
Modeling and analyzing data from computer 
experiments.

Some general observations.

1. For simplicity, I assume that all factors (inputs) x1, 
x2,…, xd are quantitative.



2. Because the code always produces the same output,  
y(x), at a given value of x, a model that produces 
estimates (predictions) of the output, which interpolate 
the data (pass exactly through the observed data) is 
advantageous.



3. Because the code is somewhat of a “black box” we 
don’t usually know the functional form of y(x) a priori.  
Thus, it is advantageous to consider statistical models 
that are capable of approximating a wide variety of 
functional shapes. 



4. Because the code runs slowly, we need models that 
can be fit with relatively few observations.



Some possible models

Regression models

Advantages: 

• Easy to fit and interpret.

• By choosing a high enough degree polynomial, you 
can approximate any function.



Disadvantages:

• Does not necessarily interpolate the data.

• If there are many inputs (d is large), many 
observations are required to fit a polynomial of high 
degree. 



Other choices

• splines

• neural nets

• nonparametric smoothers



Problem:  Many of these other methods provide point 
predictors but not standard errors of prediction.  In 
other words, they do not readily provide a confidence 
or prediction interval for predictions based on them.

Some of these can be fit on JMP, but I will not discuss 
these further because they do not give standard errors 
of prediction.



What happens if we use regression to fit a somewhat 
complicated function?

An example





How well can we fit this with polynomial regression 
models using a 21 point LHS on the grid of points 0, 
0.05, 0.10, 0.15, …, 0.95, 1?

Note: A classic design, such as a central composite 
design, would only take observations at 0, 0.5, and 1 
(and perhaps only one or two other interior points).  
Obviously, such a design would not provide enough 
data to see the oscillations.  



Below are a sequence of fits using JMP
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Second (red) and third (green) degree polynomial fit
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Fourth (blue) and fifth (orange) degree polynomial fit
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Sixth degree polynomial fit
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A tenth degree polynomial fit.
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The predicted values over the grid 0 to 1 in steps of 
0.01.
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The lesson is that regression models (of sufficiently 
high degree) can fit complicated looking functions.  
However, if you need a very high degree polynomial, 
this will not be satisfactory in high dimensions (many 
inputs) because a very large number of observations 
will be needed to fit the models.

Imagine a 10th degree polynomial in d inputs.  The 
model will have a very large number of parameters and 
hence require a very large number of observations just 
to fit the model.



For reasons such as the above, another class of models 
that generalizes the above (actually includes 
regression, splines, and even certain neural nets as 
special cases) has become popular in practice.



These models are called Gaussian Stochastic Process 
(GASP)  models.  Let me now describe them.  

I apologize in advance because this part of the talk is 
more technical than anything I have discussed so far.



Gaussian Process Models (GASP models)
(popular in spatial statistics and sometimes 

referred to as kriging models)
View y(x) as a realization of the random function

            Y(x) = ∫0 + ∫1f1(x) +…+ ∫pfp(x) + Z(x)

where Z(x) is a mean zero, second-order stationary 
Gaussian process, and

Cov (Y (x1), Y (x2)) = σ2

ZR(x1 − x2)



Here the ∫i are unknown constants (regression 
pararmeters) and the fi  are known regression functions.

Notice that if  Z(x) was replaced by independent 
random errors, this would be the standard general 
linear model.  However, we have allowed observations 
to be correlated.



What does second-order stationary Gaussian process 
mean?

Second-order means that the mean and variance of Y(x) 
are constant, i.e., do not depend on x.

Stationary means that the covariance (correlation) 
between Y(x1) and Y(x2) is a function only of the 
difference x1 – x2.

Gaussian process means that for any x1, x2, …, xn, the 
joint distribution of Y(x1), Y(x2), …, Y(xn) is 
multivariate normal.



R here is the so-called correlation function.  

1. As presented here, the correlation function tells you 
how correlated two observations Y(x1) and Y(x2) are as 
a function of the difference x1 – x2 between the two 
inputs.  

In practice, people typically use correlation functions 
that only depend on some measure of distance between 
x1 and x2. 



2. Not any old function will do for R.  R must satisfy 
several conditions.  For example,

a. R(0) = 1.

b. For any n values x1, x2,…, xn, the n×n matrix 
whose i, j-th entry is R(xi – xj) must be a valid 
correlation matrix (e.g., nonnegative definite).



3. The spectral density theorem provides one method 
for constructing correlation functions.  In particular, for  
any probability density function ƒ on ξd 

is a valid correlation function.

R(x) =

∫
!d

cos(x"
w)φ(w)dw



4.  Some of the most popular correlation functions in 
practice are

a. The Gaussian correlation function

which is generated by the standard multivariate normal 
density.

R(x) =
d∏

i=1

exp(−θix
2

i )



b. The power exponential correlation function

Here 0 ≤ pi ≤ 2.  Note when all pi = 2, this is the 
Gaussian correlation function.

R(x) =
d∏

i=1

exp(−θix
pi

i )



c.  The Matern correlation family

which is generated by the density corresponding to that 
of d independent t random variables with √i degrees of 
freedom.  Here K√ is a modified Bessel function of 
order √ and ˝ is the gamma function.

R(x) =
d∏

i=1

1

Γ(νi)2νi−1

(
2
√

νi |xi|
θi

)νi

Kνi

(
2
√

νi |xi|
θi

)



5. Some properties of these correlation functions are:

a.  The Gaussian correlation function is the limit of the 
Matern correlation function as the √i tend to ∞.  This is 
an immediate consequence of the fact that the t 
distribution tends to the normal as the degrees of 
freedom go to ∞.



b. The Gaussian correlation function produces Y(x) that 
are infinitely differentiable as a function of x. 



c. The Matern correlation function produces Y(x) that 
have √–1 derivatives as a function of x.  Thus √ 
controls the “smoothness” of Y(x).



d. The power exponential correlation function 
produces Y(x) that are infinitely differentiable as a 
function of x when p = 2 but are only continuous but 
not differentiable when 0 ≤ p < 2. 



6. In practice, the most common correlation function is 
the power exponential correlation function.  To get a 
sense of how the parameters ˙i and pi affect behavior of 
Y(x), consider the following figures.

In these figures, we have taken the regression part of 
the model to be just the intercept, i.e.

                              Y(x) = ∫0 + Z(x)



The effect of varying p on Y(x).  Here ˙ = 1 and p is 2, 
0.75, and 0.20.  As p decreases, Y(x) gets rougher and 
rougher.



The effect of varying ˙ on Y(x).  Here p = 2 and ˙ is 
0.5, 0.25, and 0.1.  As ˙ decreases, Y(x) varies more 
rapidly.



Prediction with GASP models

If we observe y(x) at x1, x2,…, xn, and wish to predict 
the value of y(x) at the new input x0, we will use the 
so-called empirical best linear unbiased predictor, or 
EBLUP.

ŷ(x0) = f!

0 β̂ + r!
0 R̂

−1

(Y n
− F β̂)







Some facts.

1. If x0 is one of the inputs x1, x2,…, xn, say x0 = xi, 
then 

i.e., the EBLUP interpolates the data.

ŷ(xi) = y(xi)



2. The EBLUP is a complicated nonlinear function of 
the data because it involves the inverse of the 
maximum likelihood estimate of R.  



3. If we use the simple intercept model as the 
regression part of our model, i.e., we use the model

                               Y(x) = ∫0 + Z(x)

the EBLUP is still an interpolator and does a 
surprisingly good job of fitting observed data.  

In practice, people often just fit this simple form of 
the GASP model.



4. The GASP model and the EBLUP should look 
somewhat familiar.  The GASP model looks like a 
linear model with correlated observations and the 
EBLUP is related to generalized least squares.  In fact, 
this leads to another way of looking at the GASP 
model.



Another take on the GASP model.

The GASP model, 

         Y(x) = ∫0 + ∫1f1(x) +…+ ∫pfp(x) + Z(x) 

can be viewed as a mixed model in the framework 
of the general linear model, where all observations 
are taken on the same subject, hence correlated.  
Z(x) represents the within subject effect.



This point of view allows us to fit GASP models using 
PROC MIXED in SAS!



Fitting GASP models and calculating EBLUPs

We use PROC MIXED in SAS.  As of version 9.1, 
SAS allows you to fit the GASP model with the power 
exponential correlation function.  Here is the code for 
fitting the damped sine wave data.



data dampedsine;
input case x y;
lines;
1    0.0    0.0
2    0.05   0.66236671
3    0.1    0.63751258
4    0.15   0.16959337
5    0.2   -0.2641078
6    0.25  -0.3678794
7    0.3   -0.1770387
8    0.35   0.07620135
9    0.4    0.1920146
10   0.45   0.13373031
11   0.5    0.00000108
12   0.55  -0.0896411
13   0.6   -0.0862782
14   0.65  -0.0229525
15   0.7    0.03574271
16   0.75   0.04978707
17   0.8    0.02395984
18   0.85  -0.0103125
19   0.9   -0.0259863
20   0.95  -0.0180985
21   1.0    0.0
22   0.00    .
23   0.01    .
24   0.02    .
25   0.03    .
.
.
.
115  0.93    .
116  0.94    .
117  0.95    .
118  0.96    .
119  0.97    .
120  0.98    .
121  0.99    .
122  1       .
;

The data entry part of the code.



Notice the lines ending with dots specify that the value 
of y is missing. These lines will force SAS to compute 
the EBLUP predictor of y for the values of x given on 
these lines – here all x values between 0 and 1 in steps 
of 0.01.

You can also read data in from other files (such as 
spreadsheets) with the import command in the SAS 
menu.



PROC mixed method=ml;
model y = /outp = predictions;
repeated / type=sp(expa) (x)
           subject=intercept;
parms 
      /lowerb= .,0,.  upperb= .,2,. ;
estimate 'intercept' intercept 1;
run;

The basic PROC mixed commands



PROC mixed method=ml;

The first line.  I have specified that the method of 
estimation used be  maximum likelihood.  You can also 
specify that the method be restricted maximum 
likelihood by replacing method = ml with method = 
reml.  The defaut method is reml if no method is 
specified



Reml is usually advocated as the preferred method 
because it supposedly avoids some problems (with 
potentially ill-posed parameterizations) that can occur 
with maximimum likelihood.  In practice, we have 
found the performance to be similar.  I will use 
maximum likelihood in the example because most of 
you are probably more familiar with maximum 
likelihood.  I have tended to use maximum likelihood, 
but have occasionally tried reml if there have been 
convergence problems to see if reml avoids these 
problems.  It usually hasn’t.



model y = /outp = predictions;

The model statement.  I have used the intercept only 
model by writing 

model y =   /

You can include a regression model here, for example, 
the statement

model y = x /



outp = predictions (after the /) specifies the name of 
the output file that predicted values will be stored in.  
You can then do additional analysis on the data in this 
output file (graphical displays, for example) using 
SAS.



repeated / type=sp(expa) (x)
           subject=intercept;

The repeated option is crucial.  

The first line after the /, i.e., the 

                                  type = 

indicates the type of correlation function used.



The SAS manual lists the various correlation structures 
allowed.  The 

            type = sp(expa)(list of the input variables)

asks for the power exponential.  

I think “sp” indicates one is using a spatial correlation 
function and “expa” the anisotropic exponential 
correlation function (what I have called the power 
exponential).  After sp(expa) you list the names of the 
input variables.



The second line after the /, namely 

                    subject = intercept

tells SAS that it is to treat the data as coming all from a 
single subject.  This forces SAS to treat all 
observations as correlated.  This line is crucial for 
fitting GASP models in SAS.

Of course, one ends any command in SAS with a ;



parms 
     /lowerb= .,0,.  upperb= .,2,.;

The parameters command.  

For the power exponential (type = sp(expa)), if there 
are d input variables, SAS assumes there are 2d + 1 
parameters.  The first d are the d ˙i (scale parameters), 
the next d are the d pi (powers), and the last parameter 
is the variance ß2.

In the damped sine wave, there is a single input, hence 
3 parameters.



parms 
     /lowerb= .,0,.  upperb= .,2,.;

I have given the simplest form of the parms command 
that I suggest you use.  

                           lowerb = 

specifies lower bounds for all the 2d+1 parameters and 
constrains SAS’s search for the maximum likelihood 
estimates of the parameters.  lowerb = must be 
followed by a list of 2d+1 values separated  by 
commas.   A “. “ indicates no lower bound is specified.



parms 
     /lowerb= .,0,.  upperb= .,2,.;

Similar comments hold for 

                                upperb =

This specifies upper bounds for all the 2d+1 
parameters and constrains SAS’s search for the 
maximum likelihood estimates of the parameters. 



parms 
     /lowerb= .,0,.  upperb= .,2,.;

You can include just lowerb = , upperb = , or both.  I 
noticed that SAS does not constrain the powers of the 
power exponential to be between 0 and 2, so I suggest 
you use the lowerb = and upperb = command to 
constrain the powers to be between 0 and 2.  The 
power exponential is not a legitimate correlation 
function for powers below 0 or above 2. 



There are some additional options for the parms 
command.  These include the following.

1. parms followed by 2d+1 values, each in parentheses,  
specifies starting values for each of the parameters.  
SAS begins its search for maximum likelihood 
estimates with these starting values.  Good guesses at 
the starting values can improve the efficiency of the 
search.



In the damped sine wave example, the command

                  parms (1) (2) (0.5)
                             /lowerb= .,0,.  upperb= .,2,. ;

would tell SAS to begin its search with ˙ = 1, p = 2, 
and ß2 = 0.5, while constraining the power to be 
between 0 and 2.



2. parms followed by 2d+1 values, each in parentheses, 
followed  by 

                                  /hold= 

followed by a list of integers between 1 and 2d+1 does 
the following.  As before, the list in parentheses are the 
starting values for the parameters as SAS begins its 
search for the maximum likelihood estimates (mle’s).  
/hold tells SAS which (if any) of these parameters to 
keep fixed.  In other words, SAS is to assume these are 
the estimates for the parameters.



In our damped sine wave example, 

             parms (1) (2) (0.5) /hold = 2;

would tell SAS to hold the second parameter (the value 
of the power p) at value 2.  In the power exponential, 
this is a useful option.  Holding all the powers = 2 
forces SAS to fit the Gaussian correlation function.  If 
you believe the function you are fitting is smooth, use 
this device (remember the power exponential with 
powers other than 2 is continuous but not 
differentiable)



I could have used the command

   parms (1) (2) (0.5) /hold = 2
                                   lowerb= .,0,.  upperb= .,2,. ;
           
but this would be sort of redundant.  If I am forcing the 
power to be fixed at 2, asking SAS to constrain the 
search for the value of the power to the range 0 to 2 is 
unnecessary.



3.  Other options are possible.  Consult the SAS 
manual for specifics.  One example is the following.  
You can specify a grid of starting values for the search 
for the maximum likelihood estimate of any parameter 
by the command (in the context of our damped sine 
wave example)

         



      parms (0 to 1 by 0.1) (1 to 2 by 0.2) (2)

This tells SAS to begin the search for the mle for ˙ 
over the grid 0, 0.1, 0.2, …, 1, to begin the search for 
the mle for  p over the grid 1, 1.2, 1.4, …, 2, and to 
begin the search for ß2 at 0.5.  

If you suspect that the parameters lie in a particular 
range of values, this my improve the quality of SAS’s 
search for the mle.



You can supplement the command to use a grid of 
values for the starting search with the noiter option.  
This requests that no Newton-Raphson iterations be 
performed and that PROC mixed use the best value 
from the grid search to perform inferences.  By default, 
iterations begin at the best value from the PARMS grid 
search.  The code would be

    parms (0 to 1 by 0.1) (1 to 2 by 0.2) (2)/ noiter



estimate 'intercept' intercept 1;

The last line in our code asks SAS to print out the 
estimate (generalize least squares estimate) of the 
intercept in our model.  SAS does not print this out 
unless requested.



Our PROC mixed code again is

PROC mixed method=ml;
model y = /outp = predictions;
repeated / type=sp(expa) (x)
           subject=intercept;
parms 
      /lowerb= .,0,.  upperb= .,2,. ;
estimate 'intercept' intercept 1;
run;



Of course, the 

                                  run;

command tells SAS to run PROC mixed.



The last few lines of the code were

Proc Print data = predictions;
run;

which tell SAS to run PROC mixed and then to print 
out the predicted values in the file named “predictions” 
where we stored them.



Here is the output from this code.
                                      The Mixed Procedure

                                      Model Information

                    Data Set                     WORK.SPACE
                    Dependent Variable           y
                    Covariance Structure         Spatial Anisotropic
                                                 Exponential
                    Subject Effect               Intercept
                    Estimation Method            ML
                    Residual Variance Method     Profile
                    Fixed Effects SE Method      Model-Based
                    Degrees of Freedom Method    Between-Within

                                          Dimensions

                              Covariance Parameters             3
                              Columns in X                      1
                              Columns in Z                      0
                              Subjects                          1
                              Max Obs Per Subject              21

                                    Number of Observations

                          Number of Observations Read             122
                          Number of Observations Used              21
                          Number of Observations Not Used         101

                                       Iteration History

                  Iteration    Evaluations        -2 Log Like       Criterion

                          0              1        -1.36501512
                          1              3        -4.97132486      0.12207411
                          2              3      -112.02510169       .
                          3              0      -112.02510169     1.626528E24
                          4              0      -112.02510169     1.626528E24
                          5              0      -112.02510169     1.626528E24

                                  WARNING: Did not converge.



One of the problems with fitting GASP models by 
maximum likelihood is that the likelihood can be flat 
over a large region and it can be difficult to find the 
maximum numerically.  SAS limits the number of 
iterations in its search to 50 and the number of 
maximum likelihood evaluations to 150, and if the 
search hasn’t converged you can get an error message.



You can increase the maximum number of iterations 
and the maximum number of likelihood evaluations 
with the command

PROC mixed  maxiter = number maxfunc = number



I needed to refine my search for the maximum 
likelihood estimates.  To this end, I fixed the power to 
be 2 (Gaussian correlation function) because I know 
the output should be smooth.



From the initial run, it appeared that the likelihood was 
becoming essentially flat around ˙ = 13 or 14.  To 
avoid convergence problems because of a flat 
likelihood, I restricted the range of ˙ to be 15 to 150 
using the lowerb= and upperb= commands.



Here is the code I used.



PROC mixed method=ml;
model y = /outp = predictions;
repeated / type=sp(expa) (x)
           subject=intercept;
parms (100) (2) (1)/ hold = 2
    lowerb= 15,2,.  upperb=150,2,.;
estimate 'intercept' intercept 1;
run;
Proc Print data = predictions;
run;
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                                      The Mixed Procedure

                                      Model Information

                    Data Set                     WORK.SPACE
                    Dependent Variable           y
                    Covariance Structure         Spatial Anisotropic
                                                 Exponential
                    Subject Effect               Intercept
                    Estimation Method            ML
                    Residual Variance Method     Profile
                    Fixed Effects SE Method      Model-Based
                    Degrees of Freedom Method    Between-Within

                                          Dimensions

                              Covariance Parameters             3
                              Columns in X                      1
                              Columns in Z                      0
                              Subjects                          1
                              Max Obs Per Subject              21

                                    Number of Observations

                          Number of Observations Read             122
                          Number of Observations Used              21
                          Number of Observations Not Used         101

                                        Parameter Search

              CovP1       CovP2       CovP3    Variance      Log Like    -2 Log Like

             100.00      2.0000      1.0000     0.07624       15.9719       -31.9437

                                       Iteration History

                  Iteration    Evaluations        -2 Log Like       Criterion

                          1              2       -32.43695268      0.00074016
                          2              3      -110.26247039      0.00000000

                                  Convergence criteria met.
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                                      The Mixed Procedure

                                Covariance Parameter Estimates

                             Cov Parm       Subject      Estimate

                             SP(EXPA) x     Intercept     15.0000
                             Power x        Intercept      2.0000
                             Residual                     26.6700

                                        Fit Statistics

                             -2 Log Likelihood              -110.3
                             AIC (smaller is better)        -106.3
                             AICC (smaller is better)       -105.6
                             BIC (smaller is better)        -104.2

                               PARMS Model Likelihood Ratio Test

                                 DF    Chi-Square      Pr > ChiSq

                                  0         78.32          1.0000

                                          Estimates

                                        Standard
               Label        Estimate       Error      DF    t Value    Pr > |t|

               intercept      1.2867      2.5141       0       0.51       .



                                           StdErr
Obs   case     x        y        Pred       Pred    DF   Alpha     Lower     Upper      Resid

  1     1    0.00    0.00000    1.28666   2.51407   20    0.05   -3.95761   6.53092   -1.28666
  2     2    0.05    0.66237    1.28666   2.51407   20    0.05   -3.95761   6.53092   -0.62429
  3     3    0.10    0.63751    1.28666   2.51407   20    0.05   -3.95761   6.53092   -0.64914
  4     4    0.15    0.16959    1.28666   2.51407   20    0.05   -3.95761   6.53092   -1.11706
  5     5    0.20   -0.26411    1.28666   2.51407   20    0.05   -3.95761   6.53092   -1.55076
  6     6    0.25   -0.36788    1.28666   2.51407   20    0.05   -3.95761   6.53092   -1.65454
  7     7    0.30   -0.17704    1.28666   2.51407   20    0.05   -3.95761   6.53092   -1.46369
  8     8    0.35    0.07620    1.28666   2.51407   20    0.05   -3.95761   6.53092   -1.21045
  9     9    0.40    0.19201    1.28666   2.51407   20    0.05   -3.95761   6.53092   -1.09464
 10    10    0.45    0.13373    1.28666   2.51407   20    0.05   -3.95761   6.53092   -1.15293
 11    11    0.50    0.00000    1.28666   2.51407   20    0.05   -3.95761   6.53092   -1.28666
.
.
.
.

111     111    0.89    .    -0.040563    0.19708    20     0.05    -0.45167    0.37054      .
112     112    0.90    .    -0.041066    0.20544    20     0.05    -0.46962    0.38748      .
113     113    0.91    .    -0.040505    0.20933    20     0.05    -0.47716    0.39615      .
114     114    0.92    .    -0.038966    0.20907    20     0.05    -0.47507    0.39714      .
115     115    0.93    .    -0.036563    0.20530    20     0.05    -0.46480    0.39167      .
116     116    0.94    .    -0.033432    0.19886    20     0.05    -0.44824    0.38137      .
117     117    0.95    .    -0.029720    0.19081    20     0.05    -0.42774    0.36830      .
118     118    0.96    .    -0.025584    0.18186    20     0.05    -0.40493    0.35377      .
119     119    0.97    .    -0.021187    0.17174    20     0.05    -0.37943    0.33706      .
120     120    0.98    .    -0.016687    0.16094    20     0.05    -0.35240    0.31903      .
121     121    0.99    .    -0.012242    0.14980    20     0.05    -0.32472    0.30024      .
122     122    1.00    .    -0.007999    0.13850    20     0.05    -0.29692    0.28092      .



Here are the predicted values over the grid 0 to 1 in 
steps of 0.01.  The red x’s are the values produced by 
the code.
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Note:  The EBLUP is an interpolator, so the standard 
error of prediction at input values at which we ran the 
code should be 0.  They are not here.  This happens 
when the estimated R is close to singular and suggests 
that the fit is not trustworthy.

When I constrained ˙ to be no less than 50, this 
problem did not occur and the predictions were 
excellent.



Here are the predicted values over the grid 0 to 1 in 
steps of 0.01.  The red x’s are the values produced by 
the code.
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Note how good the fit is even though we didn’t 
technically find the maximum likelihood estimate!

It is this ability to fit well that has made these models 
popular.



It is good practice to check the quality of your fit via, 
say, cross validation.  If the fit doesn’t change much 
for various “near” maximum likelihood estimates of 
the parameters, you can be confident that you model is 
not sensitive to the particular choice you make.  
Otherwise, select the parameter values with best fit.



1.  Standard regression  models

Advantages: Easy to fit, easy to understand, easy to 
generate a variety of analyses (hypothesis tests, 
estimation, prediction, diagnostics)

Disadvantages:  Will not give good fit if the output is 
not well approximated by a simple response surface (in 
other words, the output is a somewhat complicated 
surface).

Comparing standard regression and GASP models



2. GASP models

Advantages:  Able to accommodate a wider variety of 
functional forms for the output.  It interpolates the 
data.  Includes standard regression as a special case.

Disadvantages:  Fitting can be “touchy.”  The 
likelihood may not converge and one has to adjust 
bounds over which the search for the maximum of the 
likelihood takes place.  Not available in most 
commercial software.



1. If you have access to Unix, download our PErK 
software and fit the Matern model.  Check the value of 
the smoothness parameters √i.  If the values are tending 
to be large, this is evidence that the fitted surface is 
reasonably smooth.  If not, use the Matern model for 
analysis.

Advice on modeling in computer experiments



2.  If the Matern model suggests that the output is a 
smooth function of the inputs, or if you know on 
scientific grounds that the output should be smooth, fit 
both the power exponential model in SAS 
(constraining the powers pi to be 2, i.e., using the 
Gaussian correlation function) and a classic response 
surface using regression (possibly after 
transformations).  Compare the quality of the fits 
(perhaps via cross validation).



3.  If the fits are comparable, the standard response 
surface is adequate and subsequent analysis can be 
done using the response surface model.

Otherwise, use the GASP model for subsequent 
analysis.




