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A Comparison of Three Methods for Selecting 
Values of Input Variables in the Analysis of 

Output From a Computer Code 

M. D. MCKAY AND R. J. BECKMAN 
Los Alamos Scientific Laboratory 

P.O. Box 1663 
Los Alamos, NM 87545 

W. J. CONOVER 

Department of Mathematics 
Texas Tech University 
Lubbock, TX 79409 

Two types of sampling plans are examined as alternatives to simple random sampling in Monte 
Carlo studies. These plans are shown to be improvements over simple random sampling with respect 
to variance for a class of estimators which includes the sample mean and the empirical distribution 
function. 

KEY WORDS: Latin hypercube sampling; Sampling techniques; Simulation techniques; Variance 
reduction. 

1. INTRODUCTION 

Numerical methods have been used for years to provide 
approximate solutions to fluid flow problems that defy ana- 

lytical solutions because of their complexity. A mathemati- 
cal model is constructed to resemble the fluid flow problem, 
and a computer program (called a "code"), incorporating 
methods of obtaining a numerical solution, is written. Then 
for any selection of input variables X = (X,..., XK) an 

output variable Y = h(X) is produced by the computer 
code. If the code is accurate the output Y resembles what 
the actual output would be if an experiment were performed 
under the conditions X. It is often impractical or impossi- 
ble to perform such an experiment. Moreover, the computer 
codes are sometimes sufficiently complex so that a single 
set of input variables may require several hours of time on 
the fastest computers presently in existence in order to pro- 
duce one output. We should mention that a single output 
Y is usually a graph Y(t) of output as a function of time, 
calculated at discrete time points t, to < t < tl. 

When modeling real world phenomena with a computer 
code one is often faced with the problem of what values 
to use for the inputs. This difficulty can arise from within 
the physical process itself when system parameters are not 
constant, but vary in some manner about nominal values. 
We model our uncertainty about the values of the inputs 
by treating them as random variables. The information de- 
sired from the code can be obtained from a study of the 
probability distribution of the output Y(t). Consequently, 
we model the "numerical" experiment by Y(t) as an un- 
known transformation h(X) of the inputs X, which have a 
known probability distribution F(x) for x c S. Obviously 
several values of X, say XI,..., XN, must be selected as 
successive inputs sets in order to obtain the desired infor- 
mation concerning Y(t). When N must be small because 
of the running time of the code, the input variables should 
be selected with great care. 

The next section describes three methods of selecting 
(sampling) input variables. Sections 3, 4 and 5 are devoted 

to comparing the three methods with respect to their per- 
formance in an actual computer code. 

The computer code used in this paper was developed 
in the Hydrodynamics Group of the Theoretical Division 
at the Los Alamos Scientific Laboratory, to study reac- 
tor safety (Hirt and Romero 1975). The computer code is 
named SOLA-PLOOP and is a one-dimensional version of 
another code SOLA (Hirt, Nichols, and Romero 1975). The 
code was used by us to model the blowdown depressuriza- 
tion of a straight pipe filled with water at fixed initial tem- 
perature and pressure. Input variables include: X1, phase 
change rate; X2, drag coefficient for drift velocity; X3, num- 
ber of bubbles per unit volume; and X4, pipe roughness. The 
input variables are assumed to be uniformly distributed over 
given ranges. The output variable is pressure as a function 
of time, where the initial time to is the time the pipe rup- 
tures and depressurization initiates, and the final time tl is 
20 milliseconds later. The pressure is recorded at 0.1 milli- 
second time intervals. The code was used repeatedly so that 
the accuracy and precision of the three sampling methods 
could be compared. 

2. A DESCRIPTION OF THE THREE METHODS 
USED FOR SELECTING THE VALUES 

OF INPUT VARIABLES 
From the many different methods of selecting the values 

of input variables, we have chosen three that have consid- 
erable intuitive appeal. These are called random sampling, 
stratified sampling, and Latin hypercube sampling. 

Random Sampling. Let the input values XI,..., XN be 
a random sample from F(x). This method of sampling is 
perhaps the most obvious, and an entire body of statistical 
literature may be used in making inferences regarding the 
distribution of Y(t). 
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Stratified Sampling. Using stratified sampling, all areas 
of the sample space of X are represented by input values. 
Let the sample space S of X be partitioned into I disjoint 
strata Si. Let pi = P(X E Si) represent the size of Si. 
Obtain a random sample Xij, j = 1,..., ni from Si. Then 
of course the ni sum to N. If I = 1, we have random 
sampling over the entire sample space. 

Latin Hypercube Sampling. The same reasoning that led 
to stratified sampling, ensuring that all portions of S were 
sampled, could lead further. If we wish to ensure also that 
each of the input variables Xk has all portions of its dis- 
tribution represented by input values, we can divide the 
range of each Xk into N strata of equal marginal proba- 
bility 1/N, and sample once from each stratum. Let this 
sample be Xkj, j = 1,..., N. These form the Xk compo- 
nent, k = 1,..., K, in Xi, i = 1,..., N. The components 
of the various Xk's are matched at random. This method 
of selecting input values is an extension of quota sampling 
(Steinberg 1963), and can be viewed as a K-dimensional 
extension of Latin square sampling (Raj 1968). 

One advantage of the Latin hypercube sample appears 
when the output Y(t) is dominated by only a few of 
the components of X. This method ensures that each of 
those components is represented in a fully stratified man- 
ner, no matter which components might turn out to be 
important. 

We mention here that the N intervals on the range of each 
component of X combine to form NK cells which cover 
the sample space of X. These cells, which are labeled by 
coordinates corresponding to the intervals, are used when 
finding the properties of the sampling plan. 

2.1 Estimators 
In the Appendix (Section 8), stratified sampling and Latin 

hypercube sampling are examined and compared to random 
sampling with respect to the class of estimators of the form 

N 

T(Y1,..., YN) = (1/N) g(Yi), 
i=l 

where g(.) = arbitrary function. 
If g(Y) = Y then T represents the sample mean which is 
used to estimate E(Y). If g(Y) = yr we obtain the rth 

sample moment. By letting g(Y) = 1 for Y < y, 0 other- 
wise, we obtain the usual empirical distribution function at 
the point y. Our interest is centered around these particular 
statistics. 

Let T denote the expected value of T when the Yt's con- 
stitute a random sample from the distribution of Y = h(X). 
We show in the Appendix that both stratified sampling 
and Latin hypercube sampling yield unbiased estimators 
of r. 

If TR is the estimate of T from a random sample of size 
N, and Ts is the estimate from a stratified sample of size 
N, then Var(Ts) < Var(TR) when the stratified plan uses 
equal probability strata with one sample per stratum (all 
pi = 1/N and nij = 1). No direct means of comparing the 
variance of the corresponding estimator from Latin hyper- cube sampling, TL, to Var(Ts) has been found. However, 
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the following theorem, proved in the Appendix, relates the 
variances of TL and TR. 

Theorem. If Y = h(X1,... XK) is monotonic in each 
of its arguments, and g(Y) is a monotonic function of Y, 
then Var(TL) < Var(TR). 

2.2 The SOLA-PLOOP Example 
The three sampling plans were compared using the 

SOLA-PLOOP computer code with N = 16. First a random 
sample consisting of 16 values of X = (X1, X2,X3, X4) 
was selected, entered as inputs, and 16 graphs of Y(t) were 
observed as outputs. These output values were used in the 
estimators. 

For the stratified sampling method the range of each in- 
put variable was divided at the median into two parts of 
equal probability. The combinations of ranges thus formed 
produced 24 = 16 strata Si. One observation was obtained 
at random from each Si as input, and the resulting outputs 
were used to obtain the estimates. 

To obtain the Latin hypercube sample the range of each 
input variable Xi was stratified into 16 intervals of equal 
probability, and one observation was drawn at random from 
each interval. These 16 values for the 4 input variables were 
matched at random to form 16 inputs, and thus 16 outputs 
from the code. 

The entire process of sampling and estimating for the 
three selection methods was repeated 50 times in order to 
get some idea of the accuracies and precisions involved. The 
total computer time spent in running the SOLA-PLOOP 
code in this study was 7 hours on a CDC-6600. Some of 
the standard deviation plots appear to be inconsistent with 
the theoretical results. These occasional discrepancies are 
believed to arise from the non-independence of the estima- 
tors over time and the small sample sizes. 

3. ESTIMATING THE MEAN 
The goodness of an unbiased estimator of the mean can 

be measured by the size of its variance. For each sampling 
method, the estimator of E(Y(t)) is of the form 

N 

Y(t) = (l/N) E Yi(t) 
i=l 

(3.1) 

where 

i=1,...,N. 

In the case of the stratified sample, the Xi comes from 
stratum Si, pi = 1/N and ni = 1. For the Latin hypercube 
sample, the Xi is obtained in the manner described earlier. 
Each of the three estimators YR, Ys, and YL is an unbiased 
estimator of E(Y(t)). The variances of the estimators are 
given in (3.2): 

Var(Y(t)) = (1/N)Var(Y(t)) 
N 

Var(Ys(t)) = Var(YR(t)) - (1/N2) (pi - ,)2 
i=l 
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Figure 1. Estimating the Mean: The Sample Mean of YR(t), Ys(t), 
and YL(t). 

Var(YL(t)) = Var(YR(t)) + ((N - 1)/N) 

1/(NK(N- I)K)) E (i 
R 

- )(tj - t) (3.2) 

TIME 

Figure 3. Estimating the Variance: The Sample Mean of S2 (t), S (t), 
and S2 (t). 

YL(t) clearly demonstrates superiority as an estimator in 
this example, with a standard deviation roughly one-fo[u]rth 
that of the random sampling estimator. 

where p = E(Y(t)), 

pi = E(Y(t)lX E Si) in the stratified sample, or 

Pi - E(Y(t)lX e cell i) in the Latin hypercube 

sample, 

and R means the restricted space of all pairs ,ui, /j having 
no cell coordinates in common. 

For the SOLA-PLOOP computer code the means and 
standard deviations, based on 50 observations, were com- 

puted for the estimators just described. Comparative plots 
of the means are given in Figure 1. All of the plots of the 
means are comparable, demonstrating the unbiasedness of 
the estimators. 

Comparative plots of the standard deviations of the es- 
timators are given in Figure 2. The standard deviation of 
Ys(t) is smaller than that of YR(t) as expected. However, 

or 
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4. ESTIMATING THE VARIANCE 

For each sampling method, the form of the estimator of 
the variance is 

N 

S2(t) - (1/N)Y (Y(t)- Y(t))2, 
i=l 

and its expectation is 

E(S2(t)) Var(Y(t)) - Var(Y(t)), 

(4.1) 

(4.2) 

where Y(t) is one of YR(t),Ys(t), or YL(t). 
In the case of the random sample, it is well known that 

NS2/(N- 1) is an unbiased estimator of the variance of 

Y(t). The bias in the case of the stratified sample is un- 
known. However, because Var(Ys(t)) < Var(YR(t)), 

(1- 1/N)Var(Y(t)) < E(S2(t)) < Var(Y(t)). (4.3) 
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Figure 4. Estimating the Variance: The Standard Deviation of S2(t), 

Ss(t), and S2(t). 
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2.1, the expected value of G(y, t) under the three sampling 
plans is the same, and under random sampling, the expected 
value of G(y, t) is D(y, t). 

The variances of the three estimators are given in (5.2). 
Di again refers to either stratum i or cell i, as appropriate, 
and R represents the same restricted space as it did in (3.2). 

Var(GR(y, t)) = (1/N)D(y, t)(l - D(y, t)) 

Var(Gs(y, t)) = Var(GR(y, t)) 
N 

- (1/N2) (D (y, t)- D(y, t))2 
t=l 

I80 9 80.0 90'0 

Figure 5. Estimating the CDF: The Sample Mean of GR(Y, t), Gs(y, 
t), and GL(y, t) at t = 1.4. 

The bias in the Latin hypercube plan is also unknown, but 
for the SOLA-PLOOP example it was small. Variances for 
these estimators were not found. 

Again using the SOLA-PLOOP example, means and stan- 
dard deviations (based on 50 observations) were computed. 
The mean plots are given in Figure 3. They indicate that 
all three estimators are in relative agreement concerning 
the quantities they are estimating. In terms of standard de- 
viations of the estimators, Figure 4 shows that, although 
stratified sampling yields about the same precision as does 
random sampling, Latin hypercube furnishes a clearly bet- 
ter estimator. 

5. ESTIMATING THE DISTRIBUTION FUNCTION 
The distribution function, D(y,t), of Y(t) = h(X) may 

be estimated by the empirical distribution function. The em- 
pirical distribution function can be written as 

N 

G(y, t) = (1/N) u(y- Yi(t)), (5.1) 
i=-i 

where u(z) = 1 for z > 0 and is zero otherwise. Since 
equation (5.1) is of the form of the estimators in Section 
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Figure 6. Estimating the CDF: The Standard Deviation of GR(y, t), 
Gs(y, t), and GL(y, t) at t = 1.4. 

Var(GL(y, t)) = Var(GR(y, t)) 

+ ((N - 1)/N. 1/NK(N - 1)K) E (Di(y,t) 
R 

- D(y, t)). (Dj(y, t) - D(y, t)). (5.2) 

As with the cases of the mean and variance estimators, 
the distribution function estimators were compared for the 
three sampling plans. Figures 5 and 6 give the means and 
standard deviations of the estimators at t = 1.4 ms. This 
time point was chosen to correspond to the time of max- 
imum variance in the distribution of Y(t). Again the esti- 
mates obtained from a Latin hypercube sample appear to 
be more precise in general than the other two types of es- 
timates. 

6. DISCUSSION AND CONCLUSIONS 
We have presented three sampling plans and associated 

estimators of the mean, the variance, and the population dis- 
tribution function of the output of a computer code when 
the inputs are treated as random variables. The first method 
is simple random sampling. The second method involves 
stratified sampling and improves upon the first method. The 
third method is called here Latin hypercube sampling. It is 
an extension of quota sampling (Steinberg 1963), and it is 
a first cousin to the "random balance" design discussed by 
Satterthwaite (1959), Budne (1959), Youden et al. (1959), 
Anscombe (1959), and to the highly fractionalized factorial 
designs discussed by Enrenfeld and Zacks (1951, 1967), 
Dempster (1960, 1961), and Zacks (1963, 1964), and to 
lattice sampling as discussed by Jessen (1975). This third 
method improves upon simple random sampling when cer- 
tain monotonicity conditions hold, and it appears to be a 
good method to use for selecting values of input variables. 
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8. APPENDIX 
In the sections that follow we present some general re- 

sults about stratified sampling and Latin hypercube sam- 
pling in order to make comparisons with simple random 
sampling. We move from the general case of stratified sam- 
pling to stratified sampling with proportional allocation, 
and then to proportional allocations with one observation 
per stratum. We examine Latin hypercube sampling for the 
equal marginal probability strata case only. 

8.1 Type I Estimators 
Let X denote a K variate random variable with probabil- 

ity density function (pdf) f(x) for x E S. Let Y denote a 
univariate transformation of X given by Y = h(X). In the 
context of this paper we assume 

X f(x),xeS KNOWNpdf 
Y = h(X) UNKNOWN but observable 

transformation of X. 

The class of estimators to be considered are those of the 
form 

N 

T(Ul,..., iUN)= -(l/N) Eg (ui), (8.1) 
t=l 

where g(.) is an arbitrary, known function. In particular 
we use g(u) = ur to estimate moments, and g(u) = 1 for 
u > 0, = 0 elsewhere, to estimate the distribution function. 

The sampling schemes described in the following sec- 
tions will be compared to random sampling with respect 
to T. The symbol TR denotes T(Y1,..., YN) when the ar- 
guments Y, ..., YN constitute a random sample of Y. The 
mean and variance of TR are denoted by r and 02/N. The 
statistic T given by (8.1) will be evaluated at arguments 
arising from stratified sampling to form Ts, and at argu- 
ments arising from Latin hypercube sampling to form TL. 
The associated means and variances will be compared to 
those for random sampling. 

8.2 Stratified Sampling 
Let the range space, S, of X be partitioned into I disjoint 

subsets Si of size pi = P(X c Si), with 

I 

5Pi 1. 
i=l 

Let Xij,j = 1,., ni, be a random sample from stratum 
Si. That is, let Xij iid f(x)/pi,j = 1,..., ni, for x E Si, 
but with zero density elsewhere. The corresponding values 
of Y are denoted by Yij = h(Xij), and the strata means and 
variances of g(Y) are denoted by 

i = E(g(Yij)) - j g(y)(l/pi)f(x) dx 
Si 

a-2 - Var(g(Yj)) = 
S (g(y) - 

)2(1/pi)f(x)dx. i I s 

It is easy to see that if we use the general form 

I ni 

Ts = (pi/ni) E g(Yij), 
i=l j=l 

that Ts is an unbiased estimator of r with variance given by 

(8.2) Var(Ts) = (p2/ni)o2. 
i=l 

The following results can be found in Tocher (1963). 

Stratified Sampling with Proportional Allocation. If the 
probability sizes, pi, of the strata and the sample sizes, 
ni, are chosen so that ni = piN, proportional allocation 
is achieved. In this case (8.2) becomes 

I 

Var(Ts) = Var(TR) - (I/N) EPi(iii - r)2. 
i=l 

(8.3) 

Thus, we see that stratified sampling with proportional al- 
location offers an improvement over random sampling, and 
that the variance reduction is a function of the differences 
between the strata means ,i and the overall mean r. 

Proportional Allocation with One Sample per Stratum. 
Any stratified plan which employs subsampling, ni > 1, 
can be improved by further stratification. When all ni = 1, 
(8.3) becomes 

N 

Var(Ts) = Var(TR) - (1/N2) E (i - r)2. 
i=l 

(8.4) 

8.3 Latin Hypercube Sampling 
In stratified sampling the range space S of X can be 

arbitrarily partitioned to form strata. In Latin hypercube 
sampling the partitions are constructed in a specific manner 
using partitions of the ranges of each component of X. We 
will only consider the case where the components of X are 
independent. 

Let the ranges of each of the K components of X be 
partitioned into N intervals of probability size 1/N. The 
Cartesian product of these intervals partitions S into NK 
cells each of probability size N-K. Each cell can be labeled 
by a set of K cell coordinates mi = (mil, i2,..., iK) 
where mij is the interval number of component Xj repre- 
sented in cell i. A Latin hypercube sample of size N is ob- 
tained from a random selection N of the cells ml,..., mN, 
with the condition that for each j the set {mij }N is a per- 
mutation of the integers 1,..., N. One random observation 
is made in each cell. The density function of X given X c 
cell i is NKf(x) if x E cell i, zero otherwise. The marginal 
(unconditional) distribution of Yi(t) is easily seen to be the 
same as that for a randomly drawn X as follows: 

P(Y < y) = P(Yi < ylX E cell q)P(X c cell q) 
all cells q 

= E ll N K(x)dx(1/NK) 
h(x)<y 

-Jh(x)<y 
f(x) dx. 
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From this we have TL as an unbiased estimator of T. 
To arrive at a form for the variance of TL we introduce 

indicator variables wt, with 

f 1 if cell i is in the sample 
Wi - l 0 if not. 

The estimator can now be written as 

NK 

TL = (1/N) z wig(Yi), 
i=l1 

(8.5) 

where Yi = h(Xi) and Xi c cell i. The variance of TL is 
given by 

NK 

Var(TL) = (1/N2) Var(wig(Yi)) 
i=l 

NK NK 

+ (1/N2) 5 Cov(wig(Yi), Wjg(Yj)). (8.6) 
i=l j=l 

jii 

The following results about the wi are immediate: 

1. P (wi = 1) = (1/NK-1) = E(wi) = E(w2) 
Var(wi) (1/NK-1)(1- 1INK-1). 

2. If wi and wj correspond to cells having no cell coor- 
dinates in common, then 

E(wiwj) = E(wiw lwwj = O)P(wj = 0) 

+ E(wiwjlwj = 1)P(wj = 1) 

= 1/(N(N- 1))K-1 

3. If wi and wj correspond to cells having at least one 
common cell coordinate, then 

E(iwjw) =0. 

Now 

Var(wig(Yi)) = E(w2)Var g(Yi) + E2(g(Yi))Var(wt) (8.7) 

so that 

NK 

E Var(wig(Yi)) 
i=l 

NK 

N-K+l E E(g(Yi) 
i=l 

i)2 

NK 

+ (N-K+I1 N-2K+2) E 2 (8.8) 
='-1 

where ui = E{g(Y))X e cell i}. Since 

E(g(Y)- i)2 

-- NK (g(y) - 7)2f(x) dx + (i - 
wcelli 

we have 

5 Var(wig(Yi)) 
i 

N Var(Y) - N-K+1 E (i 
i 

+ (N-K+1 _ N-2K+2) E 

Furthermore 

NK NK 

E Z Cov(wig(Yi), wj g(Yj)) 
i=1 j=1 

i#j 

- EZ E ijE{wiwj} - N-2K+2 Z E ipj (8.11) 
i#j i?j 

which combines with (8.10) to give 

Var(TL) = (1/N)Var(Y) - N-K-1 (t _ )2 
i 

+ (N-K-1 N-2NK)- 
2 

+ (N - 1)-K+1NK-1 
R 

-N -2K E ij -^ 
EE^.~~., 

(8.12) 

where R means the restricted space of NK(N - 1)K pairs 
([i, ,j) corresponding to cells having no cell coordinates in 
common. After some algebra, and with K ui = NKT, the 
final form for Var(TL) becomes 

Var(TL) = Var(TR) + (N - 1)/N[N-K(N - 1)-K 

*E (pi - T)(pu - T)]. (8.13) 
R 

Note that Var(TL) < Var(TR) if and only if 

N -K(N - 1)-K (/i - )(1jt - T) < 0, (8.14) 
R 

which is equivalent to saying that the covariance between 
cells having no cell coordinates in common is negative. A 
sufficient condition for (8.14) to hold is given by the fol- 
lowing theorem. 

Theorem. If Y = h(X1,..., XK) is monotonic in each 
of its arguments, and if g(Y) is a monotonic function of Y, 
then Var(TL) < Var(TR). 

Proof The proof employs a theorem by Lehmann 
(1966). Two functions r(x1,..., XK) and s(y1,..., YK) are 
said to be concordant in each argument if r and s either 
increase or decrease together as a function of xi - yi, with 
all xj,j 7 i and yj,j - i held fixed, for each i. Also, 

)2 (8.9) a pair of random variables (X, Y) are said to be nega- 
tively quadrant dependent if P(X < x, Y < y) < P(X < 
x)P(Y < y) for all x,y. Lehmann's theorem states that 

_ T)2 if (i) (X1, Y1), (X2, Y2),... (XK, YK) are independent, (ii) 
(Xi, Y,) is negatively quadrant dependent for all i, and (iii) 
X = r(X1,...,XK) and Y = s(Y1,...,YK) are concor- 

2. (8.10) dant in each argument, then (X, Y) is negatively quadrant 
dependent. 
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A COMPARISON OF THREE METHODS FOR SELECTING VALUES OF INPUT 

We earlier described a stage-wise process for selecting 
cells for a Latin hypercube sample, where a cell was labeled 
by cell coordinates mi,..., miK. Two cells (I1,..., IK) and 
(ml,..., mK) with no coordinates in common may be se- 
lected as follows. Randomly select two integers (R11, R21) 
without replacement from the first N integers 1,..., N. Let 
11 = R11 and m1 = R21. Repeat the procedure to obtain 
(R12,R22), (R13,R23), . .,(R1K, R2K) and let lk = RIk 
and mk = R2k. Thus two cells are randomly selected and 
lk 7 mk for k = 1,..., K. 

Note that the pairs (Rlk, R2k), k = 1,..., K, are mutually 
independent. Also note that because P(Rlk < x, R2k < 
y) = [xy - min(x,y)]/(n(n - 1)) < P(Rlk < x)P(R2k < 
y), where [.] represents the "greatest integer" function, each 
pair (Rlk, R2k) is negatively quadrant dependent. 

Let /ul be the expected value of g(Y) within the cell 
designated by (I1,..., 1K), and let /2 be similarly defined 
for (ml,... ,mK). Then /1 = ii(R11,R12,... ,R1K) and 
A12 -= I(R21, R22, ..., R2K) are concordant in each argu- 
ment under the assumptions of the theorem. Lehmann's 
theorem then yields that 1i and /2 are negatively quadrant 
dependent. Therefore, 

P(PI1 < X, l2 < y) < P(li1 < x)P(i2 < y). 

Using Hoeffding's equation 

Cov(X, Y) = 
1+oo r+00 

[P(X < x, Y < y) 

- P(X < x)P(Y < y)] dx dy, 

(see Lehmann (1966) for a proof), we have Cov(/Al, /2) < 0. 
Since Var(TL) = Var(TR) + (N - 1)/N Cov(i,Lu2), the 
theorem is proved. 

Since g(t) as used in both Sections 3 and 5 is an increas- 
ing function of t, we can say that if Y = h(X) is a mono- 
tonic function of each of its arguments, Latin hypercube 
sampling is better than random sampling for estimating the 
mean and the population distribution function. 

[Received January 1977. Revised May 1978.] 
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