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This article is concerned with the problem of predicting a deterministic response function y,
over a multidimensional domain T, given values of y, and all of its first derivatives at a set
of design sites (points) in T. The intended application is to computer experiments in which
Yo is an output from a computer model of a physical system and each point in T represents
a particular configuration of the input parameters. It is assumed that the first derivatives are
already available (e.g., from a sensitivity analysis) or can be produced by the code that
implements the model. A Bayesian approach in which the random function that represents
prior uncertainty about y, is taken to be a stationary Gaussian stochastic process is used. The
calculations needed to update the prior given observations of y, and its first derivatives at
the design sites are given and are illustrated in a small example. The issue of experimental
design is also discussed, in particular the criterion of maximizing the reduction in entropy,
which leads to a kind of D optimality. It is shown that, for certain classes of correlation
functions in which the intersite correlations are very weak, D-optimal designs necessarily
maximize the minimim distance between design sites. A simulated annealing algorithm is
described for constructing such maximin distance designs. An example is given based on a
demonstration model of eight inputs and one output, in which predictions based on a maximin
design, a Latin hypercube design, and two compromise designs are evaluated and compared.
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Computer codes that are based on mathematical
models of physical or behavioral systems have be-
come important tools in virtually all fields of scien-
tific research. As a surrogate for a real system, such
a computer model can be subjected to experimen-
tation, the goal being to predict how that system
would behave under certain conditions. In each ex-
perimental run, the code is used to generate a vector
of response variables y,(t) from a vector of design
variables t =(t,, t,, . . . , t,). For convenience of
exposition here, we shall consider ¢ to be a subset of
the inputs to the code and y, a single (scalar) output.
More generally, ¢ is a set of variables that determines
the inputs and y, is a set of variables that is computed
from the outputs. The function y, implicitly defined
in this way over some domain T is deterministic; if
the code is run twice on the same computer using
the same value of ¢, the same value of y(¢) will result.

We are specifically interested here in computer
models that can provide not only the response y,(r)
but also first partial derivatives y,(¢) = ayo(t)/ot;, j =
1,2,. .., k. Development of this capability has been
inspired by a strong scientific interest in identifying
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the inputs that have the greatest (or least) effect on
the response. Under one approach, a system of ad-
joint equations for the partial derivatives of a re-
sponse with respect to a set of inputs is formulated
and solved along with the original model equations.
This has been implemented, for example, in the
LEAP-78 energy-economics model described by Als-
miller et al. (1983), a design model of a large liquid-
metal fast breeder reactor described by Marable,
Weisbin, and de Saussure (1980), and a radiative-
convective climate model described by Hall, Cacuci,
and Schlesinger (1982). A second approach uses au-
tomatic differentiation. Research in this area has pro-
duced computer-automated methods for “enhanc-
ing” computer codes—that is, expanding existing codes
that compute only outputs so that they also compute
derivatives (e.g., Griewank 1989; Oblow, Pin, and
Wright 1986; Worley, Wright, Pin, and Harper 1986).

Here we are interested in using derivative infor-
mation for the prediction of y,(¢) at points t € T that
have not been directly observed. This is motivated
by applications requiring many evaluations of Yo, such
as numerical optimization or uncertainty analysis, in
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which repeated execution of the model may be pro-
hibitive due to computing expense. Hence we seek
to develop a fast predictive approximation to y,, one
that is sufficiently accurate for the desired purpose,
based on relatively few actual runs.

We shall do this within the framework of Bayesian
prediction, using a class of random functions (sto-
chastic processes, random fields) to express uncer-
tainty about the function y,. Currin, Mitchell, Mor-
ris, and Ylvisaker (1991) described various
implementations of this, for computer experiments
in which the model evaluates y,(¢) but not its deriv-
atives. A parallel approach, related to the spatial
modeling techniques of kriging, was described by
Sacks, Schiller, and Welch (1989) and Sacks, Welch,
Mitchell, and Wynn (1989). In both of these ap-
proaches, the values of y, generated by the compu-
tational model were regarded as ‘‘data” that, unlike
most physical measurements, are exactly reprodu-
cible. In this article, these data also include deriva-
tives.

Our approach to Bayesian prediction using deriv-
atives is outlined in Section 1, and the mechanics are
demonstrated by means of a simple example in Sec-
tion 2. We discuss the experimental design prob-
lem—how the values of ¢ can be chosen for the needed
runs of the computer model—in Section 3. Our em-
phasis here is on D-optimal designs based on weak
prior information. The example problem is extended
and continued with an examination of fast predictive
approximations based on data from several different
types of designs in Section 4. A discussion, having
to do mainly with cost-benefit issues, is given in Sec-
tion 5.

1. METHODOLOGY

We represent prior uncertainty about the unknown
function y(z), t € T, by the Gaussian stochastic pro-
cess Yy = {Y(t), t € T}, with mean function

po(r) = E[Yo(1)] (1.1
and positive definite covariance function

Koo(t, 5) = cov[Y,(r), Yo(s)]. (1.2)
This means that, for every finite set § = {s*,s%,. . . ,
s™}in T, prior uncertainty about the response vector
Vo(sh), yo(s?), - . ., yo(s™))T is represented by the
multivariate normal random vector (Y,(s!), Y,(s?),
..., Yy(s™))T, with mean and covariance matrix de-
termined from (1.1) and (1.2).

The specification of a prior process, with appro-
priate mean and covariance functions, determines
also various derivative processes. (See Parzen [1962,
p. 83] for formal definitions and conditions for ex-
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istence.) Let

aY,
Y, () Z“aTQ

_ limY“(t,,. bt h, ,t,i = Yot ol te) (1.3)

and

3yo(8)

(1) = —* 1.4
(1) o, (1.4)
where j = 1,2, . . ., k. The uncertainty about y()

is expressed by the derivative process Y(¢).
The general derivative process

gutaxt - +ak
an,az ,,,,, ak) — YO
ararg - - - arge
4=0,j=12,...,k (15

is Gaussian (since Y, is Gaussian), with mean func-
tion and covariance function given by

E[y@e-a()] = pire(t)  (L6)
and
CONY {5 40(), Y 0(s)]

= K{g b b ) (1.7)

In this article, we consider the situation in which the
functions y,,y;, . . . , Y, are observed at the set of
design sites (points) D = {¢!, 2, ..., t"}. We or-
ganize these data in the n(k + 1)-vector y as n suc-
cessive segments of length k + 1:

D), 30(83), .y (1.8)

Prior uncertainty about y is represented by the ran-
dom normal n(k + 1)-vector

.;; = (yO(tl)’- .

Y = (Yo(th),. . ., Y1), Yo(t?),. . ., Y .(t))T (1.9)

with mean vector i and covariance matrix 3, obtained
via (1.6) and (1.7), respectively.

We shall consider here only covariance functions
Koo(t,s) for which X is positive definite for any design
D composed of distinct sites. This is true of the co-
variance functions given by Sacks, Welch, Mitchell,
and Wynn (1989) and Currin et al. (1991), as it is
for many of the covariance functions used in spatial
statistics.

Application of standard formulas for conditional
multivariate normal distributions shows that the
(Gaussian) posterior process Y§ = {Yi(¢), t € T}
has mean function

ms (1) = E[Y§(r)]

= po(t) + ( — BTER(@), (1.10)
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where K(¢), the vector of covariances of Y,(f) with
Y, is obtained using (1.7).
The posterior covariance function is

K§(t, s) = cov[Y*(¢), Y*(s)]
Koo(t, s) — KT(t) 27 k(s). (1.11)

Following execution of the computer model at each
site in design D, we use the posterior mean ug(f) as
a fast predictive approximation for the true response
y(¢) at any site ¢ and the posterior standard deviation
o5() = VK (¢, t) as a measure of the uncertainty
of prediction there.

The specification of the prior is the central issue
in practice. As in the work of Currin et al. (1991),
we simplify matters by adopting various stationarity
restrictions:

Il

mo(t) = 1 (1.12)
and
Koo(t, S) = UzR(Sl - [1, P tk)’ (113)

where R is a correlation function that depends only
on the differences between s and ¢ in each coordinate.
Further simplification comes from adoption of the
product correlation rule:

k
R(sy —t,...,5% — 1) = _HIR,.(S,. —-1), (1.14)
je

where R/’s are chosen from a parametric family of
suitably differentiable correlation functions on the
real line.

Then w(f) = E[Y{()] = 0if j = 1 and (1.7) may
be written as

COV[YS”"“Z ..... ak)(t)’ngl,bz ..... bk)(s)]
k
= o(—1)* [] R@+o)(s; — ). (1.15)
j=1

Note that, since we are dealing with (at most) first
partial derivatives, each a, and b;is 0 or 1. Moreover,
simplified versions of (1.15) occur for ¢t = s, since
R(0) = 1and R/(0) = 0,j = 1,..., k.

Of course, the chosen R;’s must correspond to pro-
cesses that are at least once differentiable; this means
that each R, must be twice differentiable. [This is
clear from (1.15); also see Parzen (1962, p. 84).]
Gaussian processes with the correlation function used
by Sacks, Welch, Mitchell, and Wynn (1989),

Ry(s; — 1) = e Olv—al (1.16)
with 6,> 0 and 0 < o; = 2, are infinitely differentiable
for a; = 2 but not differentiable at all for o; < 2. In
his discussion of that article, Stein (1989) referred to

an alternative class of processes that is exactly m
times differentiable, m > 1. A useful way to derive

differentiable processes is by integrating known
processes—see Mitchell, Morris, and Ylvisaker (1990)
for some examples that are stationary on an interval.
In the examples of this article, we shall use (1.16)
with o; = 2.

Under our stationarity restrictions, the prior mean
of Y is

h = puv, (1.17)
where ¥ is a binary vector with 1 in position (i —
Dk + 1)+ 1,i =1,..., n—that is, in each

position corresponding to the mean of some Y (r)—
and 0 everywhere else. Moreover, the prior covari-
ance matrix of Y is

S = g2C (1.18)

and the vector of prior covariances between Y,(f)
and Y is

K@) = a?F (1), (1.19)

where C and 7(¢), which do not depend on o2, can
be obtained using (1.15) with o = 1.

Then the mean of the posterior process Y* () at
(1.10) becomes

pi(r) = p + (Y — pv)’C'F(1), (1.20)

and the posterior covariance function at (1.11) be-
comes

K1, s) = o1 — FI(OC~'F(s)).  (1.21)

These expressions require specification of the scalars
w and o and the correlation functions R,. In practice,
we choose a parametric family for each R; a priori
but allow its parameters [e.g., 6, in (1.16)], and also
u and o, to be determined by the data, usually by
maximum likelihood.

The log-likelihood is, apart from additive and mul-
tiplicative constants,

L(n, 0,0) = — n(k + 1) In o? — In|C,
1 T 1y .
- =0 - w)CY - wY), (1.22)

where dependence on the correlation parameters,
collectively denoted as 6 here, is now explicitly in-
dicated. For fixed 6, maximization of L over u and
o? is obtained by

BIC Y
=) (1.23)

VIC, W

U = A0)CN(Y - Re?).  (1.24)

Determination of 8, which requires maximization of
L(fxg, Gy, 6), is usually done by constrained iterative

TECHNOMETRICS, AUGUST 1993, VOL. 35, NO. 3
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search. Although this can be done using routines
from standard mathematical software libraries, it may
require a considerable amount of computation, de-
pending on the dimension of 6 and the values of n
and k.

Generalization to the case in which u and o have
the usual noninformative prior distributions—that is,
w and log o have independent improper uniform prior
distributions—is relatively straightforward, but a fully
Bayesian approach, in which vague priors are also
attached to the correlation parameters, appears dif-
ficult to implement.

2. EXAMPLE: BOREHOLE MODEL

In his discussion of a method of uncertainty anal-
ysis, Worley (1987) used a simple demonstration model
of the flow of water through a borehole that is drilled
from the ground surface through two aquifers. [His
use of this particular model follows that of Harper
and Gupta (1983), who used it in demonstrating other
methods of uncertainty analysis.] The model for-
mulation is based on assumptions of no groundwater
gradient, steady-state flow from the upper aquifer
into the borehole and from the borehole into the
lower aquifer, and laminar, isothermal flow through
the borehole. The response variable Worley exam-
ined from this model is y,, the flow rate through
the borehole in m3yr, which is determined by the
equation

2#T(H, — H)

ngir [ 1+ — 2L L]
i, In(r/r, )oK, T,

Yo = (2.1)

where the eight inputs and their respective ranges of
interest and units are as follows:

r, = radius of borehole, .05 to .15 m

r = radius of influence, 100 to 50,000 m

T, = transmissivity of upper aquifer, 63,070 to
115,600 m?/yr

H, = potentiometric head of upper aquifer, 990
to 1,110 m

T, = transmissivity of lower aquifer, 63.1 to 116
m?/yr

H, = potentiometric head of lower aquifer, 700 to
820 m

L = length of borehole, 1,120 to 1,680 m

K,, = hydraulic conductivity of borehole, 9,855 to
12,045 m/yr

Since y, can be expressed as a simple, explicit
equation in the inputs, this function certainly is not
typical of the computationally intensive computer
models that motivate this work. It is useful for dem-
onstration purposes, however, since its simplicity will
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allow us to quickly assess the accuracy of predictions
at many test sites via direct evaluation. In Section 4,
we shall demonstrate the use of our methodology for
predicting y, as a function of all eight inputs. Here,
to illustrate the mechanics of the required calcula-
tions, we shall consider only two, r,, and K, and fix
the remaining inputs at their respective lowest val-
ues. The range of K, has been extended (for this
exercise only) to [1,500, 15,000] to produce a some-
what more nonlinear, nonadditive function. More-
over, the two input variables considered here have
been scaled so that each takes its values from the
unit interval; the scaled versions of r,, and K,, are
denoted by ¢, and fg, respectively. Figure 1 is a con-
tour graph of y, as a function of ¢, and #; over the
region of interest.

For demonstration purposes, consider the exper-
imental design at the three sites marked as heavy
dots on Figure 1. The data, y, and its first derivatives
with respect to ¢, and #; are displayed in Table 1. We
place these values in the data vector ¥, as indicated
at (1.8):

¥ = (3.0489, 12.1970,27.4428,71.6374, . . . ,244.4854)T.
2.2)

The prior covariance matrix 3 at (1.18) is organized
asann X n =3 X 3arrayof (k + 1) x (k + 1) =
3 X 3 blocks, where the ith diagonal block holds
the within-site covariances at # and the (i, j)th off-
diagonal block holds the between site covariances

te

Figure 1. Contours of Output y, as a Function of t,and tgy
in the Borehole Example of Section 2.
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Table 1. Design and Data for a Simple Example

Site t, ts y: = dy,/ot, Yo = 0Yoldts
t! .0000 .0000 3.0489 12.1970 27.4428
t? .2680 1.0000 71.6374 185.7917 64.1853
t 1.0000 .2680 93.1663 123.6169 244.4854

corresponding to the pair (¢, #); that is,

Cll C12 C13
z:&c:&[czl 2 CB:',
C31 C32 C33

where, for example,

KOO(tlv tz) KOl(tlv tz) K08(tlv t2)
C? = o 2 | Ky(t', 2) Ky (', 13 Ky, 12 |,
Kgo(t', 12)  Kgi(1, 17)  Kgg(t, 1)

and where K, (', #) = cov[Y,(t'), Y,(t*)] can be com-
puted using (1.15) with o2 = 1. [Recall that Y(r) =
YRR (p), Yy (1) = Y51%%(r), and Y1) =
Y{§P0000000(1) ] For example, the (1, 3) and (2, 2) ele-
ments of C'? are, respectively, o~ 2Ky(t!, 2) = Ry(£3
— t)Rg(63 — ) = R,(.2680)R;(1)and o~ 2K (¢, £?)
= —Ri(f] — H)R( — 1) = —RI(:2680) X Ry(1),
where we use the correlation function (1.16) with a;
= 2, for which R(x) = e~ % R/(x) = —26.xe” %<,
and Rj(x) = (—26; + 462x%)e™ %,

Now we maximize the log-likelihood (1.22), using
a standard numerical optimization routine in con-
junction with (1.23) and (1.24), noting also that ¥ =
(100100100)7 here. The greatest log-likelihood
occurs at 6, = .429 and g = .467; the corresponding

ts

Figure 2. Contours of Predicted Output y, as a Function of
t, and tz in the Borehole Example of Section 2.

maximum likelihood values for u and o are g4 =
69.15 and 6 = 135.47.

To calculate the posterior mean and variance of
Y,(?) at an arbitrary site ¢, we set 6, u, and o to their
maximum likelihood values in (1.20) and in (1.21)
with ¢+ = s. Note that the nine-vector C~1(y — w9d)
is already available from the computation of (1.24)
needed by the maximum likelihood algorithm. The
nine-vector 7(t) = o7 2k(t) = oA (Ky(t, t'), Ko(t,
tl)’ KOS(t’ tl)’ LR} KOO(tv 13)’ KOl(t’ ts)’ KOS(I’ 13))T
can be computed using (1.15) with 0> = 1 and =
6. This is similar to the computation of the first col-
umn of C and in fact is identical to the first column
of Cift = ¢.

Once 7 (1) is determined, the posterior mean (1.20)
amounts to little more than the inner product of two
nine-vectors. The computation of the posterior var-
iance is much more expensive, however, since the
solution of the 9 X 9 system Cx = 7(f) is required
for every prediction site . One should, of course,
take advantage of the fact that the matrix C of the
linear system is the same for all ¢; that is, what is
required here is an efficient solver for linear systems
with multiple right sides.

Here we find, for example, that the posterior
mean at t = (.5, .5) is 69.4 with a posterior stan-
dard deviation of 2.7. At t = (1, 1), the posterior
mean is 230.0 and the posterior standard deviation
is 19.2. Predictions on a 21 x 21 grid were generated
in this way and used to produce the contour graph
of yo(t;, tg) over the region of interest, as shown in
Figure 2.

3. OPTIMAL DESIGN

An advantage to the use of stochastic processes as
priors for y, is that the variability of the posterior
process Yy, as expressed by the posterior covariance
function K, at (1.21), can be used to provide mea-
sures of uncertainty, and designs can be sought to
minimize the expected uncertainty in some sense.
See Ylvisaker (1987) and Sacks, Welch, Mitchell,
and Wynn (1989) for references to some previous
work along these lines. Criteria that have been con-
sidered are G optimality (minimization of the maxi-
mum variance of {Y5(s), s € T}), A optimality (mini-
mization of the average variance of {Y{(s), s € T}),
and D optimality (minimization of the determinant

TECHNOMETRICS, AUGUST 1993, VOL. 35, NO. 3
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of the covariance matrix of {Y3(s), s € S}, where
S = {s, s%,. .., s™}is a chosen finite subset of T).

Johnson, Moore, and Ylvisaker (1990) established
an interesting link between these criteria and the
geometric properties of certain designs for the case
in which only the response is observed at each design
site. One of their results implies that, when T is finite
and the prior correlation between sites is extremely
weak and is a positive decreasing function of an ap-
propriately defined intersite distance d(¢, ¢), a de-
sign D = {f,¢?,. . ., "} is D-optimal (for § = T —
D) among all feasible n-run designs only if (a) the
minimum intersite distance d(D) = min,; d(¢', ¥) is
maximized and (b) the index J(D)—that is, the num-
ber of pairs (i, j), i <j for which d(¢#, ¥) = d(D)—
is minimized. Designs that satisfy these conditions
will be called maximin distance designs of minimum
index (or simply maximin designs).

Similar results can be obtained in the case in which
both the response and its first partial derivatives are
observed. Let 7T be a finite set of sites in 7, from
which the design set D is to be selected—we will
observe yg, ¥1, . . ., y, on D. To minimize the de-
terminant of the covariance matrix of
{Y5(s), Y{(s),. .., Yi(s),s € T — D}, it suffices
to maximize the determinant of 3, the prior covar-
iance matrix of Y. This follows from the main result
of Shewry and Wynn (1987). In the present setting,
where our stated goal is to predict y, and not nec-
essarily its derivatives, a more appropriate criterion
would be to minimize the determinant of the covari-
ance matrix of {Y}(s), s € T — D}. For reasons that
are too detailed to warrant describing here, this does
not lend itself to a manageable design procedure, so
we shall adopt the maximization of |2| as our crite-
rion, under the assumption that designs that are op-
timal for predicting y, and its derivatives should be
good for predicting y, alone. We would normally
take 7 to be a very large, dense grid, so knowledge
of y, everywhere on T should be very nearly equiv-
alent to knowledge of y, and its first derivatives
everywhere in T.

Having settled on maximization of |Z|, a result
similar to that of Johnson et al. (1990) can be ob-
tained. Specifically, let Koz, s) = e~ %" where
d*(t, s) = 3(s; — t)? is the squared Euclidean dis-
tance between sites ¢ and s; Ky is just the product
correlation that corresponds to (1.16) with 0, =10
and o; = 2. Then, a necessary condition for a design
to be D optimal as § — « is that it be a maximin
(Euclidean) distance design of minimum index. The
proof of a somewhat more general version of this
result, applicable to any correlation of the product
form (1.14), is given in the Appendix.

When constructing a design in practice, of course,
the particular correlation function that will ultimately
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be chosen for the analysis is unknown. We intuitively
tend to favor designs based on very weak prior in-
formation. This leads to consideration of maximin
designs, although the limiting (weak) correlation
needed to link the maximin property to D optimality
is not useful for analysis.

To construct specific maximin designs, we wrote
a computer program to find designs that minimize a
surrogate criterion function:

n—1 n lp

i=1 j=i
where d;(D) = d(¢, ¢) is the Euclidean distance
between the ith and jth design sites in D. To see the
motivation for this, first rewrite (3.1) as

1 L (D) plip
(D) = @ [;1 ,-=%1 (d,-,-(D)> ] ’

where d(D) is the smallest Euclidean distance be-
tween any two sites in D. For pairs of sites separated
by this distance, the corresponding term in the sum
is 1. If a large value is chosen for p, pairs of sites
separated by greater distances will have associated
terms in the sum that are approximately 0. Hence,
for large p,
Jl/p(D)
»0) =2y -

where J(D) is the index of D. For large enough p,
minimizing ¢, is primarily accomplished by maximiz-
ing d and to a much smaller degree by minimizing J.

Our computer program for minimizing ¢, imple-
ments a simple point-exchange algorithm based on
the optimization technique of simulated annealing.
[See Kirkpatrick, Gelatt, and Vechhi (1983) for a
discussion of simulated annealing, or Bohachevsky,
Johnson, and Stein (1986) for a generalization of this
technique applied to a statistical problem.] In our
application, a search begins with a randomly con-
structed design, which is sequentially modified as
follows. First, one site from the current design is
randomly selected, and each coordinate of that site
is subjected to a trial random perturbation. (Specific
distributions of perturbations used, and other par-
ticulars of the search, are given for the example ap-
plication of Sec. 4.) Suppose that the perturbation
changes the value of ¢, by an amount Ag,. If A¢,
is negative—that is, the perturbation improves the
design criterion—the perturbed design is accepted,
and it becomes the current design. On the other hand,
if A¢, is nonnegative, the perturbed design is ac-
cepted only with probability P,(A¢,), which de-
creases as A¢, increases. During the course of the
search, the algorithm keeps track of the best design
found; this will not necessarily be the same as the
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current design at any iteration, since the design cri-
terion may increase from one iteration to another.
If the best design is unchanged for a specified number
of iterations at a given P,(A¢,), a decision is made
to lower P,(A¢,) (by a predetermined factor) or to
stop the search. The latter decision is made only if
no perturbations at the current level of P,(A¢,) pro-
duced a negative A¢,. The best design found during
the course of the search is then reported.

4. EXAMPLE REVISITED

We now return to our example model, described
by Equation (2.1), to demonstrate an application of
this method for an eight-dimensional input vector.
For this purpose, all eight inputs were scaled as in
Section 2 so that the range of each ¢ was the unit
interval and 7 = [0,1]%. Initially, we applied the
prediction method to the design used by Worley (1987)
in his demonstration of a methodology he calls *‘de-
terministic uncertainty analysis,” which uses both ob-
served values of y, and its first derivatives. Although
his primary interest was in exploring how a specified
probability distribution on ¢ is propagated to y,, his
analysis included an interim step that involves pre-
diction of y, at unobserved sites, using local first-
order Taylor series expansions of y,. In his demon-
stration, Worley’s experimental design was a 10-run
Latin hypercube sample (McKay, Conover, and
Beckman 1979), generated using a nonuniform dis-
tribution across T, and he compared predictions of
Yo With its actual value at sites in a 50-run Latin
hypercube test set, generated using the same distri-
bution. He reported root mean squared errors over
these 50 sites of 1.89, 2.45, and 2.37 for three versions
of his method; for comparison, the range of true
values of y, over the test set is 24.97 to 144.57. Our
prediction procedure, when applied to the same ex-
perimental data, produced predictions having a root
mean squared error of .610 over the same set of 50
test sites. Encouraged by this result, we undertook
the more extensive investigation that we describe in
this section.

We tried four different experimental designs, each
having 10 runs. We refer to our first design as a Latin
hypercube design because of its basic structure, al-
though it was generated in a manner that differs from
the original method proposed by McKay et al. (1979).
For each input variable, we selected 10 equally spaced
levels in [0,1], including the extremes 0 and 1. Each
of the eight columns of the 10 x 8 design matrix was
generated by randomly permuting these 10 levels.
[This is quite similar to the lattice sampling designs
discussed by Patterson (1954).] Although we are not
fitting linear models here, we thought there might
be some advantage to avoiding highly correlated col-
umns in the design matrix, so we generated 100 in-

dependent Latin hypercubes in the manner indicated
and selected the one that minimized the largest R?
resulting from the regression of any one column of
the design matrix on the others. [An alternative
method of generating Latin hypercube samples with
small correlations was described by Owen (1990).]

Our second design was a maximin design in 10
runs, generated using the algorithm described in Sec-
tion 3. After some initial experimenting with the al-
gorithm to find annealing parameters that appeared
to be effective for this problem, our first attempt at
finding an optimal design consisted of 10 searches,
in which each element of the starting design matrix
was chosen randomly from the unit interval, pertur-
bations were normally distributed with a standard
deviation of .3 (except when this would result in a
value outside the unit interval, in which case the
change was modified to yield either 0 or 1), and p =
1,000. Five of these searches resulted in designs with
d = 2, and the other five produced smaller values.
Of the five with d = 2, one had an index of 42, three
had indexes of 38, and one had an index of 37. These
five designs (unlike the others) also placed all sites
in the corners of T.

Following this last observation, 10 additional
searches were made using a modified search in which
only designs on the 28 corners of T were considered;
that is, each coordinate in the initial design was 0 or
1 with equal probability. Here, once a site was se-
lected for modification, the level of an individual co-
ordinate was reversed with probability .3; again p =
1,000. Of these searches, nine yielded designs with
d = 2, one of these with index 40 and the remaining
eight with index 36. Our (tentative) conclusion based
on this search was that these last eight designs are
optimal, although they are not all equivalent. The
design we chose from this set is given in Table 2.

A potential strength of the Latin hypercube design
is that it has very good one-dimensional projections;
that is, projection of the design onto any coordinate
yields an equispaced 10-level design (which is, in fact,

Table 2. A Maximin Distance Design in [0,1]¢ forn = 10

(d=2J=236
t, t, t, t, ts ts t, ty
1 1 0 0 1 0 1 1
1 1 1 1 0 0 1 0
1 0 0 1 1 0 0 0
0 1 0 0 1 1 0 0
1 1 0 1 0 1 0 1
0 1 1 0 0 0 0 1
0 0 1 1 1 0 1 1
0 0 0 0 0 1 1 1
0 0 1 1 0 1 0 0
1 0 1 0 1 1 1 0
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the maximin design in one dimension). Two-dimen-
sional projections also cover the [0,1]* square fairly
well, partly because of our effort to choose a Latin
hypercube with low correlations among design col-
umns. By contrast, the maximin design has very bad
one-dimensional projections here, since each input
variable takes on only two levels.

On the other hand, the generation of the Latin
hypercube design essentially ignores the geometrical
relationships among the design sites in the full eight-
dimensional space, whereas the maximin design con-
siders these relationships explicitly. Our third and
fourth designs are compromise designs that seek to
capture the advantages of both.

The first compromise, which we shall call a max-
imin Latin hypercube design, results from applying
the maximin criterion within the class of Latin hy-
percube designs. [Park (1991) also considered design
optimization within the class of Latin hypercube de-
signs, although he did not consider maximin designs. ]
The construction was based on our simulated an-
nealing algorithm with minor modifications. A ran-
domly constructed Latin hypercube was used as the
starting design in each search, and trial perturbations
were created by exchanging two entries in a ran-
domly chosen column of the design matrix; the result
of any such exchange is another Latin hypercube.
Although 20 searches were attempted, the apparent
maximin design in this class was generated only once,
so it is quite possible that the result is not a true
optimum.

The second compromise, which we shall call the
modified maximin design, is a modification of our maxi-
min design to give it the desired one-dimensional
projections. Starting with each column of the design
matrix of Table 2, the five Os were replaced with the
values 0, 1/9, 2/9, 3/9, and 4/9, assigned in random
order, and the five 1s were similarly replaced with
5/9,6/9,7/9, 8/9, and 1. This procedure is essentially
the same as randomly selecting a Latin hypercube
design from among those which, if each entry were
rounded to 0 or 1, would be the maximin design given
in Table 2. (Tang [in press] similarly considered
random choice of Latin hypercube designs with the
restriction that rounding each entry produces an or-
thogonal array.)

For each of the four designs just described, the
value of y, and its first derivatives were generated
at each design site. Predictions were made as de-
scribed in Sections 1 and 2, where the correlation
function R is given by (1.14) and (1.16) with a, =
2. In each case, the parameters w, o, and 0, (=1,
2, ..., 8) were estimated by the method of maxi-
mum likelihood, using a version of the Nelder—Mead
simplex algorithm. The search was restricted to the
region .01 = p; < 99 (j = 1,...,8), where p, =
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R;(1) = e~%. The maximum likelihood values for the
p;’s are given in Table 3.

Convergence to the maximum likelihood values
was rather slow (about 700 iterations in a typical
case) and required occasional intervention to fix some
of the p/s at their boundaries or to release those that
had previously been fixed. In one case, we also tried
an arctangent transformation to transform the range
of each p; from (.01, .99) to (—x, «). The hope was
to avoid difficulties at the boundary, but the algo-
rithm tended to bog down short of the solution, and
intervention was again used to periodically redefine
a set of p/s to be fixed at a boundary. This method
too took about 700 iterations. Fortunately, we had
access to a fairly fast computer, which was able to
do a single iteration (requiring the solution of a 90 x
90 linear system) in 1.5 seconds. Although we do not
mean to understate the amount of computation that
is needed, it is clear that a more sophisticated con-
strained optimization routine would decrease the
number of function evaluations considerably.

To evaluate how well our predictions matched the
true model, we selected two “‘test sets” of sites at
which to compare y, and y,. The first of these is a
random sample of 400 sites, selected from the uni-
form distribution over T. The second set of test sites
is the 256 corners of T—that is, those sites at which
each of the inputs takes either the high or low ex-
treme value in its range. The first set is intended to
provide an indication of how well each predictor does
throughout the interior of T, while the second allows
us to compare their performance at the extreme sites.
Values of y, range from 12.4035 to 230.6478 in the
first test set and from 7.8197 to 309.5756 in the sec-
ond. Predictions were made for each design, at the
sites in each test set, and errors of prediction (y, —
yo) were calculated. These errors are summarized by
the boxplots in Figures 3 and 4. The Latin hypercube

Table 3. Maximum Likelihood Estimates for the Example
of Section 4.

Design

Latin Maximin  Modified

Parameter  hypercube  Maximin LH maximin
m 124.28 106.99 110.44 128.72
T 90.58 131.17 111.46 120.65
P .35 .49 .48 .53
P2 .69 73 .83 .99
Pa .99 .99 .99 .99
Pa .90 .97 .98 .97
Ps .99 .99 .99 .99
Pe .96 .96 .98 .95
Py .94 .81 .89 .83
Ps .99 .99 .99 .98

NOTE: Ais — t) = Ip/¥ 92
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Figure 3. Prediction Errors at 400 Random Test Sites, for Four Different Designs.

appears to be superior to the maximin design on the
random test set, but the reverse is true on the corners
of T. Overall, the two compromise designs seem to
do better, particularly the modified maximin design.

We were not able to discern a clear connection

between prediction performance and the distance be-
tween the test sets and the design sets. In the 400-
site test set, the maximum distance to the design set
was 1.11 for the maximin Latin hypercube, 1.14 for
the Latin hypercube, 1.17 for the modified maximin

20

:

I mii

[H1niss (|
M

o |
o
& -
(=]
8-
o —_—
T
Latin Hypercube Maximin Maximin LH Modified Maximin

Figure 4. Prediction Errors at the 256 Corner Sites, for Four Different Designs.
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design, and 1.45 for the maximin design. In the 256-
run test set, the maximum distance to the design set
was 1.45 for the maximin Latin hypercube, 1.48 for
the Latin hypercube, 1.55 for the modified maximin
design, and 1.73 for the maximin design.

Although we shall not go beyond the construction
of the prediction surface y, here, it is appropriate to
mention that y, can be examined in various ways to
gain insight into the nature of the importance of the
inputs and their interactions. A useful approach, for
example, is the display of main effect and interaction
functions suggested by Sacks, Welch, Mitchell, and
Wynn (1989, p. 418) and used by Welch et al. (1992).
Prediction using derivatives thereby provides an ef-
fective method of synthesizing the fragmentary in-
formation obtained in a sensitivity analysis.

5. DISCUSSION

In practice, it will be important to consider issues
of computational cost versus benefit when deciding
whether and how to use derivatives in a computer
experiment. Although these issues are heavily ap-
plication dependent, a few general observations may
be made.

For the purpose of prediction using the methods
of this article, we think there is nothing to be gained
(and probably much to be lost) by designing an ex-
periment to produce derivatives by the method of
divided differences. This claim is supported by a 90-
run variation of the borehole experiment (without
derivatives) that we shall describe later in this sec-
tion. In this article, however, we have assumed that
derivatives at sites in T are already available (perhaps
having been generated as part of a sensitivity anal-
ysis), or that the capability for generating them is
available. In the first situation, one would expect to
achieve better predictions by using the derivative in-
formation than by ignoring it. To see how much was
gained by using the derivatives in the example of Sec-
tion 4, we repeated the example for a couple of the
designs, using only the observed y, at each of the 10
design sites, with the same type of correlation func-
tion. For the Latin hypercube design, the maximum
absolute errors and root mean squared errors were
roughly four times larger than those found when the
derivatives were used. For the modified maximin de-
sign, the increase in magnitude of errors was roughly
tenfold.

The cost of using available derivatives is primarily
the computational cost of estimating #—that is, re-
peated evaluation of the likelihood function (1.22),
which in turn is dominated by solving the n(k + 1) X
n(k + 1) linear systems at (1.23) and (1.24) that
involve the matrix C,. This matrix is larger in di-
mension by a factor of & + 1 than it would be if
derivatives were not included, so the cost of each
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likelihood evaluation is increased by a factor of about
(k + 1)°. This s clearly a large relative increase when
the number of inputs is large, but it may still not be
of much consequence when compared with the com-
putation needed to run the model code.

Of course, the speed of the computer and the ef-
ficiency of the optimization algorithm are also rele-
vant to the consideration of cost involved in using
available derivatives. Alternatives to full optimiza-
tion—for example, the “line search” method pro-
posed by Welch et al. (1992)—may be considered
too as a way to reduce this cost. The problems here
are similar to those encountered in the standard
setting, without derivatives, when one has many
observations.

A somewhat different question arises when one
does not already have the derivatives in hand but
has the capability for producing them as well as func-
tion values: Then should one always use this capa-
bility? Now the cost of producing the derivatives must
be considered. When the adjoint method for the model
has been already ‘‘hand-coded,” then y, and all of
its first partial derivatives can be generated at about
twice the cost of evaluating y, alone. [Hall et al.
(1982) reported a factor of 13 in their application of
the adjoint method to the calculation of over 300
derivatives in a radiative-convective climate model. ]

In its current state of development, automatic dif-
ferentiation is much less attractive for our purposes,
although the potential for generating y, and all of its
first derivatives in roughly a constant multiple M of
the time needed to generate y, alone has inspired an
active research effort (Griewank 1991a, b). In prac-
tical implementations, typical values of M currently
lie between 10 and 20, although for some models M
is less than 5 (Brian Worley, personal communica-
tion). It is expected that this factor will be reduced
as research in this area progresses. For our purposes,
automatic differentiation is likely to be cost-effective
only if the dimension k of the region of interest is
considerably larger than M. Otherwise, it would be
better to spend the computing time generating y, at
M sites rather than y, and its derivatives at a single
site. If M for the borehole model were 9, for ex-
ample, the computational cost for evaluating y, and
its derivatives at 10 sites using automatic differentia-
tion would be the same as that for evaluating y, alone
at 90 different sites. One would expect the latter
approach to produce better predictions. Indeed, when
we did an experiment in which y, alone was gener-
ated at the sites of a 90-run Latin hypercube, the
errors were roughly one-third of those for the best
design shown in Figures 3 and 4.

The cost of building a derivative-generating ca-
pability for a model code that does not already have
one can be quite considerable. It is not unusual for
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the hand-adjointing of a complicated code to require
more than a person-year of effort, especially if that
person is not familiar with the development of the
model. Nevertheless, this kind of activity is quite
widespread, especially for “‘generic” codes that will
be used many times in many places. The capability
for automatic differentiation can be achieved much
more quickly, owing to the existence of appropriate
software (e.g., Oblow 1985).

Although the design and analysis procedures de-
scribed here are straightforward in principle, some
questions will require further attention. In particular,
the type of correlation function used in an analysis
may have considerable influence on the predictions.
A referee has pointed out that the correlation func-
tion (1.16) that we have used here is sometimes crit-
icized because it is excessively smooth, in the sense
that it corresponds to an infinitely differentiable
process. This prodded us into repeating part of the
example of Section 4, using instead

_ 31 - p)

R(s; —¢t) =1 5 (s; = 1)?

J J

1 - p,

+ (_zi) IS]_ — tj|3’
which is a special case of the cubic correlation given
in (2.10) of Currin et al. (1991), reparameterized in
terms of p; = R;(1). This correlation corresponds to
a process that has only one derivative. For the data
generated by the modified maximin design, the max-
imum likelihood values of p,, p, . . . , ps were (.25,
.99, .99, .88, .99, .89, .83, .96), and the prediction
errors were roughly three times the size of those
shown in Figures 3 and 4. The smoother correlation
function definitely seems better for this surface and
this design. The question of how one can use the
data to choose from among types of correlation func-
tions is one which needs to be investigated further.
One recourse is to choose the one that produces the
highest likelihood. In this example, at least, we found
that the smoother correlation would have been se-
lected by this criterion.

6. SUMMARY AND CONCLUSION

We have described an implementation of Bayesian
prediction, based on stochastic process priors, for
developing an approximation to the output function
o of a computer model, using evaluations of y, and
its first partial derivatives at a set of design sites. The
mechanics, which are fairly straightforward, involve
the invocation of the appropriate formulas for the co-
variances among values and derivatives of y, at the
same and distinct sites, some bookkeeping, and the
extra computing required to account for the & ad-
ditional pieces of information (the derivatives) at each

design site. This provides an effective method of syn-
thesizing the information obtained in a sensitivity
analysis, which usually comes in the form of deriv-
atives obtained at one or more design sites.

For design, the approach that attempts to maxi-
mize the reduction in entropy (for y, and its deriv-
atives at unobserved sites) when the intersite cor-
relations are extremely weak, leads to the same kind
of design (maximin) that is optimal when no deriv-
atives are observed. In the example calculation de-
scribed here, a comparison of predictions based on
a Latin hypercube design and a maximin design lead
to mixed results, with the Latin hypercube perform-
ing better on the interior of the input domain and
the maximin design performing better at the ex-
tremes of the region. Two compromise designs, which
are constructed in an effort to preserve the strength
of both the Latin hypercube structure and the max-
imin criterion, are more generally successful. We be-
lieve that such classes of designs deserve further study,
not only for application to experiments where deriv-
atives are available, but also when values of y, only
are observed.
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APPENDIX: PROOF THAT ASYMPTOTICALLY
D-OPTIMAL DESIGNS ARE MAXIMIN DESIGNS

Following the approach of Section 3, we seek to
maximize |3|, the determinant of the variance-
covariance matrix of Y at (1.9), where Ky, s) =
cov [Yy(t), Yy(s)] has the form

Koo(t,5) = 0?R(s — 1) = 0 f[ Ri(s,—t), (A.1)

(s —t) =(y=1t,...,8 —t), and each R; is
the correlation function for a differentiable Gaussian
process on the real line. We shall assume that each
R; is positive and decreasing. The role of the expo-
nent 6 is to control the strength of the intersite cor-
relations. Here we consider the question of design
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as these correlations become asymptotically weak;
that is, § — o,

The elements of % are determined by applying the
standard rule (1.15) for determining covariances
among function values and derivative values. Since
o? appears as a multiplicative constant in every ele-
ment of X, we shall take 0> = 1 with no loss of
generality. Letting K,,(1,5) = cov [Y,(¢), Y,(s)] and
g,(x) = In R,(x), we can write

Kyo(t, s) = R(s — 1), (A.2a)
K,o(t,s) = —6R%(s — 0)g,(s, — t,), p=1, (A.2b)
Ko, (t,8) = 6R%(s — 1)g (s, — ,), g=1, (A.2c)

K, (t,s) = —0°R°(s — t)g,(s, — t,)8.,(5,~ 1,),
p=zl,q=1,p +gq, (A2d)
and
Kot 5) = —6°R%(s — n[g,(s, — 1)
—0R(s — 0gy(s, — t,), p=1 (A2e)

Simplifications occur when ¢ = s, since R(0, .
0) = 1 and g,(0) = 0. In this case, (A.2e) pr0v1des
the variance of Y,:

var [Y,(¢)] = 6V, (A3)
where

P = _gp(o) (A'4)
Since these variances are independent of design,
max1m121n§ the determinant of ¥, the correlation
matrix of Y, is equivalent to maximizing |Z|.

Let ¥* be the block of ¥ associated with the ge-
neric design sites ¢ and s. The structure of ¥* can
be discerned from (A.2); ¥* is the identity. For ¢ #
s, the upper left corner of ¥* is R(s — ), the re-
mainder of the first row contains terms of the form
VOR®(s — t)a,(t,, s,), and the remainder of the first
column contains terms of the form —\/6R%(s — 1)a,(t,,
s,), where

a,(t,, s,) = (A.5)

1 ’
A g,(s, — t,).
P

The other diagonal elements of ¥*, s # ¢, have the
form

Ro(s - t) "
—V———gp(sp - tp)

~ —6R%s — 1ai(t,, s,), (A.6)

the approximation holding for large 6, and the off-
diagonal elements have the form

—OR%(s — ta,(t,. s,)a,(t,. s,)- (A7)

Let R}, be the maximum of R(s — 7) over all pairs
of design sites and let P, be the set of pairs at which

—OR(s — tay(t,, s,) —

TECHNOMETRICS, AUGUST 1993, VOL. 35, NO. 3

this maximum is attained. Diagonal expansion of | ¥|
(Aitken 1956, p. 87), which we now write as |¥ | to
indicate dependence on the design, yields

|Wp|=1~- 2 02R¥ D, >, ax(t,, s,)ai(t,,5,)
Pp P q
+ o(OZEZO)

— °RY 2 2 2 0}t 5,)a3(1g,5,)

Po p q

+ o(6°R%)

=1-6?R¥, (2 ag(tp,sp))
Pp 14

+ 0(67RY). (A.8)

It is evident that a necessary condition for a design
to be asymptotically D optimal is that R, be mini-
mized. This result is applicable whenever the cor-
relation structure has the product form.

Consider now the particular case in which R,(s, —
) = e - ®? 50 R(s — £) = e~ where d(t, 5)
is the Euclldean distance

d(t’ 5) = (E (Sp - tp)z)l/z' (A9)

This distance achieves its minimum (over all pairs of
design sites) at precisely those pairs that are in Pp,
Denote the number of these pairs by J(D) and the
corresponding distance by d(D). Then R, =
e~ 4P Differentiation of g,(x) = —x? and Equa-
tions (A.4), (A.5), and (A.9) yield

> axt, s) = 24t s),

p

which is constant and equal to 2d*(D) on P, so
(A.8) can be written

[Wp| = 1 — 46%~2¢®) J(D) d%(D)

+ o(6%~2°F(D)).  (A.10)

Examination of (A.10) shows that, when the covari-
ance function is Ky(t. s) = o?e~%(» ~ ©)2 3 design
is asymptotically D optimal as 6 — « only if it max-
imizes d (the minimum intersite Euclidean distance).
Among such designs, moreover, only those for which
J(D) is minimized can be optimal.

[Received October 1990. Revised June 1992.]
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