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We provide reasons and evidence supporting the informal rule that the number of runs for an effective
initial computer experiment should be about 10 times the input dimension. Our arguments quantify two
key characteristics of computer codes that affect the sample size required for a desired level of accuracy
when approximating the code via a Gaussian process (GP). The first characteristic is the total sensitivity
of a code output variable to all input variables; the second corresponds to the way this total sensitivity is
distributed across the input variables, specifically the possible presence of a few prominent input factors
and many impotent ones (i.e., effect sparsity). Both measures relate directly to the correlation structure
in the GP approximation of the code. In this way, the article moves toward a more formal treatment of
sample size for a computer experiment. The evidence supporting these arguments stems primarily from
a simulation study and via specific codes modeling climate and ligand activation of G-protein.

KEY WORDS: Curse of dimensionality; Effect sparsity; Gaussian process; Latin hypercube design;
Prediction accuracy; Random function.

1. INTRODUCTION

Choosing the sample size of a deterministic computer exper-
iment is important but lacks formal guidance. The reasons for
this range from inadequate prior information about the process
under study to inadequate results for making necessary calcu-
lations. Because physical experimentation is absent, the con-
straints on experimental size are typically from the time it takes
to make runs of the code. Such constraints often are vague and
flexible. Where budget issues prevail (“you get this much com-
puter time to make your runs”), the choice of sample size, n, is
taken out of our hands. Nevertheless, it is useful to have practi-
cal guidance in choosing n and to know whether the selected n
is adequate to achieve stated goals.

Along with advice on the choice of n for a specific ex-
periment, we consider more general questions—in particular:
What is the role of dimensionality, d, of the input space? If the
curse of dimensionality applies, then high-dimensional prob-
lems might require huge, even intractable, sample sizes for
good prediction accuracy. On the other hand, if the total sensi-
tivity of the function to all input variables is kept fixed, with this
sensitivity just spread over more input variables, then dimen-
sionality might conceivably have a limited effect on accuracy,
as in Monte Carlo integration. In this article, how total sensi-
tivity grows with d and how this sensitivity is spread across the
dimensions are keys to understanding prediction accuracy and
thus sample size. Indeed, the article is really about defining the

properties of functions that arise in practice, from which simple
rules about sample size follow for that class of problems.

Chapman et al. (1994) and Jones, Schonlau, and Welch
(1998) introduced and used the n = 10d rule of thumb that
we study in this article. Otherwise, little has been written on
sample size in the context of computer experiments. Sahama
and Diamond (2001) produced a plot similar to that in Fig-
ure 1 (Section 3) to assess the effect of sample size on predic-
tion error in a four-dimensional example. Their plot shows that
40 runs would provide reasonable accuracy and thus is con-
sistent with the n = 10d rule. A theoretical analysis by Chen
(1996) showed that for d = 1, the order of the maximum mean
squared prediction error is n−n for very smooth output functions
and equally spaced designs. For d > 1, Chen (1996) also pro-
duced results for product designs, indicating that in low dimen-
sions (d ≤ 3), there is still rapid decline in error rates with in-
creasing n. Many applications have d > 3, however, and dense
product designs are impractical for high-dimensional problems.
Because the aim of this article is to provide a better theoretical
underpinning for the empirical n = 10d rule in practical set-
tings, d ranges from 4 to 20 in our examples and simulations.
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CHOOSING THE SAMPLE SIZE OF A COMPUTER EXPERIMENT 367

Following the path taken since 1989 (Sacks et al. 1989;
Currin et al. 1991), we approximate the computer output using
a Gaussian process (GP) constructed from a set of code runs. In
general, characterization of the factors affecting approximation
accuracy, and hence sample size, requires precise formulation
of the goals of the experiment. Such a formulation is often elu-
sive, however. Accordingly, we restrict our attention to the ob-
jective of approximating the code on the basis of sample runs
and on the the question of how many runs are needed to obtain
adequate prediction accuracy at untried inputs. The choice of a
measure of accuracy is open to subjective judgment. The mea-
sures that we use are given in (5) and (6). Other issues, such as
optimization of a target criterion, could raise other considera-
tions, especially those surrounding fully sequential experimen-
tation.

Along with the number of runs, the particular experimen-
tal design must be chosen. Considerable experience built up
over a number of applications leads us to restrict our atten-
tion to designs that are space-filling. Liu (2005) studied the
joint effect of sample size and design choice for a number of
examples and concluded that sample size is more important
than design choice. Throughout, we use Latin hypercube de-
signs (LHDs), introduced by McKay, Beckman, and Conover
(1979). The simplest form of LHDs are convenient for the
theoretical analysis in Section 4. Our empirical studies use
LHDs optimized via a maximin distance criterion averaged over
all two-dimensional projections (Welch et al. 1996). Simpler-
to-construct zero-correlation LHDs (Gough and Welch 1994;
Owen 1994) also could be used.

While there are many issues associated with determining
sample size, we focus on the following questions:

• Is n = 10d a good rule? What are the limitations of such
a rule?

• How does accuracy increase with n? When are feasible
sample sizes available?

• What are the affects of criteria on sample size determina-
tion?

• What should be done when a criterion for accuracy is not
met?

To answer these questions, we aim to quantify the complexity
of a GP model. Of prime concern is the total sensitivity of an
output variable to all of the input variables. How this sensitiv-
ity is distributed across the input variables is also important,
especially for large d. These characteristics guide a simulation
study. Our key conclusion is that the empirically based recom-
mendation of n = 10d runs will provide reasonable prediction
accuracy for “tractable” functions and are sufficient to diagnose
more difficult problems. For the latter, we show that the rate of
improvement in accuracy with n is poor as well. Thus, unless a
huge sample size is available, more than n = 10d runs would be
wasteful.

The article is organized as follows. In Section 2 we review
the GP model and specify the measures of accuracy that we use.
In Section 3 we explore an example to illustrate the issues. We
quantify the complexity of a GP in Section 4; the characteris-
tics developed guide the simulation study reported in Section 5.
In Section 6 we relate the simulation study to various exam-
ples. Finally, in Section 7 we summarize our conclusions and
comment on open issues.

2. THE GAUSSIAN PROCESS MODEL

Overcoming computational demands of complex computer
codes has led, since 1989 (Sacks, Schiller, and Welch 1989;
Sacks et al. 1989; Currin et al. 1991; O’Hagan 1992), to strate-
gies that rely on computationally efficient statistical predic-
tion (approximation, emulation) of the code. Following these
pathways, we place a homogeneous GP prior on the possible
output functions, leading to a predictor given by the posterior
mean conditional on the data from the computer experiment.
Although output from a computer model often is multivariate,
we restrict our attention to scalar output here. Results for scalar
output can be carried over via principal components analysis or
wavelet decompositions of functional output, as described by
Higdon et al. (2008) and Bayarri et al. (2007).

The computer code output is denoted by y(x), where the vec-
tor of input variables, x = (x1, . . . , xd), is in a d-dimensional
unit cube. As long as the input space is rectangular, there is
no loss of generality. The GP model places a prior on the
class of possible y(x). Let Y(x) denote the random function
whose distribution is determined by the prior. Suppose that
Y(x) = μ + Z(x), where μ is a mean parameter and Z(x) is a
Gaussian stochastic process with mean 0, constant variance σ 2,
and correlation function given by

R(x,x′) = exp(−h(x,x′)), (1)

where

h(x,x′) =
d∑

j=1

θj|xj − x′
j|pj , (2)

with θj ≥ 0 and 1 ≤ pj ≤ 2. The parameters μ,σ 2, θj,pj are pa-
rameters of the prior. For analysis, we adopt an empirical Bayes
approach (Currin et al. 1991): These parameters are estimated
from the data from the computer model runs and “plugged into”
the distribution of Y(x).

Experience in a variety of circumstances (Higdon et al. 2004;
Linkletter et al. 2006) suggests that very smooth, even analytic,
output is typical, especially in engineering contexts. As such,
it is often the case that pj is fixed at 2 for all j, leading to the
Gaussian correlation function. We adopt this special case for
most of the article, but comment on the issue of pj < 2 in Sec-
tions 6 and 7. With pj = 2, it can be easily shown that

E

∣∣∣∣∂Y(x)

∂xj

∣∣∣∣2

= 2σ 2θj.

Thus the weight θj may be interpreted as a measure of the “sen-
sitivity” of Y(x) to xj. Characterizing the distribution of the dis-
tances in (2) across design points as a function of the values of
the sensitivity measures, θ1, . . . , θd , leads to an understanding
of the factors affecting prediction accuracy and hence sample
size (Section 4).

Suppose that we make n runs of the code at a design D of
input vectors x(1), . . . ,x(n) in [0,1]d . (Other scales for x lead
to rescaling of θ . Our comments about numerical values for θ
in the rest of the article also would need to be rescaled.) The
data are denoted by y = (y(x(1)), . . . , y(x(n)))T . The (empirical
Bayes) predictor Ŷ(x) of Y(x) is the posterior mean of Y(x)

given the data and θ = (θ1, . . . , θd),

Ŷ(x) = E(Y(x)|y, θ) = μ̂ + rT(x)R−1(y − 1μ̂), (3)
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368 JASON L. LOEPPKY, JEROME SACKS, AND WILLIAM J. WELCH

where r(x) = (R(x,x(1)), . . . ,R(x,x(n)))T is an n × 1 vector of
correlations from (1), R is an n × n matrix with element i, j
given by R(x(i),x(j)), μ̂ is an estimate of μ (often the maximum
likelihood estimate), and 1 is an n × 1 vector with all elements
equal to 1. The mean squared error (MSE) of Ŷ(x), taking into
account the uncertainty from estimating μ by maximum likeli-
hood, is given by

MSE(Ŷ(x))

= E(Ŷ(x) − Y(x))2

= σ 2
(

1 − rT(x)R−1r(x) + (1 − 1TR−1r(x))2

1TR−11

)
. (4)

In practice, σ 2 and θ also must be estimated, again often by
maximum likelihood (Welch et al. 1992). This MSE is the
Bayes posterior variance conditional on plugging in the covari-
ance parameters.

The MSE in (4) can be computed directly given an exper-
imental design and θ , and it is used in Section 4 for theoret-
ical arguments. But for our empirical studies, we take a dif-
ferent path to defining prediction accuracy, using leave-one-out
cross-validation (CV) (Currin et al. 1991; Chapman et al. 1994;
Gough and Welch 1994). Denote the CV prediction of the out-
put y(x(i)) from code run i by Ŷ−i(x(i)), which is the predic-
tor (3) based on the data from the n − 1 runs excluding run i.
The n cross-validated errors, Ŷ−i(x(i)) − y(x(i)), for i = 1, . . . ,

n, are summarized by (normalized) average and maximum mea-
sures of inaccuracy,

eavg =
√

1
n

∑n
i=1(Ŷ−i(x(i)) − y(x(i)))2

range of y(x(1)), . . . , y(x(n))
(5)

and

emax = maxx(1),...,x(n) |Ŷ−i(x(i)) − y(x(i))|
range of y(x(1)), . . . , y(x(n))

. (6)

In these definitions, we could use the sample standard devia-
tion of y(x(1)), . . . , y(x(n)) in place of the range for normaliza-
tion, but we find explanations using the range more appealing.
Tolerable levels of inaccuracy are application-specific, but we
typically take eavg < 0.1 as the target for a “useful” approxima-
tion of the code.

To gain insight into the effect of initial sample size, we can
repeatedly simulate data from the GP model with given val-
ues of θ . We distinguish error measures based on data from
code runs versus data from simulations by using eavg|code and
emax|code versus eavg and emax. The collection of simulated eavg
values provides an empirical distribution for eavg in (5), and av-
eraging over them gives an estimate of E(eavg). Similarly, we
can get an estimate of E(emax) in (6).

Why proceed with simulation rather than attempt direct com-
putation of expected values, for example? For several reasons.
First, the ratios in (5) and (6) are appealing measures but
difficult to manipulate theoretically. Expected values or other
quantities can be readily estimated via simulation. Second, as
described in Section 6, after the sample size is selected and
a computer experiment is run, we can evaluate eavg|code and
emax|code. The error measures from the experiment conducted
can be compared with those from simulation (with θ estimated

from the code runs). By comparison with the the simulated em-
pirical distribution, we can gauge whether the GP model and
sample size are well matched to the actual code.

3. G–PROTEIN COMPUTER CODE

We now illustrate some of the issues raised in this article us-
ing an example, after which we attempt to generalize to a wide
class of functions in the remainder of the article. A code mod-
eling ligand activation of G-protein in yeast described by Yi
et al. (2005) solves a system of ordinary differential equations
(ODEs) with nine parameters that can vary. The system dynam-
ics, the differential equations, are given by

η̇1 = −u1η1x + u2η2 − u3η1 + u5,

η̇2 = u1η1x − u2η2 − u4η2,

η̇3 = −u6η2η3 + u8(Gtot − η3 − η4)(Gtot − η3),

η̇4 = u6η2η3 − u7η4,

where η1, . . . , η4 are concentrations of four chemical species,
η̇i ≡ ∂ηi

∂t , x is the concentration of the ligand, and u1, . . . ,u8 is
a vector of eight kinetic parameters. The output, y = (Gtot −
η3)/Gtot, is the normalized concentration of a relevant part of
the complex, where Gtot is the (fixed) total concentration of G-
protein complex after 30 seconds.

For demonstration purposes, we fix five of the kinetic pa-
rameters, allowing only u1, u6, u7, and x to vary. We use the
GP model to construct an approximation of y as a function of
the transformed variables log(u1), log(u6), log(u7), and log(x),
and then further transform each of these to [0,1]. Thus these
are d = 4 input variables, called x1, . . . , x4 in the notation of
Section 2. The ODE solver can be run quickly and allows us to
evaluate the effect of n on the eavg criterion in (5) using a real
model. The designs used are maximin LHDs.

The values of n that we use are multiples (5, 7, 10, 15, and
20) of the dimension, d = 4. For each choice of n, we run the
ODE solver to obtain data {y(x(i));x(i) ∈ D}. The data are mod-
eled as a realization of a GP (Section 2), the parameters are refit
using maximum likelihood, and the code runs are used to cal-
culate eavg|code in (5). We also compute a version of eavg|code

using a set of new test points rather than CV. We generate the
test points by running the ODE solver for each point in a 120-
run maximin LHD. The same 120 test runs are used for all eval-
uations. The analogous version of eavg replaces the numerator

in (5) by
√

1
120

∑
(Ŷ(x) − y(x))2.

Figure 1 shows how the CV and test set eavg|code measures
change with n. Note that eavg|code is <0.05 for all sample
sizes; this is an easy function. Moreover, the rate of improve-
ment with n appears to be small here in absolute terms, be-
cause the eavg|code values are small. Thus there is little change
in eavg|code as n increases past n = 10d = 40. In relative terms,
however, eavg|code can be reduced substantially from its already
small value by increasing the sample size. Furthermore, the dif-
ferences between using CV and a new test sample to compute
eavg|code are not substantial; both measures point to an easy pre-
diction problem. That CV generally leads to larger errors is not
surprising, because leaving out one point can produce a big gap
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CHOOSING THE SAMPLE SIZE OF A COMPUTER EXPERIMENT 369

Figure 1. eavg|code against n for the G-protein example. eavg|code is
computed via leave-one-out cross-validation (dashed line) or using 120
new test points (solid line).

in the design, making it hard to predict the omitted point. Be-
cause the use of new test data is a luxury, enjoyed only if the
code can be run quickly, we usually are led to rely on CV for
measuring accuracy.

We would not try many values of n in practice. Suppose that
we were to conduct only the experiment with n = 10d = 40
runs. For this design, eavg|code = 0.028 from CV (see Figure 1).
For most applications, this would be considered small, and there
would be nothing further to do. On the other hand, suppose that
we wanted to reduce eavg|code by half. How many more runs
would be needed? Based on the GP parameter estimates from
the 40-run design, we can simulate data for other values of n
and compute (simulated) cross-validated eavg values. Figure 2
shows eavg/eavg|code, where eavg from simulation varies with n

Figure 2. eavg/eavg|code against n for the G-protein example. eavg
is from simulation and varies with n, and eavg|code is computed for
a fixed 40-run design. Both measures are based on leave-one-out
cross-validation. The horizontal line at eavg/eavg|code = 0.5 shows the
desired reduction in error.

but eavg|code is for the fixed 40-run design. The figure suggests
that about n = 80 runs would almost certainly cut the average
error rate in half. A similar conclusion follows from using eavg
based on the 120 test points. Returning to Figure 1, we see that
the experiment with n = 80 runs indeed leads to almost exactly
the desired reduction in error.

The G-protein application establishes that simulation from a
GP model may have properties at least close to mimicking real-
ity. But this is just one example, and we would like to know the
effect of n on prediction accuracy for a wider class of functions
of higher dimensionality and greater complexity. For an effi-
cient, insightful, and more general simulation study, we need
to know the important factors determining the predictability of
functions generated by a GP. This is the subject of the next sec-
tion.

4. EFFECT OF d, θ , AND n ON
PREDICTION ACCURACY

Intuitively, we know that design-point neighbors of x will
tend to be closer as n grows larger, leading to improved accu-
racy in predicting Y(x). But if θ has many large values, then
the correlation between Y(x) and Y for the neighbors will be
low, even for nearby points, leading to poorer prediction ac-
curacy. Here we develop this intuition into some quantitative
rules relating d, θ , and n to distances and the correlation struc-
ture, shedding some light on how prediction accuracy depends
on these quantities.

First, we consider how the theoretical MSE, MSE(Ŷ(x))

in (4), depends on d, θ , and n. Recall that the empirical de-
finitions of prediction accuracy in (5) and (6) are normalized
for scale, so, without loss of generality, we can ignore σ 2 in a
normalized version of mean squared prediction error (MSPE),

MSEnorm(Ŷ(x)) = 1 − rT(x)R−1r(x) + (1 − 1TR−1r(x))2

1TR−11
.

(7)

MSEnorm(Ŷ(x)) is determined by R and r(x) only. Thus it is a
function of n, because R is an n × n matrix and r(x) is an n × 1
vector, and of the correlations in R and r(x). Dimensionality, d,
affects MSEnorm(Ŷ(x)) only indirectly via these correlations.

For simplicity, we explore the factors affecting
MSEnorm(Ŷ(x)) for completely random LHDs (where the
columns are permuted independently). For fixed n, we derive
the mean and variance of the distribution of the distance (2) be-
tween design points. This leads to a distribution for the correla-
tions in R. We also illustrate that under the same conditions, the
distribution of correlations in r(x) for x drawn randomly from
[0,1]d is similar. The matrix inverse in (7) makes MSEnorm
much more complicated than can be explained by these distrib-
utions. Nonetheless, the simulations in Section 5 show that the
mean and variance of the distance distribution explain much of
the effect of d and θ on our empirical accuracy measures.

Take two points, x and x′, at random from a random LHD.
An LHD is defined here to have fixed grid points {0,1/(n −
1), . . . ,1} for each variable xj. Let hj = |xj − x′

j| be the un-
weighted distance in dimension j appearing in h in (2). The first
two moments of h2

j are given by Lemma 1.
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370 JASON L. LOEPPKY, JEROME SACKS, AND WILLIAM J. WELCH

Lemma 1. Let hj be the distance between two randomly cho-
sen points, xj and x′

j in dimension j for a random LHD. Then

P(hj = i/(n − 1)) = n − i(n
2

) for i = 1, . . . ,n − 1,

E(h2
j ) ≡ m1(n) = 1

6

n(n + 1)

(n − 1)2
,

and

Var(h2
j ) ≡ m2(n) = 1

180

n(n − 2)(n + 1)(7n + 9)

(n − 1)4
.

The proof of this lemma is provided in the Appendix. Note
that the two moments converge to 1/6 and 7/180 as n → ∞.

If d = 1, then the probability distribution P(hj = i/(n − 1))

in Lemma 1 is the distribution of all possible distances between
distinct points x and x′. That is, because the design points cover
the grid, every possible distance i/(n − 1) occurs n − i times.

But if d > 1, not all of the possible distances over all dimen-
sions will be observed in any one design, and we rely on the
moments given in Lemma 1 to describe behavior. Specifically,
for two randomly chosen points and all pj = 2, the squared dis-
tance in (2) has expectation

E(h) = m1(n)

d∑
j=1

θj. (8)

For a completely random LHD that has independently permuted
columns,

Var(h) = m2(n)

d∑
j=1

θ2
j . (9)

Figure 3(a) gives the empirical distribution of the correlation
from two points chosen at random from a single random LHD,

(a) (b)

Figure 3. Correlation distribution. The correlation is from two de-
sign points randomly chosen from a random LHD (a) or from one de-
sign point and a new, random test point (b). The histograms are the
respective empirical distributions, and the curves show the lognormal
approximation.

with d = 10, n = 100, and θ = (2.71,2.17,1.69,1.27,0.91,

0.61,0.37,0.19,0.07,0.01). The θj values comprise a canon-
ical configuration, described in Section 5. Also shown is a log-
normal approximation based on an assumption that h is approx-
imately normal with mean and variance given by (8) and (9),
and thus the correlation in (1) is approximately lognormal with
these moments (after a change of sign). It can be seen that the
approximation is fairly good but not perfect. The effect of the
central limit theorem in the sum (2) is limited by the highly
skewed distribution of hj in Lemma 1, and hence that of h2

j , and
also by the few dominating θj weights here. All of this suggests
that the moments (8) and (9) are important but do not com-
pletely characterize the distribution of correlations. Similarly,
the right panel gives the empirical distribution and the lognor-
mal approximation for the correlations in r(x), the vector aris-
ing from a randomly chosen x ∈ [0,1]d and the n design points.
The distributions in the two panels are similar.

Intuitively, we would expect a favorable impact on prediction
accuracy when the mean distance in (8) decreases, and hence
the mean correlation increases. The impact on prediction accu-
racy also would be expected to be favorable when the variance
in (9) increases. A larger spread for the distribution may push
more mass out toward high correlations, and highly correlated
neighboring points aid prediction accuracy.

There are two practical consequences of the dependence
of the distributions of correlations on τ = ∑d

j=1 θj and ψ =∑d
j=1 θ2

j . First, these two quantities are used to plan the sim-
ulations in Section 5. We find that the behavior of the empirical
analog, eavg, of MSEnorm is largely explained by τ and ψ . Sec-
ond, the distributions of the correlations in r(x) (for random
test points, x) and in R (between design points) are similar. The
implication is that accuracy estimates based on leave-one-out
CV will be similar to estimates using predictions at random test
points.

There are many possible θ1, . . . , θd configurations. Here we
examine three special cases describing the effect of dimension-
ality:

1. Suppose that θ1 = · · · = θd = θ ; that is, as dimensional-
ity increases, further equally active variables are added.
Then τ = dθ and ψ = dθ2. Thus the mean of the distri-
bution of h increases linearly with d, the standard devi-
ation of the distribution increases as

√
d, and the h dis-

tribution becomes stochastically larger with d. For suffi-
ciently large d, prediction accuracy will be poor, even if θ

is small.
2. Suppose that τ is kept constant; that is, a fixed amount of

total sensitivity is spread across all dimensions. Clearly,
ψ takes its minimum value of ψ = τ 2/d when θ1 = · · · =
θd = τ/d. Thus equally active factors appear to be the
worst for prediction accuracy. Moreover, as ψ = τ 2/d de-
creases with d, this effect becomes even worse as d in-
creases. For sufficiently large d, the h distribution will
become concentrated at its mean, m1(n)τ , and the lim-
iting accuracy will depend on τ . In this sense, if the total
amount of sensitivity is kept constant, then the worst-case
effect of dimensionality is small.

3. Still keeping τ constant, larger values of ψ , and hence
greater accuracy, result when θ1, . . . , θd vary across the
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CHOOSING THE SAMPLE SIZE OF A COMPUTER EXPERIMENT 371

input variables. The limiting best-case performance oc-
curs when ψ = τ 2 from d−1 inactive input variables with
θj = 0, that is, there is maximal effect sparsity.

The argument that accuracy decreases as τ = ∑d
j=1 θj increases

or as ψ = ∑d
j=1 θ2

j decreases is borne out by the simulations
in Section 5. The quantitative effect of n on accuracy is less
obvious, however. The mean and variance in (8) and (9) de-
pend weakly on n, and so R and r(x) in (7) have elements that
depend only weakly on n. In contrast, MSEnorm depends on n
because R and r(x) have more elements. A full analysis is com-
plicated by the inverse of R in (7). Intuitively, harder problems
(i.e., larger τ and smaller ψ ) require larger sample sizes, re-
gardless of dimensionality to a large extent; this is borne out by
the simulations in Section 5.

5. SIMULATION RESULTS FOR AVERAGE ERROR

The arguments in Section 4 suggest that the effect of the cor-
relation parameters on eavg is largely through τ and ψ , thereby
diminishing the role of d. To investigate this further, we perform
a simulation study that changes dimension but keeps τ,ψ fixed.
Before doing so, however, we must decide on the configurations
of the θ vectors to be explored. Past experience has indicated
that for well-behaved input-output functions, there may be a
few large components of θ and a few moderately sized compo-
nents, with the remainder small. For example, for the G-protein
model and the 40-run experiment, θ̂ = (0.11,0.63,0.56,1.80)

has one larger value, two moderate values, and one small value.
From this standpoint, we adopt a two-parameter class of canon-
ical configurations of θ , defined by

θj = τ

[(
1 − j − 1

d

)b

−
(

1 − j

d

)b]
for j = 1, . . . ,d and b ≥ 1, τ > 0. (10)

Here θ is scaled overall by
∑d

j=1 θj = τ , and θj decreases with j
at a rate controlled by b. A larger value of b leads to a larger
value of ψ . The generated θ vector tends to have the character-
istics that we expect, especially as d grows large. Examples of θ

configurations for d = 10 and τ = 1 are given in Table 1. When
τ 
= 1, the value of θ is found by multiplying each canonical θj

in the table by τ .
Data for the simulation study are generated as follows:

1. Given d and n, select a maximin LHD, D, of n points in
[0,1]d .

2. Fix values of μ = 0, σ 2 = 1, p = 2 and select a canoni-
cal θ (as specified earlier) for the parameters of the GP
given in (2). Because the measure of accuracy in (5)
or (6) is standardized by the range, the particular value
of σ 2 = 1 is irrelevant.

3. Generate 50 independent realizations of the GP, resulting
in 50 different sets of observations {y(x(i));x(i) ∈ D}.

For each data set, form a predictor using (3) and a value of
eavg in (5), with the value of θ as in the data-generation step. Al-
ternatively, for each data set, we could estimate θ and construct
a predictor with θ̂ . We found no essential difference between
predictors based on θ and θ̂ in terms of our summary measures
of prediction accuracy, and using the fixed θ takes much less
time.

We start with d = 5 and b = 1 in (10), which results in
θj = τ/5 for j = 1, . . . ,5. As we argue in Section 4, this choice
of θ minimizes ψ for a fixed τ and represent a “worst case”
starting point. Thus for any given τ value, ψ = τ 2/5 when
d = 5. If τ and ψ = τ 2/5 are kept constant as d changes,
then the canonical θ vector must satisfy

∑d
j=1 θ2

j = τ 2/5. For
d = 10, 15, and 20, this means that b = 3.45, 5.51, and 7.55,
respectively, in (10). Values of τ = 3, 10, 20, and 40 are cho-
sen to cover problems ranging in difficulty from “easy” to “very
hard.”

The results of Section 4 suggest that similar accuracy should
be obtained for fixed values of n, τ and ψ , largely indepen-
dent of d. Intuitively, however, we expect that n must increase
with d. Figure 3 illustrates that n, τ , and ψ do not fully explain
the behavior of the tails of the correlation distribution, and that
large correlations in particular play a prominent role. Thus, we
allow n to increase modestly with d, specifically linearly. We
also allow different rates, that is, n = kd, where k = 7, 10, 15,
or 20. The four panels in Figure 4 correspond to τ = 3, 10,
20, and 40, respectively, with ψ fixed at τ 2/5 in each. In each
panel, curves are plotted for d = 5, 10, 15, and 20. A curve
shows the mean of eavg computed from the 50 realizations of
the GP, which we denote by ēavg, plotted against k (recall that
n = kd). Several features of these plots are worth highlighting:

• The case τ = 3 is an “easy” problem due to the small com-
ponents of θ .

• When ψ is fixed, the curves for d = 5, 10, 15, and 20 are
all quite close.

• When n = 10d and τ ≤ 10, predictions on average are ac-
curate to within about 10% of the range of the data; reliable
fits are barely (or not) obtainable for τ ≥ 20.

• The improvement in fit for sample sizes exceeding n =
10d is marginal.

Suppose that the decrease of ēavg with n is approximately of
order n−c. The rate c can be estimated from the points shown in
Figure 4 from the slope of the least squares fit of log(ēavg) re-
gressed on log(k). The estimated rates are given in Table 2. For
easy problems (τ = 3), convergence rates close to 1 are achiev-
able for dimensions as large as d = 20, so that doubling sample
size can reduce eavg by about half. In contrast, in hard prob-
lems the rates of convergence can be very small; for example,

Table 1. Canonical configurations of θ for d = 10 (to be scaled by τ )

b ψ θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
3 0.18 0.271 0.217 0.169 0.127 0.091 0.061 0.037 0.019 0.007 0.001
9 0.45 0.613 0.253 0.094 0.030 0.008 0.002 0 0 0 0
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372 JASON L. LOEPPKY, JEROME SACKS, AND WILLIAM J. WELCH

Figure 4. ēavg against k (with n = kd). The four panels correspond to τ = 3, 10, 20, and 40. In each panel, ψ = τ2/5, and d = 5 (solid line),
d = 10 (dashed line), d = 15 (dotted line), or d = 20 (dotted–dashed line).

when d = 15 and τ = 20, it takes about 8 times as many runs
to reduce eavg by half. When τ = 40, reducing eavg substan-
tially without enormous sample sizes appears to be impossible.
In such situations, the experiment may need to be reformulated
and restricted.

The arguments in Section 4 suggest that for fixed total sen-
sitivity τ , dividing τ equally across the d input variables is the
worst case for prediction accuracy, that is, ψ = τ 2/d. Figure 5
explores worst-case problems by plotting eavg against τ . There
is a separate plot for d = 5,10,15,20, and n = 10d throughout.
Fifty simulated realizations are made for each value of τ . The
lines in Figure 5 drawn through the averages of eavg show lit-
tle difference as d increases, as predicted in Section 4 for the
worst case studied here. There is a small dimensionality effect,
and n = 10d is increasing with d, but the total sensitivity, τ , is
the important factor. For τ ≥ 20, eavg is above the target of 0.1
for all d studied. In fact, if we replace the range in (5) by the
sample standard deviation of y1, . . . , yn, then all values of eavg

are close to 1 for values of τ > 20, indicating that the sample
mean is about as good a predictor as the GP model.

Table 2. Estimated convergence rates for ēavg (with ψ = τ2/5)

τ

d 3 10 20 40

5 1.34 0.63 0.43 0.08
10 0.97 0.57 0.31 0.14
15 0.96 0.53 0.36 0.13
20 0.87 0.51 0.28 0.19

To investigate the more realistic situation in which the prob-
lem has some degree of sparsity, we allow ψ to vary. We fix
d = 10 and n = 100. As suggested by Figure 4, for fixed val-
ues of τ and ψ , results for other values of d (with n = 10d) are
similar. For each fixed value of τ , we increase the value of ψ

so that the sparsity is increased, and the total sensitivity of the
function is shifted to increasingly fewer dimensions.

Even a moderate degree of sparsity can result in drastic re-
duction of error. The τ = 40 panel in Figure 6 is interesting,
because even in such a complex problem, reasonable accuracy
can be obtained when there is a degree of sparsity. In particu-
lar, the last few values of ψ represent situations in which the
10-dimensional problem contains 5 or fewer active dimensions.

6. EXAMPLES

We now briefly revisit the G-protein example and discuss two
climate codes in light of the foregoing results. From an initial
design of n = 10d = 40 runs for the four-dimensional G-protein
code in Section 3, θ̂ = (0.11,0.63,0.56,1.80), and we have
τ̂ = 3.10 and ψ̂ = 3.95. This is an even easier problem than that
shown in the top left panel of Figure 4, where τ = 3 is roughly
the same but d = 5 is larger and ψ takes a worst-case value. In
the figure, the average of eavg across realizations is well below
0.05 for n = 10d; thus it is no surprise that n = 10d runs led to
eavg|code = 0.028 for the easier G-protein problem.

The simulation in Section 3 suggests that 80 runs would re-
duce average error by approximately half relative to n = 40
for the G-protein example. This has been confirmed by a new
experiment. Table 2 provides an alternative to simulation. For
d = 5 and τ = 3 in Table 2, which as noted earlier appears to
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CHOOSING THE SAMPLE SIZE OF A COMPUTER EXPERIMENT 373

Figure 5. eavg (squares) and ēavg (solid line) from 50 realizations against τ . The four panels correspond to d = 5, 10, 15, and 20. For all d

and τ values, ψ is set at its worst-case value of τ2/d, and n = 10d. The horizontal line indicates eavg = 0.1.

characterize a harder problem, the rate of convergence is 1.34.
Thus a sample size of n = 40(21/1.34) = 67 is required. But this
rate calculation is based on average behavior across simulated

realizations, and Figure 2 shows considerable variation in eavg.
Thus the rates in Table 2 provide a guide, but simulation of the
eavg distribution is safer.

Figure 6. eavg (squares) and ēavg (solid line) from 50 realizations against ψ . The four panels correspond to four values of τ . In each panel,
d = 10, n = 100, and the horizontal line indicates eavg = 0.1.
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An ocean circulation model (Gough and Welch 1994) with
d = 7 input variables had an initial sample size of n = 36 suc-
cessful runs from 51 attempted. Thus, due to computing con-
straints, the sample size was about half the recommended value
of n = 10d. Even so, fairly good fits were obtained for all six
output variables. A closer look at this application (Loeppky,
Sacks, and Welch 2008) reveals that all output variables have
τ̂ < 10. Moreover, θ̂ always has elements that are near 0 for at
least three (different) input variables; that is, there is consider-
able effect sparsity. Figure 6 suggests that very high accuracy
would be produced by n = 10d runs under these conditions, and
it is not surprising that even fewer runs were sufficient. Alterna-
tively, one can argue that with at least three impotent variables,
the input space is effectively four-dimensional, leading to a rec-
ommendation of n = 40, about the same as in the experiment
performed.

Chapman et al. (1994) analyzed a computer code for the sea-
sonal growth and decline of Arctic sea ice. The code has d = 13
input variables and four outputs, y1, . . . , y4. From an initial de-
sign producing n1 = 69 runs, GPs were fit separately for each
output. Every fitted GP had at least one input variable with
p̂j < 2 (based on a substantially improved likelihood vs. p̂j = 2).
The values of eavg|code are given in Table 3; each is below 0.1,
and we might be tempted to stop. The emax|code values for y3
and y4, about 0.5, are of concern, however.

Faced with similar concerns about approximation accuracy
in the initial experiment, Chapman et al. (1994) opted to make
additional runs and ended up with a total of 157 good code
runs. The eavg|code values in Table 3 show modest improvement
for 157 runs, but the emax|code values show less change. For the
troublesome y3 and y4, they remain close to 0.5.

Could simulation predict the impact of such a follow-up ex-
periment? First consider the estimated means and standard de-
viations for eavg and emax in Table 3 for n = 69. There the
eavg|code values are broadly consistent with the respective eavg
distributions. In contrast, simulation is less useful for emax here;
for example, emax|code for y4 is 3.7 estimated standard devi-
ations higher than the estimated mean. Estimated means and
standard deviations of the eavg and emax distributions are also
given in Table 3 for n = 157. To mimic practice, these simu-
lations use the GP parameter estimates from the initial experi-
ment. Relative to n = 69, simulation suggests only modest re-
duction in eavg. For y4, even this modest reduction is not real-
ized by eavg|code. With n = 157 runs, the simulated values of
emax again are inconsistent with emax|code. Although the magni-
tude of the maximum error is again underestimated, the simula-
tions correctly predict that there will be little impact on emax|code

from the further runs. Thus the simulation study leads to the
same conclusion that Chapman et al. (1994) reached after the
follow-up experiment: Taking more runs is not effective.

The sea ice code failed to converge for 12 of 81 attempted
runs in the initial design (hence the 69 good runs). This suggests
erratic behavior of the code in some parts of the input space and
is a possible explanation for the difference between the measure
emax|code and the distribution of emax based on simulations from
the GP.

7. SUMMARY AND OPEN ISSUES

Our main conclusion is that n = 10d runs is a reasonable rule
of thumb for an initial experiment. For tractable problems like
the G-protein and ocean-circulation models, good prediction
accuracy is obtained. When initial accuracy is good, the rate of
improvement with n also tends to be high, so error can be read-
ily reduced by more runs, albeit relative to already small error
summaries. When n = 10d runs gives low accuracy, the rate of
improvement also tends to be small. A small initial experiment
is sufficient to show that huge sample sizes are suggested, per-
haps calling for problem reformulation. Thus our results also
provide some guidance regarding follow-up strategies.

Problem difficulty is characterized by θ1, . . . , θd in (2), which
are measures of the sensitivity to x1, . . . , xd in a GP model. Of
primary concern is the value of τ = ∑

θj, the total sensitivity.
If τ is small (<10, say), then the problem is tractable with n =
10d runs, for d up to 20, as studied in this work, possibly higher.
Especially for large d, the degree of effect sparsity measured by
ψ = ∑

θ2
j is also important. With a very high degree of sparsity,

problems with larger values of τ (say up to 20 or 40) can be
tackled with n = 10d runs. In contrast, if the total sensitivity is
spread equally across all d input dimensions, then even τ = 10
leads to fairly poor prediction accuracy for d > 5. In such worst-
case scenarios, the impact of dimensionality is minimal.

The values of τ discussed earlier assume that all xj’s are on a
[0,1] scale. Consider a function with all xj’s on [−1,1], for in-
stance. The θj would need to be multiplied by 4 to convert to this
study’s xj scaling, because the Gaussian correlation works with
squared distances. Another caveat is that we did not consider
d < 4. Fast convergence of the maximum MSPE to 0 occurs for
small d according to Chen (1996), even for the product designs
that he considered. This is consistent with characterization via
the ψ measure that we introduced; it is always favorable for
functions of very low dimension, which have few (active) fac-
tors by definition.

Table 3. Actual and simulated accuracy measures for the sea ice code

Average error Maximum Error

n y1 y2 y3 y4 y1 y2 y3 y4

69 eavg|code 0.043 0.044 0.093 0.099 emax|code 0.249 0.124 0.466 0.559
ēavg 0.048 0.044 0.079 0.089 ēmax 0.139 0.128 0.225 0.263

ŜD(eavg) 0.011 0.013 0.019 0.018 ŜD(emax) 0.039 0.052 0.071 0.079

157 eavg|code 0.032 0.031 0.079 0.096 emax|code 0.189 0.116 0.446 0.494
ēavg 0.029 0.029 0.056 0.062 ēmax 0.103 0.096 0.182 0.203

ŜD(eavg) 0.008 0.009 0.011 0.011 ŜD(emax) 0.035 0.033 0.045 0.055
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CHOOSING THE SAMPLE SIZE OF A COMPUTER EXPERIMENT 375

Effect sparsity is related to the notion of effective dimension.
If there are good a priori reasons to expect that the number of
active inputs, d0, is less than d, then choosing n = 10d0 is a
useful complement to the recommended strategy, especially if
there are serious budget constraints. In the sea ice example in
Section 6, prior belief that there were likely to be no more than
eight active inputs for each output accounted for the reliance on
an initial sample size of 81.

Criteria can make a difference. In the sea ice example of Sec-
tion 6, there is a conflict between the eavg and emax criteria in
terms of whether satisfactory levels of accuracy are achievable
without huge sample sizes. But calculations that are omitted
here (Loeppky, Sacks, and Welch 2008) show that both criteria
support the “n = 10d” rule.

The use of the range to normalize in (5) and (6) is driven by
our sense that it is easier to interpret in reporting error rates.
This is particularly true when the numerator is the maximum
error. Normalizing using the sample standard deviation of the
code output values is an alternative approach that leads to the
same conclusions reported in Section 5. It has one possible ad-
vantage: For very hard problems the revised definition of eavg

will be close to 1 and readily recognized as a context in which
the GP fit is of little use, either because the GP model is inap-
propriate or because the function is just too complex.

Good strategies for coping with poor accuracy from the GP
model are not readily available. The approach of Gramacy and
Lee (2008) may be useful when runs are plentiful. The tech-
nique used by Aslett et al. (1998) and Gramacy and Lee (2008)
of narrowing the space of inputs often will lead to a less-
complex function and allow better approximation of code out-
put by a homogeneous GP; the assumption of homogeneity is
less sustainable when the input space is too large. How to do
this in a measured way is not clear and requires further research,
however.

In most of the work reported in this article, we fixed p = 2
in (2), leaving only the sensitivity parameters, θ , to vary. We
chose a simple two-parameter canonical representation for θ in
our analyses of Section 5 to represent possible configurations.
We have found that even if θ is not a canonical configuration,
there is little to no difference in the distributions of eavg or emax

relative to a canonical θ , provided that τ and ψ are the same.
Thus there is little impact on choice of initial sample size.

When p 
= 2 (as in the sea ice example), the interpretation of
τ and ψ values must be reexamined. In the case of the exponen-
tial correlation function (p = 1), the implied prior distribution
is on a much larger class of functions, and achieving good accu-
racy is more difficult. It is easy to work out the mean and vari-
ance of h1

j as in Lemma 1, and again we find (Loeppky, Sacks,
and Welch 2008) that τ and ψ should be important. The mean
of h1

j is now approximately twice that for the case pj = 2, indi-
cating that larger samples might be needed to achieve desired
accuracy. When 1 < pj < 2, exact calculations of the mean and
variance of h

pj
j are not available, but approximations are obtain-

able (Loeppky, Sacks, and Welch 2008), namely

E(h(x,x′)) ≈
d∑

j=1

θj
2

(pj + 1)(pj + 2)

and

Var(h(x,x′)) ≈
d∑

j=1

θ2
j

(
1

(pj + 1)(2pj + 1)

− 4

(pj + 1)2(pj + 2)2

)
.

Defining canonical sets of correlation parameters is now more
complicated. Not surprisingly, some preliminary calculations
for the sea ice application suggest that the convergence rates
for p 
= 2 differ from those obtained when p = 2, and thus we
must examine rates for various combinations of both θ and p.
How this all plays out in analogs of the analyses in Section 5 to
enable follow-up recommendations has yet to be explored.

APPENDIX: PROOF OF LEMMA 1

Let D be an n × d random LHD, and let xj and x′
j be any

two randomly chosen runs of the design in dimension j. The
construction of the LHD ensures that xj 
= x′

j, and thus xj and x′
j

are dependent random variables. There are a total of
(n

2

)
pos-

sible pairs of points and each pair is equally likely. Clearly,
P(xj = i/(n − 1)) = 1/n and P(x′

j = k/(n − 1)|xj = i/(n − 1)) =
1/(n − 1). Consider any two points that are an absolute dis-
tance of i/(n − 1) apart. By a simple counting argument, there
are n − i pairs giving rise to this distance. This establishes

P(hj = i/(n − 1)) = (n − i)

(
n
2 )

= 2(n − i)

n(n − 1)
, i = 1, . . . ,n − 1.

The expected value of h2
j is

E(h2
j ) = E

(
i2

(n − 1)2

)
= 1

(n − 1)2

(
2

n(n − 1)

n−1∑
i=1

i2(n − i)

)

= 2

n(n − 1)3

(
n

n−1∑
i=1

i2 −
n−1∑
i=1

i3
)

= 1

6

n(n + 1)

(n − 1)2
.

Similarly,

Var(h2
j ) = E(h4

j ) − E(h2
j )

2 = E

(
i4

(n − 1)4

)
−

(
1

6

n(n + 1)

(n − 1)2

)2

= 1

(n − 1)4

(
2

n(n − 1)

n−1∑
i=1

i4(n − i)

)

−
(

1

6

n(n + 1)

(n − 1)2

)2

= 1

180

n(n − 2)(n + 1)(7n + 9)

(n − 1)4
.

Algebra was carried out in Maple.
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