us. In contrast, we shall generally be able to choose
the code design D, of points (x}; t)). There is a considerable literature on the design of
computer experiments—see for example Sacks, Schiller and Welch (1989), Morris et al.
(1993), Morris and Mitchell (1995) and Bates et al. (1996). All of this relates to the simpler
problem of designing sets of code input values for interpolating the code itself, or for
uncertainty analysis of the code (Haylock, 1997). The problem of design for calibration is
more complex and a topic for future research. We have so far chosen designs more
heuristically.

First, existing work suggests that it is important for the code design to give good coverage
of the region of (x, t) space of greatest interest. The variable input co-ordinates x} should
cover both the range of points x; in the calibration data and the range of values over which
we may wish to predict the process in future. The calibration input co-ordinates t; should
cover the range that is plausible for the true value 0 of the calibration parameters. The latter
suggests a sequential design approach, beginning with values spanning the prior distribution
of 6 then adding more points over the range covered by its posterior distribution. For
examples of this kind of sequential design approach see Bernardo et al. (1992), Craig et al.
(1996) and Aslett et al. (1998).

A second intuitive consideration is that there should be control values x;" in D, that are
close to the values x; in D, to learn about the relationship between the code and reality.

For our example in Section 6, we have no choice over the calibration design D,. We set the
code design D, to be the Cartesian product of D, with a Latin hypercube design for the
calibration inputs. For the latter, we have used a maximin Latin hypercube as described in
Morris and Mitchell (1995). These designs give good coverage of the space and are evenly
distributed in each one-dimensional projection. The use of a Cartesian product has some
computational advantages which are briefly described in Kennedy and O’Hagan (2000b).

5.2. Modelling choices
In applications of the theory, we need to specify h;(x, t), hy(x), ¢;{(x, t), (X', t)} and c,(x, X).
h,(x, t) should be chosen to reflect beliefs about the general shape of the function 7(x, t),
and h,(x) should be chosen to reflect beliefs about the shape of &(x). In the latter case,
particularly, we may not have any specific expectations to model through h,(-). Generally, it
does not help to put components into these functions that are not motivated by actual prior
knowledge. This is in contrast with parametric regression modelling, where adding extra
regressor variables will in general produce an improved fit. The Gaussian process is
nonparametric and will adapt to whatever shape of function is suggested by the data and will
often do so better if spurious regressors are not included. In applications, therefore, unless
there is prior information to suggest more complex modelling, we take h;(x, t) = (1) and
h,(x) = (1) as defaults. This means that 8, and 8, are scalars and represent unknown
constant means for 7(-, -) and 6(-).

For the covariance functions we again model parsimoniously. We generally adopt the form
(3)-(4), so that

al{(x, 1), (X, 1)) = o1 exp{—(x — x)"Q(x = x)} exp{—(t — )" Q(t — 1)}, (11)
ex(x, X) = 03 exp{—(x — x) "2 (x — x)}, (12)
with diagonal forms for £2,, Q, and Q.

It is important to recognize that these are not trivial modelling choices. The Gaussian forms
for the covariance function imply a belief in differentiability of both n(-, -) and é(-), and indeed
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imply a belief that these functions are analytic. This may be appropriate for the computer
code n(-, -) but these assumptions for both (-, -) and é(-) imply the same beliefs about the real
world process ((-), which will often be inappropriate. We return to this in Section 6.3.

Assuming diagonal forms for the roughness matrices implies that any elliptical anisotropy
in the covariances is oriented along the individual parameter axes. A transformation may be
relevant to make this assumption more realistic and is implemented in our examples as
described in Section 6. Another assumption in equation (11) is that there is separability between
the calibration and variable inputs in the covariance structure of the code 7(:, -). Separability
is frequently assumed in various statistical applications, particularly for modelling space—
time processes, e.g. by Haslett and Raftery (1989) and Oehlert (1993). A result in O’Hagan
(1998) provides a characterization of separability that may give a justification in some
contexts, but it is primarily assumed in practice for convenience and parsimony.

Finally, we may remark that even the underlying assumption of stationarity may be
questioned, particularly in respect of the real process. A reasonably tractable non-stationary
alternative might be the localized regression model of O’Hagan (1978). Sampson and Guttorp
(1992) gave a very general nonparametric technique, but it would be much more difficult to fit
this into our framework.

Our reasons for using these assumptions in our examples are briefly as follows. First,
equations (11) and (12) facilitate the computation by allowing analytical results that would
otherwise need to be evaluated numerically (sce Kennedy and O’Hagan (2000b)), greatly
increasing computation times. We employ equation (4) rather than the more general r(d)
= exp(—d"Qd) for parsimony. In general, hyperparameters are not well identified in these
models. Quite different values for ¢ may fit the data equally well and produce comparable
predictions. The form (4) is sufficiently flexible to allow for some anisotropy in the correla-
tion structure, and indeed we adopt the isotropic form r(d) = exp(—wd'd) wherever it seems
acceptable.

We freely admit, therefore, that we employ these assumptions essentially for convenience
and simplicity. However, we believe that to a large extent other assumptions could give very
similar results. Some tentative support for this view is given by some findings reported in
Section 6.3.

We also need to specify prior distributions p(6) and p(¢) for the calibration parameters and
hyperparameters respectively. We adopt a normal prior distribution for 6, after transforma-
tion where appropriate, again for computational convenience. Prior information about
hyperparameters will often be weak, with the possible exception of A. It is useful, however, to
try to formulate some prior knowledge about roughness parameters like w. A uniform prior
distribution should generally not be used for such parameters because our modal estimation
method will often give unrealistically large estimates. Where prior information is weak, the
form p(w) o w™' is preferable.

5.3. Computation

The main computational issues concern the need for numerical integration with respect to the
posterior distribution of 8, and the fact that we need to invert the matrix V,(0) for each 6-
value in that numerical integration.

If the code (-, -) is complex and computer intensive, we shall expect the number N of code
evaluations that are available to be relatively small (and we expect n to be smaller still). Then
the inversion of the (N + n) x (N + n) matrix V4 6#) may not be a serious problem. However,
for a simpler code we may expect to be able to make larger numbers of runs to obtain more
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information about 7(-, -). Then N is potentially very large. In this case considerable com-
putational savings are achieved by the code design D, having a Cartesian product form. See
Kennedy and O’Hagan (2000b) for details.

Another device that might be considered for computation with large correlation matrices is
the local computation approach; Vecchia (1988). However, it is not clear how that idea could
be usefully applied in the more complex framework of calibration.

Turning now to the question of numerical integration with respect to 8, in our examples we
use the iterative Gauss—Hermite quadrature method of Naylor and Smith (1982). This
approach is realistic because the dimensionality of @ is relatively low, so quadrature is
feasible, and because the code is relatively simple, so we can afford to use Cartesian product
rules and iteration. With more expensive codes or in somewhat higher dimensional @-space it
becomes important to use more efficient quadrature designs (for references see Evans and
Schwartz (1995)). For high dimensional 6, it may become necessary to use simulation
methods of integration: we have not explored this yet.

6. Example: Tomsk data

6.1. Data and model
We now present an analysis of data from an accident at the Tomsk-7 chemical plant in 1993.

A detailed account of the accident is given in Shershakov et al. (1995). Measurements were
made for three radionuclides. However, for this example we consider only the deposition of
ruthenium 106 (' Ru). A total of 695 measurements of 'Ru deposition were made, at
locations shown in Fig. 1. The contour lines represent an interpolation of the log-deposition
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Fig. 1. Tomsk aerial survey of 695 'Ru deposition measurements, with contours at heights of 11 ( ), 10
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at these points. These data were obtained from an aerial survey which started close to the
source and continued to approximately 40 km downwind, in such a way that consecutive
measurements are very close.

For the prior approximation 7(-, -) we use the logarithm of the Gaussian plume model
described in Section 2.2, with a fixed level of background radiation added. The log-
transformation is used to approximate better the assumptions of normality that are made in
our model. The critical unknown inputs for this model are the source term and deposition
velocity. We therefore treat the logarithms of these as the calibration parameters 6. ((x)
represents the true log-deposition for variable inputs x. The variable inputs in this case comprise
two orthogonal linear functions of the northing and easting co-ordinates such that x = (0, 0)
represents the source point and a point x = (x;, x,) is distance x; downwind from the source
and distance x, from the plume centre line. The z;s are logarithms of observed depositions.

The pattern of deposition that is seen in Fig. 1 has a well-defined plume shape, and we
would expect the Gaussian plume code to provide a reasonably good approximation.

A normal distribution is used to approximate prior beliefs about 8. The prior means were
obtained from the National Radiological Protection Board. The variances were set to 5 to
represent vague prior knowledge, and prior covariances were assumed to be 0. These are
realistic values for the variances, since the National Radiological Protection Board think that
the values could be a couple of orders of magnitude from the prior estimates.

In this example we have treated the plume code as a known function, for given values of
the parameters, since it is practical to run the code for any input configuration of interest.
Although it is perfectly possible to follow through the more complex analysis with code
uncertainty, this simplification allowed us to perform some analyses to examine the sensitivity
to the model’s assumptions (see Section 6.3). Much of the theory of Section 4 simplifies as
a result. For example, the only correlation function to specify is ¢,(, -). We first assume
the simple product form (4) with two roughness parameters (w;, w,), corresponding to the
directions parallel and perpendicular to the plume axis, as the prevailing wind and the cross-
wind are believed to affect the deposition differently.

From the original 695 measurements, a subset of size 10 was chosen to represent a small
sample of observed data similar to that which might be collected from ground measurements
shortly after an accident. The points were chosen reasonably close to the source, but to avoid
clustering were constrained so that each point is at least five measurement points from every
other selected point. Clustered points lead to redundant information, which would make the
estimation of the model hyperparameters very difficult for such small data sets, and the
constraint ensures that the data are relatively dispersed. Additional points were chosen
similarly and added to this subset, giving subsets of size 10, 15, 20 and 25 points. The point
furthest from the source was deliberately included in the 25-point data set.

6.2. Results

Conditionally on each of the data sets, posterior means and variances of z(x) were calculated
for all the 670 ‘unobserved’ points, and the accuracy was assessed on the basis of the true
values at these points. The following strategies were compared:

(a) strategy 1 —using a Gaussian process interpolation of the physical observations alone,
taking into account measurement errors, but making no use of the Gaussian plume
model;

(b) strategy 2— using Bayesian calibration and model inadequacy correction, as described
in Section 4.6;
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(c) strategy 3—using the Gaussian plume model with ‘plug-in’ input parameters. The
physical data are not interpolated in any way. Instead, we select the input parameters
by minimizing the sum of squared differences between the model and the data.

The data that were used for each strategy were the same, comprising from 10 to 25 of the
original data points. Table 1 gives the root-mean-squared errors RMSE of prediction for
each of these strategies. For comparison, RMSE = (.84 is obtained using the code with input
parameters fixed at their prior mean. Strategy 1 achieves little improvement over this value
for the data samples used. Strategy 3 is the kind of ‘best-fitting’ calibration technique that is
often used in practice. Given enough data points with which to calibrate the model, this
method improves on the use of the code with prior mean for 8, but strategy 2 is even better,
because it also takes account of model inadequacy. A comparison of strategies 1 and 3 shows
that, when the number of observations is small, the use of the code (suitably calibrated) is
more accurate than simply interpolating the data.

To assess the significance of the improvement here, we note that the observations are log-
depositions. So an error of 0.82 (strategy 3, n = 10) corresponds to errors in predicting
deposition by a factor of exp(0.82) = 2.3, and reducing this to 0.42 (strategy 2, n = 10) cuts
the error in predicting deposition to a factor of 1.5. This is a genuinely useful improvement in
the context of radiological protection.

Table1. Root-mean-squared errors based on n observations

Strategy RMSEs for the following values of n:

n=10 n=15 n=20 n=25

1 0.75 0.76 0.86 0.79
2 0.42 0.41 0.37 0.36
3 0.82 0.79 0.76 0.66

10
4
—

S

Strategy 1 standardised residuals (n=25)
)
Strategy 2 standardised residuals (n=25)
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Fig. 2. Quantile-quantile plots for strategies 1 and 2 with n =25
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The quantile—quantile plots in Fig. 2 correspond to the standardized residuals based on
strategies 1 and 2 in the case n = 25. The plot for strategy 2 clearly shows a better fit of
the data to the predictive distribution than is achieved by strategy 1. However, both plots
show heavy-tailed characteristics, and this feature is explored further in the following
section.

For larger data sets we would expect strategies 1 and 2 to produce similar results. However,
good predictions from interpolations of the data alone rely much more on an even dis-
tribution of design points over the prediction region. In most applications, optimal designs
for physical observations are not practical. Our method makes a greater use of the code
in regions where there are few physical data points and the uncertainty about model inade-
quacy in these regions is reflected in the posterior variance. Further evidence of predictive
improvements using Bayesian calibration and model inadequacy correction may be found in
a second example described in Kennedy and O’Hagan (2000b).

6.3. Sensitivity to modelling assumptions

So far, we have made various modelling choices, particularly in relation to the correlation
function, which will not be appropriate for all applications. We now briefly examine how
some alternative plausible modelling assumptions affect inferences in the case of the 25-point
Tomsk data. Further details are given in Kennedy and O’Hagan (2000b).

The model described above (strategy 2) will be referred to as M 1. Three alternative models
are outlined below. In model M2 we relax the assumption that the hyperparameters are fixed,
in model M3 we use an alternative functional form for the correlation function and in model
M4 we consider the isotropic form of the Gaussian correlation function.

6.3.1. Model M2: integration with respect to the roughness parameters

It was suggested in Section 4.5 that fixing hyperparameters at the posterior modal values,
rather than treating them as uncertain, is an acceptable simplification of the model. Often in
models of this kind inferences (especially posterior variances) are sensitive to the choice of the
roughness parameters in the correlation function. To take more account of the uncertainty
about these parameters, we used a crude numerical method to integrate over w;, w, in
calculating the posterior predictive means and variances. These represent the roughness
parameters in our non-isotropic product of one-dimensional correlation functions.

6.3.2. Model M3: isotropic Matérn correlation

The exponential form of the correlation function is appropriate if the inadequacy function is
analytic and therefore may not be the best for modelling physical systems. We carried out
an analysis which was identical with that described above but using the isotropic Matérn
correlation function suggested by Handcock and Wallis (1994).

6.3.3. Model M4: isotropic Gaussian correlation function

The final model variation considered uses the isotropic Gaussian correlation function
e(x, X') = exp(—b|x — x'|?). This is equivalent to assuming that w;, = w, in model M1. The
estimated values of these parameters under M1 differ by a factor of 20. Under model M4 we
might therefore expect to see inferences that are quite different from those which we obtained
with M1 if there is sensitivity to these roughness parameters.
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These analyses suggest that

(a) any improvement due to integrating with respect to the hyperparameters, as opposed
to maximizing, is likely to be small and
(b) the effect of using alternative covariance structures is also small.

However, we do not propose that any of these models fits perfectly. Plots of prediction errors
suggest that the true deposition surface exhibits local features that we are failing to predict. In
some sense, all the models have predictive distributions with tails that are too thin. This is an
area for on-going investigation but is likely to be application specific.

7. Conclusions and further work

We have presented a Bayesian approach to calibrating a computer code by using obser-
vations from the real process, and subsequent prediction and uncertainty analysis of the
process which corrects for model inadequacy. The posterior summaries take account of all
remaining sources of uncertainty.

We have treated the code as a black box, and the methods described in this paper are
applicable to computer codes of arbitrary complexity.

As we have already mentioned in Section 5.1, important questions remain about the choice
of design points. The physical observation sites will often be limited, as in the example
presented here, but there will be situations in which these may be controlled. The designs that
are already used to learn about code uncertainty might be used for D, to learn about model
inadequacy. The problem of choosing designs D; and D, to give good calibration of the
model is more difficult. The Cartesian product designs for D, described in Section 5 work
well in the example of Section 6, in which the design D, is assumed to be fixed. These designs
also facilitate the computations as outlined in Section 5.3.

We have carried out integration with respect to 8 by simple quadrature, which is feasible
for low dimensional € but would become impractical with larger numbers of calibration
parameters. The obvious approach then is Markov chain Monte Carlo sampling. However,
the calibration distribution p(6|¢, d) is a complicated function of 6, and it would appear to
be difficult to simulate from this distribution by using Markov chain Monte Carlo methods.
Nevertheless, in our examples we have found it to be reasonably well approximated by a
normal distribution (convergence of our iterative quadrature relies on a normal approxima-
tion). If this is true for high dimensional 8 it should be possible to use an approximate
Markov chain Monte Carlo integration method.

In our examples, we have not considered the more important case in which the code out-
put is multivariate. Effective calibration should ideally use all available code outputs and
corresponding physical measurements. For example, in the nuclear accident application the
National Radiological Protection Board would make a large number of air concentration
measurements some time before the first ground deposition measurements are available. The
air measurements can provide information about the unknown source terms and therefore
should be used in the analysis. The use of multiple code outputs and measurements is a topic
for future research. It was suggested in Section 4.1 that multivariate outputs might be
handled simply by creating additional input parameters. In the nuclear application we could
in principle treat ‘measurement type’ and ‘radionuclide’ as inputs. However, for these types of
input it would not be reasonable to make the kind of assumptions that we make about the
correlation structure.

We have discussed quite extensively the question of alternative covariance structures.
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Experiments reported in Section 6.3 indicated some degree of robustness, but also a need to
consider models that allow for more localized structure. We need to explore our methods
with more and varied applications.

Within our Gaussian process framework, it would be relatively straightforward to
accommodate observations of derivatives of the code, as in O’Hagan (1992). Derivatives are
sometimes available, but we have not examined this so far. Other more speculative topics for
future research include opening up the black box, discussed in Section 1.1, and applications
with high dimensional 6. Our examples hitherto have not gone beyond a few dimensions, yet
calibration problems may have many calibration parameters to ‘fit’. The simulation-based
approach of Romanowicz et al. (1994) can tackle high dimensional @ but does not allow for
model inadequacy. We suspect that a preliminary dimension reduction exercise, as in Craig et
al. (1999), offers the most promising approach in such cases.
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Discussion on the paper by Kennedy and O’Hagan

H. P. Wynn (University of Warwick, Coventry)
It is one of the traditions of the Royal Statistical Society to be critical. I shall refrain from this because I
consider this a landmark paper. I shall confine my remarks to a few points which may show a slightly
different emphasis from that of the authors.

Consider a simple weighing problem in which two people stand together on the same bathroom scale.
The single reading may be modelled as

y:0|+€2+6

where, assuming no zero correction, ; and 6, are the unknown weights and e is a measurement error.
Suppose that € is 0; then it still holds that the model is not identifiable in the classical sense. The serious
point is that the models proposed by the authors have complex hierarchical structures and we should



Discussion on the Paper by Kennedy and O’Hagan 451

perhaps investigate the identifiability. A lack of (likelihood) identifiability, as in the weighing problem,
persists independently of the prior assumptions and will typically lead to inconsistent estimation in the
asymptotic sense.

There is a related but more subtle problem. There may be many different interpolators of the same
data. This holds even when the model class is restricted, for example to polynomials, and there is no
error. This means that non-statistical criteria such as smoothness must be used to select an interpolator.
In the ‘computer experiments’ method (Gaussian kriging) this smoothness is held by the assumptions on
the correlation function. But even in standard but complex linear methods the need to add such criteria
is evident.

Again related is the status of unknown parameters. My comments here are more of a question. Is
there an ontological difference between different parameters? For example do quantities which are
potentially measurable, or future values of observables, have a different status from parameters which
are buried deep down in some hierarchical model? Do the weights 8, and 6, have a different status from
that of some hyperparameter of a superpopulation from which they are assumed to be sampled? This
issue arises in several areas as evidenced by the different terminology for the same entity: hidden
variable, latent variable, state variable, hyperparameter. In some cases, such as when a hidden variable
is unearthed in a Bayes network and attributed to a real cause, the status seems higher. When the
parameter is simply included to ‘adjust’ or ‘shrink’ the model in some way then the status seems lower.

In studying any class of computer models it is very important to work closely with the scientists or
engineers. Large computer simulators are playing an increasing role in research and industry from
models of the gulf stream to the control of chemical plants and automotive design. They are used for
scientific study and for optimization. Very importantly they are used for supporting decisions in safety
critical areas such as, if there is another Chernobyl accident, to determine the path of the radiation
plume. In all cases, but particularly the latter, speed is of the essence in replacing or adapting computer
models which have long run times.

Computer models are of different types: linear and non-linear ordinary or partial differential
equations and so on. They are solved (integrated) by a variety of methods. It is useful to know what is
going on inside the black box. For example if we can obtain the partial derivatives (sensitivities and
Jacobians) of the outputs with respect to the parameters then we can construct the information matrix,
as in non-linear regression, and hence approximations to the likelihood, approximate confidence
intervals, tests and so on. We may even obtain higher derivatives and then use second-order corrections
such as the saddlepoint. For dynamic models all these change with time and, for example, we typically
learn more from the transient behaviour than from the steady state. If the black box is a solver which
gives the output as the integral of the system then without too much additional analysis we can obtain
these first- and second-order sensitivities. Three basic methods are available: numerical, symbolic or
what is termed automatic differentiation. It is also possible to address the identifiability issues discussed
earlier via these sensitivities by studying ranks of matrices.

As mentioned, in a real time safety critical area any emulator must run fast. It may also be the case
that additional inputs, such as radiation ground readings, are fed to the emulator, or a model-emulator
hybrid. In such cases the Kalman filter or the extended Kalman filter, in the non-linear case, is a leading
candidate as the engine for the emulator. (Note that the extended Kalman filter requires the Jacobians
referred to above.) Some of the Bayes updating in the paper has a Kalman filter flavour and to widen
the comment these and other ideas from system theory would enhance understanding.

I have great pleasure in proposing the vote of thanks.

Philip J. Brown (University of Kent at Canterbury)

My interest in this paper was initially not through computer models but through calibration. The notion
of calibration here is not quite the same as that employed in chemometrics, with which I am more
familiar. One similarity with chemometric Bayesian calibration is the key idea of utilizing the un-
certainty in the calibration input @ through its posterior distribution, but there are several differences.
It is an intriguing idea to try to model models. The essential feature of computer code models as used
here seems to be the ability to learn about and to approximate the computer code through computer
runs. Thus the code acts as a stepping-stone to reality.

In chemometrics over the past 10 years perhaps the greatest gains in accuracy of estimation of
calibration inputs have arisen from instruments becoming highly multivariate perhaps with several
hundreds of responses in the case of spectroscopic instruments; see for example Brown (1993). Typically
the same calibration input 6 influences each response so that the multivariate response acts to replicate
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information. Even when their #-value cannot be assumed to be the same they are often related. This
might be an embarrassment if the authors take as they have the stance of regarding the calibration input
0 as a convenient parameter which offers model flexibility and does not necessarily relate to ‘truth’. I
wonder how the current approach should generalize to the multivariate case. A simple generalization in
the notation of Section 3.1 would be for ¢ x 1 vector f to be generalized to the

f(-) ~ N{M("), r()Z}

generalizing the hierarchical form (3) in the covariance structure and where the ¢ x ¢’ matrix ¥ would
be taken as inverted Wishart at the next stage; here equal prior means M(-) = m(-)1 may be too
restrictive.

The flexibility of the Gaussian process has much to commend it. There is a rich choice of covariance
functions but this choice is not always straightforward. Neal (1999) gives some considerations. The
authors mentioned the alternative approach of regression on basis functions. The trivially simplest
basis, a linear regression, translates into a quadratic covariance function. The Tomsk-7 chemical plant
emissions data show a predictable gradient in its contours moving away in a north-easterly direction
from the source. In the case of code uncertainty, or what I prefer to think of as code approximation,
might such non-stationarity in x-space be naturally modelled by a quadratic term in addition to the
exponential covariance term? The general issue arises whether to include such terms in the mean or
covariance structure. It seems to me that the basis function regression approach is more direct, intuitive
and simpler to apply with its conditional independence formulation. When it comes to pure modelling
of space-time data on particulate pollution collected at a grid of monitoring stations for model
robustness we have preferred to assign covariance structure at the secondary level of the scale matrix of
the inverted Wishart prior. We have then been able to inject non-stationarity at this secondary level
through a Sampson—Guttorp form of distortion of an isotropic covariance in a latent co-ordinate space.
Early multivariate work for several pollutants is given in Brown et al. (1994a); more recent work
accommodates missing response data with a monotone structure; see Kibria et al. (2000), utilizing the
generalized inverted Wishart prior of Brown et al. (1994b).

The authors have done a very good job at spiking criticism by emphasizing that models are not to be
believed and certainly not their models. We should judge the predictions from the model. This is fine but
is one prediction problem carefully extracted enough? Let me turn again to the application. Reading
Shershakov et al. (1995) I began to think about the nature of this prediction problem. If I have gleaned
correctly, the aerial data were taken by flight runs back and forth at an altitude of between 70 m and
100 m, which recorded y-radiation. They were all taken around the same time. There were also com-
parative measurements at ground level and many snow and soil samples were taken. My question is
whether the careful extraction of 10, 15, 20 or 25 aerial observations adequately reflects the sampling
schedule in time and space and the real life prediction problem. How transferable is the methodology to
the next radiochemical accident?

The authors tackle the problem without code uncertainty so that there is just the Gaussian process of
the model inadequacy §(x) with n(x, 8) computed directly in equation (5). Still there is the issue of plug-
in estimation. This is not second order for predictive uncertainty. The approach is sensible as a first step,
but in this case the problem is just n and not n+ N dimensional and so would simulation methods be
feasible?

A down side to the Gaussian process formulation (with code approximation) as mentioned is the need
to invert an (N + n) x (N + n) matrix V,(0) where N is potentially very large. Apart from the order
(N + n)’ of operations, the numerical stability will be affected by the condition number of the matrix.
This in turn will be affected by how predictable the targets are. In essence inessential variability for
example through trends is better located in the mean function. This can also be influenced by the choice
of code design and I presume that Cartesian product forms of code design help here but I would
welcome any comments that the authors may have on this aspect.

The authors noted the poor tail behaviour of the standardized residuals as shown in Fig. 2. In the
more general problem with code uncertainty, I wonder whether this would be favourably influenced by
a discrepancy covariance function ¢,(x, x') which does not have the same principal axes as those of the
code uncertainty covariances. One could think of generalizing the Gaussian process by scale mixing or
the use of stable laws, but reading Shershakov et al. (1995) again I suspect that the heterogeneity is
caused by ‘hot’ particles, and this may need prizing open the black box for proper modelling.

This paper offers a challenging new approach to the Bayesian calibration of computer models. I have
great pleasure in seconding the vote of thanks.
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The vote of thanks was passed by acclamation.

Clive Anderson (University of Sheffield)

This paper is welcome because it addresses an important need—to attach uncertainties to predictions
from numerical models—and it says illuminating things about it. The problem is currently topical in
relation to large scale models for such things as climate change, pollution and weather forecasting, but it
is relevant at all levels because it is central to the construction of more faithful scientific models for
almost any system—models that combine existing (often very extensive) scientific understanding with a
recognition that nevertheless variability and uncertainty may remain.

I have some specific comments and questions, particularly with large models in mind.

(a) In environmental science the output from many numerical models is a map or a temporal
sequence of maps. Recognition of the specific spatial-temporal structure implied by this for the
covariances of the Gaussian random fields seems important for realism and for exploitation of
sparse data.

(b) Prediction per se is not the only use for numerical models. They are often used as test-beds for
theories about submechanisms. This suggests an extension of the authors’ formulation to one in
which the computer code consists of several linked parts. Inference techniques that could pin-
point the uncertainty arising from each part, and so identify areas needing further research,
would be useful.

(c) Users of numerical models, particularly those producing time series output in the atmospheric
and oceanographic sciences, often carry out data assimilation, meaning dynamic adjustment of
the model in the light of new data to improve predictions. In the paper’s terms this is just
calibration, but with the extra feature that it is carried out repeatedly. The possibilities of
exploiting data sequentially seem worth exploring within the authors’ framework.

(d) To extend the authors’ approach to really large numerical models it seems likely that some
simplification will be needed. With this in mind we might wonder about the rather radical change of
sacrificing the assumption that 7 is stochastic (as done in the Tomsk illustration in the paper). In
general some of the parameters and the idea of code uncertainty would disappear, presumably with
some gain in tractability, but model inadequacy and other sources of uncertainty could still be dealt
with. If the resulting theory had some similarities with Professor Beven’s widely used methodology,
but with a ‘generalized likelihood” founded on more explicit structural assumptions and incor-
porating model inadequacy, it would be attractive. Have the authors explored any such ideas?

J. C. Rougier (Durham University)

We are working in a similar area to that of the authors: large computer models. I would like to inject a
cautionary note, based on our own experiences in doing the kind of computations that the authors have
done in this paper. Phil Brown alluded to the problem of inverting the data variance, which is an
(n + N)*-operation. It is suggested in the paper that this can become computationally feasible if
Cartesian product designs are adopted on the x*-inputs and the t-inputs. I believe that this was done in
the examples in the paper.

The cautionary note that I raise here is that we have experimented with the Cartesian product design
because of course it gives a Kronecker product structure for the variance of the data. Instead of an
(n + N)*-operation, the inverse is an (n* + N°)-operation, so it is extremely beneficial computationally.
The problem with a Cartesian product design is that the same values for x* and the same values for t
keep repeating. This means that there are only a small number of unique x*-values and a small number
of unique t-values in the design over which the computer simulator is run.

If there are only a small number of unique points, correspondingly there are a relatively small number
of interpoint distances. This a problem because when we want to estimate the hyperparameters a big
range of different interpoint distances is needed to obtain a good empirical semivariogram which will
allow the parameters p, 0 and w to be determined. If there are only a small number of interpoint
distances, having adopted a Cartesian product structure because it is computationally efficient, we can
end up with imprecise estimates of the hyperparameters and, in particular, with large correlations across
the hyperparameters. This is our experience.

I would like to ask the authors whether they could compute the observed information matrix for the
hyperparameters and, if so, how they would respond to the observation that the variances were large
and the correlations were also large.
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Peter J. Diggle (Lancaster University)

My comments concern the specification of the covariance structure of the Gaussian process which the
authors use as a (stochastic) model for the (deterministic) response surface generated by the underlying
computer code. Models of this kind have been studied extensively within the branch of spatial statistics
usually known as geostatistics.

(a) In equation (4), the authors use the correlation function
() = exp(= 3wl ).

with a = 2 initially, and refer to the w; as roughness parameters. This terminology is misleading.
A more natural parameterization would be

r(u) = exp(= 3 lu;/w;]"),

in which case the w; have the same physical dimensions as u;, and a direct interpretation as a set of
scaling factors.

Diggle et al. (1998) also used this ‘powered exponential’ family but were rightly criticized for
doing so because, in terms of the implied roughness of the underlying Gaussian process, it is
rather inflexible; for 0 < o < 2 the process is mean square continuous but non-differentiable,
whereas for a = 2 (the maximum allowable value for a legitimate model) the process is mean
square infinitely differentiable. In contrast, the Matérn family of correlation functions which the
authors later mention as an alternative is also indexed by two parameters but has the useful
property that the parameter analogous to « controls the number of times the underlying process
is mean square differentiable.

(b) The relative insensitivity of point predictions of n(x) to the choice of correlation family is also a
feature of geostatistical methods; experience there suggests that this might no longer hold if the
models are used to predict non-linear functionals of the response surface 7(x).

(c) The specification of priors for correlation parameters is not straightforward. Our experience
has been that superficially innocuous changes to vague priors can materially affect posterior
predictive distributions (Diggle and Ribeiro, 2001). Also, prior independence of « and the w; is
questionable, although my preference would be to restrict attention to a few discrete values of «
with (in the case of the Matérn family) qualitatively different interpretations.

(d) The scientific context in which a specific computer model is developed may suggest that the
character of the response surface n(x) is different in different parts of the x-space. If so, it might
be better to use contextual knowledge to choose an appropriate correlation family, and to let the
parameters of the correlation function operate locally, rather than to estimate these parameters
globally from sparse data. In similar vein, practical geostatisticians often implement their pre-
dictions locally, using only data from points close to x to predict 7(x), with the aim of making
their predictions more robust to model misspecification.

Michael Goldstein (University of Durham)

I would like to thank the authors for an excellent treatment of a topic of growing practical importance.
The type of full Bayes analysis developed in this paper will undoubtedly be appropriate and valuable
whenever

(a) we can give a meaningful prior and likelihood specification for the model in the suggested form
and
(b) the resulting full analysis is tractable.

However, there may be substantial difficulties in carrying out the program for large computer models,
where the input and output spaces are very high dimensional, and where we may be able to make only a
relatively small number of evaluations of the computer code (so that the prior specification and choice
of computer evaluations is very important). But, as the authors note, often ‘the purpose of calibration is
to use the calibrated model for predicting the real process’. In such cases, it is useful to be aware that
there are alternative approaches to prediction which do not require explicit preliminary calibration. One
such approach is implemented in Craig et al. (2001), where, using a similar prior formalism to that of
the current paper, we
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(a) use evaluations of the computer code to adjust beliefs about the computer model,

(b) assess beliefs about the relationship between observed and unobserved process values based on
beliefs derived in (a) and

(c) predict unobserved process values given observed process values using joint beliefs formed in (b).

The advantage of this approach is that it is often much easier to find simple, fairly robust, approx-
imations when the analysis is constructed as above (for example, in Craig et al. (2001), we simplify by
using various Bayes linear assessments) than is the case for the calibration-led formulation in the current
paper. Therefore, the alternative approach should allow us to analyse much larger problems, and even
to address the crucial design issue of identifying good choices of computer evaluations to improve
prediction, for such large computer models.

Wilfrid S. Kendall (University of Warwick, Coventry)

In the course of working with perfect simulation techniques I also have become interested in the
behaviour of complicated computer programs! Direct simulation methods lead to relatively simple code,
but matters become progressively more involved as one seeks more developed methods. The coupling
from the past (CFTP) method introduced by Propp and Wilson (1996) relies on correct implementation
of a coupling construction (simulation practitioners will be more familiar with ‘coupling’ in its special
case of antithetic variable simulation). When correctly implemented, CFTP will deliver exact samples
from the equilibrium distribution of suitable Markov chains, but correct implementation is non-trivial
(in Kendall (1998) I coined the alternative term ‘perfect simulation’ deliberately to attract attention to
the need for perfect implementation: see the introduction to Kendall and Meller (2000)).

Clearly we can assess the perfection of a CFTP implementation in a brutal but effective way by
subjecting it to assault by a battery of statistical tests (e.g. Cai and Kendall (2001)). However, during
development we need diagnostics which probe the algorithm in more detail. An ideal tool would be a
statistical analogue of the assert macro from C, which tests for the truth of its argument and
stops execution when the argument is false. While developing the algorithm underlying Kendall and
Moller (2000) I used a crude statistical variation of assert: at each transition of the underlying
coupled Markov chain I arranged for the transition (including a record of the current state) to be
recorded in a log-file. Consequently it was possible to carry out a pseudolikelihood statistical
analysis at the end of each run; during development this information could be interpreted to indicate
where in the implementation there might be an error. Details can be found in Kendall and Moller
(1999).

Correctness is different from calibration; moreover there has of course been earlier relevant work on
testing exact hypotheses, and on searching for bugs in software and typographical errors in manu-
scripts. However, the requirements of complicated statistically related programs seem to deserve more
detailed investigation: what I outline above was my own rough-and-ready initial attempt at a solution,
but I would welcome comments from the authors (and others) on how to do better!

Peter Craig (University of Durham)
I would like to thank the authors for their paper on a statistical methodology which has a very wide area
of potential application.

A fundamental problem with computer models is whether to treat uncertain inputs @ as rep-
resentations of physical quantities or as statistical parameters. The authors point out the difficulties with
the former but the latter approach raises questions.

(a) Is the true value of 6 operationally defined? The authors suggest that true 6 is the ‘best fit’ in the
sense of representing data faithfully according to the error structure (model inadequacy and
observation error) specified for the residuals. In many traditional statistical contexts, where we
can envisage a stream of data with unlimited effective degrees of freedom which eventually
identifies all parameter values, such a definition works well even when the model is not correct,
although non-linearity may lead to non-uniqueness. However, as well as being non-linear, many
computer model applications, such as the example in the paper, have an inherent upper bound on
the effective number of degrees of freedom. In particular, the value of @ defined this way is
dependent on the structure and parameters for model inadequacy, which are unlikely to be
completely identifiable.

(b) If the definition of the true value of 0 is very complicated or is lacking, how can we elicit a
distribution for € from experts? Coming from different backgrounds, it seems unlikely that the
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elicitor and elicitee will have the same meaning in mind for 0. In the example, were the National
Radiological Protection Board told that the 6 for which they were providing beliefs was not the
physical version but some statistically motivated version? If so, how was the definition explained
to them and did they find the concept easy to grasp?

(c) What should we do in applications where there are informative prior beliefs about at least some
aspects of the physical quantities being represented by 6? If we formally separate the two ideas of
what € means, we might model the difference between the two. This still requires an operational
definition for the statistical parameter but would then allow elicitation of the difference between
physical quantity and statistical parameter.

The following contributions were received in writing after the meeting.

Keith Beven (Lancaster University)

This comment will focus on the concept of the model inadequacy function. In the environmental (and
other) sciences, models are used because, by including knowledge of the (non-linear) dynamics in
prediction to other cases, the predictions will be in some sense more rigorous. The model itself is
therefore being used as a tool for the extrapolation of understanding to predictive situations. The
danger is that if either the model structure or parameter values are incorrect the predictions may be
inaccurate. Thus adding a model inadequacy function or bias parameter into the likelihood function
would seem to be an excellent idea.

However, experience with Monte Carlo simulations for complex environmental models used in the
generalized likelihood uncertainty estimate (GLUE) methodology (Beven et al. (2000) and references
therein) suggests that it may be very difficult to formulate an inadequacy function, especially for models
that make predictions in both time and space. In addition, parameter interactions and covariation
leading to models that fit the data well can be markedly different in different parts of the parameter
space, leading to a wide selection of different models that give an acceptable fit to the available data
from the process point of view. Model inadequacy might also be expected to vary through the ‘model
space’ (of model structures and parameter sets) and through time and space for individual models in
that space. It would be possible, given sufficient computer time, to estimate an inadequacy function for
each of the individual models sampled (or at least the subset of those considered ‘behavioural’ in fitting
the data). This was done within the GLUE methodology, for example, by Romanowicz et al. (1994),
who allowed for the simplest case of a mean bias in integrating over a likelihood function for a given set
of model parameters.

Since each set of model parameter values may then have its own inadequacy function, inadequacy
then becomes an additional model component but one which may have no clear physical meaning. In
addition, depending on the function chosen, the best joint model in calibration may not necessarily be
the best physical model (or best model in prediction for other situations). From the physical point of
view, model rejection might then be a better strategy than compensation for inadequacy.

Katherine Campbell and Michael D. McKay (Los Alamos National Laboratory)

This paper goes far beyond the well-studied problem of parameter uncertainty to formulate a method
for the simultaneous estimation of multiple forms of uncertainty associated with model predictions. The
area that still puzzles us most is the relationship between the model inputs and ‘reality’. The complexity
of this relationship is glossed over by the authors’ two-part classification of the inputs into ‘calibration
inputs’ versus ‘variable inputs’. In particular, among the latter would be included well-known control
inputs as well as poorly measured inputs (rainfall) and proxies for complex states of nature (atmos-
pheric stability classes).

We would like to sketch an alternative taxonomy which clarifies, in our minds, some of the authors’
well-taken points. We denote the factors driving reality by the triplet («, 7, 8), with corresponding
model inputs (a, p, t). Here (o, 7) corresponds to the authors’ x. The a are observable control variables
and have the same meaning for both model and reality, i.e. a = . The relationships between 7 and
p, and between 0 and t, are more complex. We think of them as mappings p = P(7) and t = T(0)
from high dimensional unobservable reality into low dimensional spaces of model parameters. Model-
independent estimates p; of P(sr;) are available for the observed data, but the calibration variables
T(6) must be estimated using the model output.

Now, the observations are modelled by
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Zi = C(aia i, 0) + €
= pnfa;, P(mm;), T(O)} + 6y, P(m))} + e
=p 77(31', P t) + 6(aiv p:) +e;.

This version of the authors’ equation (5) clarifies several points. First, we see that what the authors call
‘residual uncertainty’ arises from the limitations of the dimension reducing mappings T and P. Second,
this version makes it clear that reality does depend on some underlying factors 6, factors which the
modeller hopes to capture in his model by means of t. The omission of € from the authors’ rep-
resentation of reality by ((x) leads to confusion about the meaning of the ‘true value’ of 8. Although we,
also, take @ to represent something ‘true’, for modelling purposes we can use only its projection T(8).
Thus, for us, T(0) plays the role assigned to 8 by the authors. Finally, therefore, the calibration problem
is to estimate a posterior distribution for the model-dependent parameter T(6) which, together with the
estimated variable inputs p,, produces model behaviour consistent with the data d.

Peter Challenor (Southampton Oceanography Centre)

I would like to comment on Section 4.2 and the problem of whether parameters should be fixed at their
true values or estimated as part of the calibration process. The authors put forward the argument that
we should estimate parameters to enable a better fit to be obtained and hence a more accurate
prediction. This is a sensible thing to do if the sole purpose of the calibration is to produce a good
predictor, but there is another aspect to this problem. The rationale for using a complex code (as
opposed to an empirical regression model) is normally that it encapsulates our understanding of a
physical process. Such physically based models are dependent on parameters that have a real signi-
ficance; for example, one parameter might be g, the acceleration due to gravity. If the calibration of the
model results in estimates of these parameters that differ in an unrealistic way from the true values, for
example if g is estimated as 20 m s~ rather than 9.81 m s~ this not only implies that running the code
with the true value will give a poor prediction but also the rationale for using that code for prediction
may itself be in error. The calibration is in effect acting as a test of how appropriate it is to use the code
to model the physical situation. Little work has been done on the goodness of fit (or goodness of
physics) for complex codes and comparing ‘true’ and estimated parameter values may be a useful
approach.

R. M. Cooke (Delft University of Technology)

I congratulate the authors on their paper. It is not only a very useful introduction to this new and
important area but also provides results which will surely provoke further interest. It is especially
laudable that statisticians interact with modellers to understand better the role of uncertainty in
complicated engineering models. My comments are referenced to the sections of the paper.

Section 4.3: true parameter values

The argument here does not convince me. Saying to the modellers ‘the wind speed is measured as
2m ™', but I obtain a better fit with my model if I use a wind speed of 10m s~"” will not encourage
them to take the model seriously. If a ‘calibration variable’ has a value which can be measured
satisfactorily, then any difference between model predictions and realizations should be regarded as
model inadequacy (even if it is not independent of code input), in my view.

Section 4.2: model

When saying that the realizations ((x;) are a function of x;, we are effectively assuming that repeated
realizations under conditions x; will give the same results. If this is not true then the error in equation (5)
has more structure than assumed (zero mean and variance not depending on the variable inputs x;). I
can easily envisage this being strongly wrong in the example the authors discuss. I am a little confused
what I should ‘believe’ about equation (6):

Cx;) = pn(x;, 0) + 6(x;).

Of course I can always find p and 6(x;) for which this holds, e.g. p = 0 and §(x;) = ((x;). Why should I
believe anything else? The point must be that we want 6(x;) to be small, but is that believing or wishing
(an important distinction for a Bayesian)? Consider the equation 2 = 4 4+ B; now what are your beliefs
about 4 and B? If 4 and B are not independently observable then this question does not make any sense
to me.
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Section 6.2: results

The results look impressive, but before being completely overwhelmed I would like to know more about
the defeated strategies. Regarding strategy 1, I do not know what a ‘Gaussian process interpolation’ is,
but clearly any method which is the same in the crosswind and downwind directions will not have much
chance. It seems strange that the root-mean-squared error increases as n goes from 10 to 20. Regarding
strategy 3, are we minimizing squared differences or square log-differences? If the former, then only very
near field results will have any effect. It is reasonable to choose the observations near field, as this
mimics practice, and thus results for strategy 3 look very promising.

N. A. Higgins and J. A. Jones (National Radiological Protection Board, Didcot)
In the month that the Ukrainian nuclear power-station at Chernobyl finally closed, this paper is both
timely and important. The paper presents a method of using measured results effectively and efficiently
to improve on the predictions that are available from models, thereby increasing confidence in the
predictions and the decisions that potentially follow from them. Previous assessment strategies have
relied on simple ‘plug-in’ parameters to a Gaussian plume model, as Kennedy and O’Hagan refer to
them. For example, much work has been carried out on global parameter fitting through least squares
methods to determine the plug-in values. However, these approaches could not accommodate model
inadequacy, a feature that is prevalent when assessing an accident owing to the limitations imposed by
ignorance of the conditions of the release and the consequent need to use simple models with simple
data demands.

The work of Kennedy and O’Hagan points to a way forward in the assessment of the consequences of
a nuclear accident and complements studies at the National Radiological Protection Board using a
variety of geostatistical techniques. Geostatistical techniques are analogous to the Gaussian process
interpolation of Kennedy and O’Hagan but may be used in conjunction with a Gaussian plume model
and other supporting information (Charnock et al., 1998). In conclusion the paper describes a method
of reconciling predictions and measurements which offers the potential to assist greatly the under-
standing of the situation following an accident.

Jack P. C. Kleijnen (Tilburg University)

I am a non-Bayesian analyst of stochastic discrete event simulations. Such simulations represent ‘resid-
ual variability’ (see Sections 2.1.3 and 4.6) through (pseudo)random numbers. Examples are queuing
simulations in logistics, which generate customers’ arrival times through a Poisson distribution with a
fixed unknown parameter 6, so waiting times become random outputs.

In such simulations, calibration is considered bad practice! For example, observed arrival times
should be used to fit an input distribution. Also see the case-study for the Dutch navy in Kleijnen
(2000).

I agree that—after estimating the input parameters—uncertainty remains. But, this uncertainty may
be modelled through Monte Carlo sampling, using a fitted input distribution; see Section 2.3. Alter-
natively, bootstrapping may be used; see Kleijnen (2000). Neither approach assumes normality for the
input or output distributions!

Code uncertainty (Section 2.1.6) may be caused by programming bugs; see verification—not
validation—in Kleijnen (2000).

Instead of assuming a prior distribution on the linear regression parameters 3, we may first estimate
[, and then check whether these estimates have signs that agree with experts’ prior knowledge. For
example, in queuing simulations the estimated main effect of traffic rate 6 on waiting time should be
positive; otherwise the model violates validation or verification. In a (deterministic) ‘global greenhouse’
simulation we detected that two computer modules were called in the wrong order.

I think that the multivariate character of the code output (Section 4.1) is relevant: their correlations
should be incorporated through generalized least squares. These correlations can be estimated from
replicated runs.

Besides experimental design for deterministic simulation (Section 5.1), there are designs (including
screening) for stochastic simulation; see Kleijnen (1998).

Observed input data in historical order can validate the total model, so-called trace-driven simulation;
see Kleijnen et al. (2000).

We should avoid spurious regressors (Section 5.2), in parametric regression also: though they improve
the fit, they also degrade the predictor. Moreover, besides prediction regression serves (parsimonious)
explanation!
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Bayesians and frequentists—and deterministic and stochastic simulators—should learn from each
other: the saying ‘East is East,...” should not apply to the computer simulation area! Fortunately, the
authors have succeeded in writing a paper that challenges researchers with diverse backgrounds.

William Notz, Thomas Santner, Brian Williams and Jeffrey Lehman (Ohio State University, Columbus)
We would like to thank the authors for a stimulating contribution on an important topic. We appreciate
their detailed decomposition of the uncertainty in the calibration process into code, model, parameter
and other components. We make the following comments.

In the prosthesis design applications that we have investigated, the calibration inputs vary rather than
being fixed. The output is a function of the stress at the bone—prosthesis boundary and depends on the
bone elasticities, which vary across the population of patients for whom the prosthesis is to be used. In
this case, the calibration involves the parameters that govern these distributions for the population of
patients of interest.

Another situation that could be modelled by this approach is one involving a ‘real’ experiment, a
surrogate experiment and the computer experiment. The surrogate only approximates the real
experiment and is performed because the real experiment is very expensive. The surrogate is also
relatively expensive, so one additionally runs the computer experiment as a cheaper, but cruder,
approximation to the real experiment. Models for the real and surrogate experiments will include
random deviations from a true response surface. Models for surrogate and computer experiments will
include model misspecification components because they are approximations. We want the posterior of
the true surface given the surrogate and computer data.

The discussion of ‘true parameter values’ in Section 4.3 is thought provoking. The choice of the
metric that determines the model fit is left to the user, so best fitting only has meaning for a given
example and metric. Also, the true parameter value changes as the data increase because it is best in the
sense of representing z, .. ., z,. This suggests that the calibration parameters are an artefact of the code
and the purpose for which the code was written, rather than quantities having physical meaning.

Another approach to design is the sequential strategy introduced by Schonlau (1997). Williams ez al.
(2000) developed a similar strategy for interpolation in models similar to those discussed by Kennedy
and O’Hagan. Modifications for calibration would seem possible.

Andrea Saltelli (European Commission, Ispra)
My impression of the work of Kennedy and O’Hagan is very positive, and I would like to compliment
them for the excellent quality of their work.

The authors state that ‘Crudely put, calibration is the activity of adjusting the unknown rate
parameters until the output of the model fits the observed data’. This discounts a vast body of literature
based on solving problems of determining fundamental quantities (e.g. in quantum mechanics) using
first-principle calculations that solve inverse problems. See Turanyi’s review in Saltelli ez a/. (2000a). The
authors are correct in noting that these approaches are non-statistical, being mostly based on derivative
analysis. Derivatives analysis is also valuable for estimating the output of expensive models at low
computational cost (see also Griewank (2000)).

My second remark is about the authors’ evaluation of the generalized likelihood uncertainty estimate
(GLUE) approach, when they say that it falls short of appreciating model inadequacy. When one uses
the GLUE approach, not only can a large dimensionality 8 be explored, but one can also sample from
alternative models and model structures. If this is coupled with a quantitative sensitivity analysis, then
the total variation in the prediction driven by model variation can be recovered. I would claim that
this approach is a valid strategy to appreciate how much prediction uncertainty results from the poor
knowledge of the underlying mechanism. Examples are given in Draper et al. (2000), Tarantola
et al. (2000) and Planas and Depoutot (2000) in Saltelli et al. (2000a). See also Saltelli et al.
(2000Db).

I would also appreciate it if the authors could express their views on the related topic of equifinality.
This term indicates that (as the authors note) all models are wrong, and that several plausible models
are in general compatible with the same set of data. This topic is well known to advocates of the GLUE
approach. In the example provided by Kennedy and O’Hagan, the plume model is assumed given,
i.e. already selected by a peer community. In regions of the space of the input where the model is
inadequate, the available data ‘take over’, and the strategy suggested provides interpolation. I never-
theless wonder whether this approach, based on a single realization from the universe of models, really
captures all the uncertainty that might derive from a poor model specification. If the model were to be
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used for predictive purposes, or for extrapolation rather than interpolation, then I would consider
approaches such as the GLUE approach with more confidence.

Neil Shephard (Nuffield College, Oxford)

The use of computationally involved modelling in economics (e.g. in real business cycle research and
in financial economics) has motivated the development of so-called ‘indirect inference’ methods in
econometrics. These allow us to estimate models from empirical data when we can only simulate
from the model (rather than evaluate the likelihood function). The classic reference to this work is
Gourieroux et al. (1993). Although this method has the drawback of not being Bayesian, it does have
the virtue of avoiding the introduction of the infinite dimensional unknown functional forms that are
used in this paper.

Hakon Tjelmeland (Norwegian University of Science and Technology, Trondheim)

I would like to compliment the authors on a very interesting and stimulating paper. My interest in the
topic is for modelling petroleum reservoirs. The calibration inputs then include spatially varying
variables like porosity and permeability. To represent a heterogeneous reservoir, these variables must be
defined on a grid, making calibration inputs high dimensional. The available observations are from a
(typically) low number of wells, where pressure and production rates are observed as time series. Thus,
observations are multivariate. The code, or simulator, predicts pressures and rates for given porosity
and permeability values. The simuator is run on a lattice, which may or may not coincide with the grid
used for porosity and permeability, and it is believed that the predictions of the simulator improve with
the grid resolution. However, the simulation time also increases with larger grids. One run of the
simulator takes from a few minutes to hours or even days, dependent on the size of the grid.

I find the Bayesian model formulation in the paper appealing, but I do not understand how the
procedure can be implemented for the situation sketched above. I do not see how a realistic and
informative prior for f'can be specified. With high dimensional input and output variables, the situation
is just too complex. Moreover, with high dimensional calibration inputs and only a token prior, I would
not trust results based on a very limited number of runs with the simulator. Therefore, I find it more
natural to use the simulator for a low resolution grid, to consider the simulator as a known function and
to include it as a part of the observation likelihood. This results in a more standard Bayesian model,
but, as one run of the simulator still takes minutes to run, the posterior cannot be explored by standard
random walk or independent proposal Metropolis—Hastings algorithms. In some of my work I have
therefore focused on how to construct better proposal mechanisms in the Metropolis—Hastings
algorithm, by including optimizations and specifically consider the possibility of multimodality of the
posterior (Tjelmeland and Hegstad, 2001; Tjelmeland, 2000). For the former, it is natural to use the
possibility of the simulator to supply gradients in addition to mere predictions.

An intermediate modelling strategy would be to consider the simulator as a known function when run
on a coarse grid and unknown for a fine grid. The known coarse grid simulator could then be used to
define an informative prior for the unknown fine grid simulator.

The authors replied later, in writing, as follows.

We thank all the discussants for their thoughtful and stimulating comments. We have tried to address
them via generic themes, and we apologize if this has meant that we have failed to respond to some
relevant questions.

Meaning of parameters

Wynn, Craig and Cooke all question in some way whether the parameters of our model are properly
identified. Our basic model is equation (5), and for the moment we shall assume that the code n(:, -) is
known. The way that we model the inadequacy function 4(-) is as in equation (2), where there is a mean
function with unknown hyperparameters 3 and a zero-mean process. We could rewrite model (5) as

z; = g(X; A) + e(xy), (13)

where g(x;, ) = h(x,)" 8 + pn(x;, 0), so that X includes 0, 3 and p, and e(x,) = e(x;) + e; is an error term
which is correlated in the space of the variable parameters x but includes a ‘nugget term’ for the
variance of ¢;. It seems to us that these two components are intrinsically well defined as in any regression
problem. Fitting will mean finding a systematic term g(-, \), indexed by parameters \, to fit the data best
according to the error covariance structure (some hyperparameters of which are also to be estimated).
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We do not accept Craig’s suggestion that the identification of the model is limited by an upper bound on
the degrees of freedom, since we can in principle obtain an indefinite quantity of observational data in
exactly the same way as for any regression problem. We do not believe that there is any fundamental
unidentifiability in our formulation.

There may of course be practical problems associated with how the class of systematic functions
g(-, A) is indexed, resulting in many different A giving good fits to the data; and as Beven points out
these good fitting sets may be widely separated. Care will be needed in integrating over 6, since it is here
that poor identification (called ‘equifinality’ by Saltelli) will be focused. It is for this reason that we are
wary of Goldstein’s suggestion to handle 8 only implicitly. His Bayes linear methods will, we suspect,
work best if 6 is implicitly well identified so that its posterior distribution is approximately normal. In
the presence of equifinality the Bayes linear approach may oversimplify.

Several questions relating to our suggestion that the value of 6 as defined by us as a best fitting
calibration may differ from the modeller’s intended physical meaning were raised in the discussion.
Craig asks how a prior distribution for 6 could be elicited under our definition, and whether in our
examples the distinction was explained to the National Radiological Protection Board. If substantial
prior information were available about a parameter, so that an informative prior distribution could be
elicited, then we believe that this will typically relate to its intended physical meaning. However, it is
important to recognize that often the supposed physical meanings of parameters are also not very well
defined. In terms of the notation proposed by Campbell and McKay, the computer model is very often
formulated by using parameters T(@) that are simplifications of the true physical parameters. An
example is the deposition velocity in the atmospheric dispersion model. The deposition velocity is
potentially well defined and measurable at a single location but will vary in space because of varying
topography and ground cover. The model uses a single value that is obviously a simplification, and
intended as a kind of average value. As such, and given all the other simplifications in the model, it is
already clear that the deposition velocity in the model is most usefully thought of in terms of a best
fitting value. So, to answer one of Wynn’s questions, we suspect that there is no real difference between
a ‘tuning’ parameter in a model and a physical parameter. It is in our opinion doubtful whether strongly
informative prior distributions for calibration parameters are ever meaningful in practice.

On a related question, Brown, Beven, Challenor and Kleijnen refer to extrapolation of models. The
physical meanings of parameters are usually intended to hold in a range of contexts, and may even be
thought of as universal. By obtaining observational data and calibrating the model, we hope to learn
about these parameters for scientific understanding or for extrapolation. If as in our approach, the
calibrated values need not bear any relation to the intended physical values, these purposes are not well
served. As just explained, however, we suspect that this problem is intrinsic to the use of models, and
not simply a feature of our approach. If all models are wrong, what does it mean to learn the true value
of a parameter in a model: what scientific understanding can be gained, ultimately? In practice, learning
about the apparent values of parameters as revealed in imperfect models does aid understanding and
helps to build better models, whereby the meanings and estimates of the parameters themselves are
steadily refined.

In proposing to estimate a model inadequacy function, and to use this to improve predictions from
the model, we do not intend this to be the end in itself. It is surely true that by studying the estimated
model inadequacy terms the modellers may gain insight into how to improve the model structure (or
even to find bugs in the code, as suggested by Kleijnen!). In particular, both Challenor and Cooke
suggest that, if the fitted value of a physical parameter differs widely from values believed to be realistic,
then this is another indication of model inadequacy. Notice that this supposes that there is strong prior
information about the physical parameter, but if we use this prior information in the analysis it is
unlikely that the posterior estimate would be so different from the prior. Another reason for using
deliberately weakened prior information about the calibration parameters (as mentioned in Section 4.3)
might be to detect this kind of problem with the model.

Covariance structure

Several discussants offer comments on the modelling of covariance structures. Diggle suggests using a
powered exponential family, whereas we generally fix the power at 2, and also the Matérn family.
Although Diggle feels that differentiability of the function should guide the choice of covariance model,
we find it difficult to imagine that the kinds of functions that we deal with will act more like realizations
from one of Diggle’s suggested models than from another. Our choice makes realizations analytic, and
we acknowledge that in reality the functions may not be differentiable, or even continuous, everywhere.
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However, we do not believe in using a model that says that the function will be differentiable nowhere,
or would have say two derivatives everywhere but third derivatives nowhere.

The real problem, as alluded to by Brown and by Diggle in his final comment, is non-stationarity. The
cause of the heavy tails in a Q—Q plot like Fig. 2 is local irregularities in the function, that occur where
we have no observations and that are not being allowed for by our covariance function. To some extent
these issues are related to Rougier’s point about there being little information sometimes about short
scale variation (although he was referring more to the function 7(-, -) than to 6(-)). Nevertheless, we
would like to be able to model the possibility of localized features. It is not enough simply to fit locally,
as Diggle mentions, because this does not allow prediction into gaps where the local structure may have
changed again.

The choice of covariance function effectively determines the smoother, as Wynn points out, and is
equivalent to the choice of a class of basis functions as mentioned by Brown. Provided that a reason-
ably rich family is used, almost all such methods would provide essentially equivalent interpolation
(although this may not be entirely true of very local methods such as wavelets). They may, however,
differ substantially in the variances that are asserted for those interpolations. This will happen within
our class of Gaussian kernels, where a range of values for the roughness parameters may all give very
similar interpolations but quite different posterior variances. This is why we feel that the predictive
validation used in our examples is important. The fact that the slope of the line at the right-hand side of
Fig. 2 is very close to 1 over the great bulk of predictions is the key finding that supports our predictive
variances, whereas the fact that it is clearly not 1 on the left-hand side is a criticism of the predictive
variance obtained with simple Gaussian process interpolation.

The latter corresponds to simple kriging, but the geostatistical methods referred to by Higgins and
Jones are rather more sophisticated. In fact, expression (13) shows an error term analogous to
conventional kriging, but the function g(-, -) implies building the model #(-, -) into a non-linear form of
universal kriging. It would be interesting to see whether our approach would be useful in more
conventional geostatistical applications.

More complex features of applications

Another point made by several discussants is that there are features in many kinds of computer codes
that would defeat our methods in one way or another. The scale of an application is one factor that has
several aspects. Although we allude to extending our results to multivariate outputs, we are aware that
much needs to be done. The generalization mentioned by Brown is natural but entails assuming a
separability in the covariance structure. Kleijnen’s suggestion regarding multivariate outputs may be
useful for stochastic computer codes but only addresses that part of covariances across different outputs
that is induced by the replication error. As Anderson points out, the outputs may be spatial or spatio-
temporal, and this has implications for covariance modelling.

The dimensionality of the calibration parameter € is an important limitation for our methods. The
simulation approach of the generalized likelihood uncertainty estimate (GLUE) is better suited to high
dimensional input spaces, in which the problem of equifinality is more endemic. Both Notz (and
colleagues) and Tjelmeland point out that in many situations we need to calibrate on a parameter that
varies over a field. The suggestion of Notz to model these with a Gaussian random field (GRF) and to
calibrate on the parameters of that field is nice. It can be seen as providing a GRF prior distribution for
0 with extra hyperparameters to be estimated, but in effect € is only estimated implicitly, having been
integrated out of the analysis in a way that parallels Goldstein’s approach.

Although high dimensionality of 6 leads to computational infeasibility for our approach, in practice
there are usually only a few inputs in a model that are critical. In the field of sensitivity analysis (Saltelli
et al., 2000) we usually find that the model is sensitive to relatively few parameters, and in calibration
there may correspondingly be substantive information on which to calibrate only those inputs to which
the output is sensitive. The existence of inputs to which the output is not sensitive (over the range of the
calibration data) is one reason for what GLUE users call equifinality. We believe that identifying the
important input parameters may be a key first step towards effective calibration. In the structure
suggested by Notz, this role is played by the hyperparameters of the GRF.

A third way in which the scale of an application may make our methods impractical to apply relates
to the number of observations. As Brown says, we require to invert a matrix of dimension N + n, which
is an order (N 4 n)® computation. We believe that local fitting, as mentioned by Diggle, offers a way
forward when the quantity of data is very large, but it will be more complex to apply in our context than
in simple interpolation.
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Anderson points out that large models are often made by linking together smaller models. There is
clearly scope for recognizing this structure in the analysis, perhaps by the kind of partial opening of the
‘black box’ advocated by Anderson. Kendall’s comment is related, being concerned with trying to
validate components within a model. Another related point is that of Tjelmeland, who indicates how
simpler, quicker versions of a model might be used to provide information about the model of interest.
His suggestion of using the quick simulator to build prior information seems to be the same idea as that
used by Craig et al. (1996). Kennedy and O’Hagan (2000) offer perhaps a more ambitious use of such
information. The surrogate experiment described by Notz is a similar idea, but the surrogate is intended
to be closer to reality than the code.

In general, we agree with Wynn that appreciating what goes on inside the black box may be a key
to more realistic modelling. However, it will be important to appreciate the relationships between
components, and not just those induced by the model structure itself. Model builders invariably apply
informal testing whose effect is that the overall model inadequacy and uncertainty may be much less
than a naive assessment of the adequacy of components might predict.

Data assimilation is mentioned by Anderson, which can be seen as a kind of on-line calibration as
new data become available. The timescale over which data arrive (and the quantity of data) may make it
quite impractical to apply our methods in this way. Some simplification along the lines of Wynn’s
suggested use of Kalman filtering will be needed.

Wynn mentions that derivatives of 7(-, -) (although not of ((-)!) are often available. Within our
Gaussian process modelling, these are straightforward to incorporate (see a brief mention in O’Hagan
(1992)).

Other comments

Saltelli links the calibration problem with more general inverse problems. Although this is a useful extra
point of view, the nature of inverse problems is that different methods are needed for different prob-
lems. He also makes the useful point that uncertainty about model structure can easily be incorporated
by creating new calibration parameters to index model variations (in our method just as easily as in
GLUE).

Shephard suggests that our use of ‘infinite dimensional unknown functional forms’ might be avoided
by devices such as the indirect inference method used in econometrics. We have two such functions. The
model inadequacy function seems to us to be necessary but not accounted for in his suggestion. We treat
the model code as an unknown function in situations where to evaluate it is costly, so that running the
code thousands of times is impractical, and this also will still be needed if indirect sampling from the
model is costly.

Cooke asks about the example in Section 6.2. Strategy 1 did use different roughness parameters
downwind and crosswind. The increase in root-mean-squared error at n = 20 for strategy 1 is due to
features of the five extra points which altered the fitted roughness parameters substantially. The
calibration of strategy 3 used squared errors on the log-scale, so that all n observations contributed to
the fit.
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