MPErK (a MATLAB program for Parametric Empirical Kriging) can be used to fit regression plus stationary Gaussian Stochastic process models to data from a computer experiment, for predicting the output at untested sites, for calculating leave-one-out cross validated residuals for the training data, and for doing sensitivity analysis. More specifically, mperk

- Gives MLE or REML estimates of the correlation parameters for the Cubic, Gaussian, Power Exponential correlation functions based on user-specified linear regression and stationary Gaussian stochastic process models,
- Estimates the mean and process variance of the Gaussian Stochastic process,
- Optionally computes the Best Linear Unbiased Predictions and associated (process model) prediction errors at a requested set of new inputs
- Optionally performs cross validation estimation on the training data.
- Optionally computes sensitivity indices and creates main effect plots for the Gaussian and Cubic correlation family and a constant mean model (and only this model).

This manual provides instructions and examples for running the program. Section 1 introduces the Gaussian stochastic process models that are fit. Section 2 describes the MATLAB files used by MPErK and the inputs/outputs of the program. Section 3 illustrates the program with examples. Section 4 discusses some technical details of the program implementation.

1 Introduction

MPErK views the output from a computer experiment, \(y(x) \), as a realization of a Gaussian stochastic process

\[
Y(x) = \beta^\top f(x) + Z(x),
\]

(1)

where \(x \) is in the hyper rectangle \(\prod_{i=1}^{d} [a_i, b_i] \), \(f(x) \) is a known \(p \times 1 \) vector of regression functions (usually the constant 1 and possibly other monomials of \(x \)), \(\beta \) is an unknown vector of regression parameters, \(Z(x) \) is a zero-mean covariance stationary Gaussian stochastic process with unknown variance \(\sigma^2 \) and parametric correlation function \(R(\cdot | \xi) \) with known or unknown correlation parameters \(\xi \). Thus, for inputs \(x_1 \) and \(x_2 \),

\[
Cov(Z(x_1), Z(x_2)) = \sigma^2 R(x_1 - x_2 \mid \xi),
\]
where \(R(\cdot \mid \xi) \) is allowed to be one of the three correlation functions:

1. **Gaussian correlation**

 \[
 R(h \mid \xi) = \prod_{i=1}^{d} \exp[-\theta_i(h_i)^2],
 \]

 where \(\xi = \theta = (\theta_1, \ldots, \theta_d) \) and \(\theta_i \geq 0 \) for \(i \in \{1, \ldots, d\} \).

2. **Product Power Exponential correlation**

 \[
 R(h \mid \xi) = \prod_{i=1}^{d} \exp[-\theta_i |h_i|^{p_i}],
 \]

 where \(\xi = (\theta, p) = (\theta_1, \ldots, \theta_d, p_1, \ldots, p_d) \) with \(\theta_i \geq 0 \) and \(0 < p_i \leq 2 \).

3. **Cubic correlation**

 \[
 R(h \mid \xi) = \prod_{i=1}^{d} R(h_i \mid \theta_i),
 \]

 where

 \[
 R(h_i \mid \theta_i) = \begin{cases}
 1 - 6(h_i/\theta_i)^2 + 6 |h_i|^3/\theta_i^3, & \text{if } |h_i| \leq \theta_i/2, \\
 2(1 - |h_i|/\theta_i)^3, & \text{if } \theta_i/2 \leq |h_i| \leq \theta_i, \\
 0, & \text{if } \theta_i \leq |h_i|,
 \end{cases}
 \]

 so that \(\xi = \theta = (\theta_1, \ldots, \theta_d) \) and \(\theta_i > 0 \) and \(R(h_i \mid 0) \equiv 0 \).

The correlation parameters \(\xi \) can be estimated either by maximum likelihood estimation (MLE) or restricted maximum likelihood (REML) estimation. Optimizations of the likelihood or restricted likelihood to find the required \(\xi \) values are carried out using the MATLAB function `fmincon` based using multiple starting points. Some details of the implementation of `fmincon` are given in Section 4.

MPERK can predict the output \(y(\cdot) \) at a new input site \(x_0 \) given the training data \(y^n = (y(x_1), \ldots, y(x_n)) \) as follows. First, assuming that \(\xi \) is known, we have, conditional on \((\beta, \sigma^2) \),

\[
\begin{pmatrix} Y(x_0) \\ Y^n \end{pmatrix} \sim N_{n+1} \left(\begin{pmatrix} f_0^T \\ F \end{pmatrix} \beta, \sigma^2 \begin{pmatrix} 1 & r_0^T \\ r_0 & R \end{pmatrix} \right),
\]

where

- \(Y(x_0) \) and \(Y^n \) are the process analogs of \(y(x_0) \) and \(y^n \), respectively,
- \(f_0 = f(x_0) \) is the \(p \times 1 \) vector of regression functions of \(Y(x_0) \),
- \(F = (f_j(x_i)) \) is the \(n \times p \) matrix of regression functions for the training data,
- \(r_0 = (R(x_0 - x_1 \mid \xi), \ldots, R(x_0 - x_n \mid \xi))^T \) is the \(n \times 1 \) vector of correlation of \(Y^n \) with \(Y(x_0) \),
- \(R = (R(x_i - x_j \mid \xi)) \) is the \(n \times n \) matrix of correlation among the \(Y^n \).
Assume that \((\beta, \sigma^2)\) have the non-informative prior \(\propto \frac{1}{\sigma^2}\) and the parameters defining the correlation function are known. Then the conditional mean

\[
\tilde{y}(x_0) = E\{Y(x_0) \mid Y^n\} = \left[f_0^\top (F^\top R^{-1}F)^{-1} F^\top R^{-1} + r_0^\top R^{-1}(I_n - F(F^\top R^{-1}F)^{-1}F^{-1}R^{-1}) \right] y^n. \tag{7}
\]

is the best linear unbiased predictor of \(y(x_0)\) for this model.

MPErK assumes that the correlation parameters, \(\xi\), are unknown, and calculates an empirical version of equation (7) by plugging the estimated correlation parameters into (7) to form an empirical BLUP of \(y(x_0)\).

2 Inputs and Outputs

2.1 Introduction

The program `mperk.m` uses the inputs described in Section 2.2 and returns, as output, a MATLAB structure as described in Section 2.3. This section lists the various MATLAB (helper) programs that `mperk.m` calls.

- Programs used to estimate the correlation parameters
 1. `cormatexp.m` calculates the Gaussian or Power Exponential correlation function.
 2. `cubiccorrfn.m` calculates the cubic correlation function.
 3. `estgaussiancor.m` estimates the \(\theta_i\) parameters for the Gaussian correlation (2).
 4. `estexponentcor.m` estimates the \(\theta_i\) and \(p_i\) parameters for the product power exponential correlation function (3).
 5. `estcubiccor.m` estimates the \(\theta_i\) parameters for the cubic correlation function (5).
 6. `calicatMLE.m` calls `llik1d.m` to calculate the likelihood.
 7. `calicatREML.m` calls `llik1d.m` to calculate the restricted likelihood.
 8. `llik1d.m` calculates the likelihood/the restricted likelihood.

- Programs used for prediction and cross validation
 1. `cormatexp.m` returns the product power exponential correlation matrix for the training data.
 2. `cubiccorrfn.m` computes the value of the cubic correlation function.
 3. `correxp.m` returns the product power exponential correlation matrix between the training data and the prediction inputs.

- Programs used to computate sensitivity coefficients
 1. `sensitivity.m` returns the sensitivity indices and main effect plots.
 2. `sgint.m` calculates an integration of the Gaussian correlation function.
3. `dbint.m` calculates a double integration of the Gaussian correlation function.
4. `mxint.m` calculates an integration of the product of two the Gaussian correlation functions.
5. `Cfunc.m` calculates the intermediate matrix result C by calling the functions `s gint.m` and `mxint.m` (see sensitivity analysis documentation for details).

2.2 MPErK Inputs

This subsection lists the possible values and default settings of all the inputs. Inputs are specified in pairs: the first item of each pair is a character string and the second is its value. See the job files in Section 3.1 for specific examples. Note `mperk.m` requires only the inputs ‘X’ and ‘Y’; all other inputs are optional.

Required arguments.

- ‘X’ = x, an $n \times p$ matrix of inputs for training input values (required) where $n = \text{number of training data cases}$ and $p = \text{number of the computer code input for each experiment}$
- ‘Y’ = y, an $n \times 1$ vector of real-valued outputs of computer code at the training data sites (required)

Optional Arguments: if not specified, the Default values are used.

- ‘CorrelationEstimationMethod’ ∈ {‘MLE’, ‘REML’} where
 - ‘MLE’ indicates the Maximum Likelihood (ML) estimation of ξ is to be determined
 - ‘REML’ indicates the REstricted Maximum Likelihood (REML) estimation of ξ is to be determined
- ‘CorrelationFamily’ ∈ {‘PowerExponential’, ‘Gaussian’, ‘Cubic’} where
 - ‘PowerExponential’ is the product power exponential correlation function,
 - ‘Gaussian’ is the Gaussian correlation function (the product power exponential family with powers equal to 2),
 - ‘Cubic’ is the product cubic correlation function,
 - Default: ‘CorrelationFamily’ = ‘PowerExponential’.
- ‘XPred’ = x_{pred}, an $n_{pred} \times p$ matrix of n_{pred} new inputs at which predictions are to be computed
 - n_{pred} is the number of the desired predictions,
 - Default: no predictions are requested.
- ‘RegressionModel’ = F, an $n \times q$ matrix of regression functions describing the mean of the fitted GaSP, i.e., $E(Y^\prime) = F \times \beta$, where
 - q is the number of regression parameters,
– Default: an $n \times 1$ vector with elements 1.

• 'PredRegressionModel' = F_{pred}, an $n_{\text{pred}} \times q$ matrix of regression coefficients for prediction inputs 'Xpred'.

– Default: an $n_{\text{pred}} \times 1$ vector with elements 1.

• 'CrossValidation': ∈ {'Yes', 'No'}
 – 'Yes' indicates that the program does cross validation of the training data and saves the results in the matrix output.cv,
 – 'No' indicates that the program does NOT perform cross validation,
 – Default: 'CrossValidation' = 'No'.

• 'SensitivityAnalysis': ∈ {'Yes', 'No'}
 – 'Yes' indicates that the program produces sensitivity coefficients in output.sens and creates main effect plots (mainplot.jpg),
 Warning the sensitivity analysis will only be performed when Correlation family is 'Gaussian' or 'Cubic' and the mean model is the constant mean (the default mean model)
 – 'No' indicates that the program does NOT compute sensitivity coefficients,
 – Default: 'SensitivityAnalysis' = 'No'.

• 'InitNumber' = I, a positive integer number in \{1, 2, ..., 200\} used to specify the number of the starting points in the search for the maximizer of the likelihood/restricted likelihood. The program generates $200 \times p$ starting points by creating a Latin Hypercube design with $200 \times p$ points, where p is the number (or dimension) of the correlation parameters. The program then computes the likelihood for each of the $200 \times p$ choices and then selects the 'InitNumber'×p of the correlation parameters having the largest likelihood values as starting values at which to run the optimization routine fmincon. After running fmincon, starting from each of these 'InitNumber'×p values, that fmincon solution which maximizes of the likelihood is taken to be the estimated correlation parameter used by the remainder of the program.

 – Default: I= 5.

• 'UseCorModel' = pout, a structure from a previous run of mperk.m containing the estimated correlation parameters to be used in this run. The program can directly predict the outputs and conduct cross validation

 – Default: there is no input for 'UseCorModel' and correlation parameters are computed during the current run.

2.3 MPErK Outputs

The output of MPErk is a MATLAB structure with five objects. The command of the program is of the form

$$\text{output} = \text{mperk}('X', x, 'Y', ...),$$
where `output` is a structure having five objects

1. `output.job`,
2. `output.corparms`,
3. `output.est`,
4. `output.preds` (optional),
5. `output.cv` (optional),
6. `output.sens` (optional)

The object `output.job` is a structure that describes the data, the model, and the estimation method. The elements of `output.job` are

1. `output.job.CorrelationFamily` returns the type of correlation function (PowerExponential/Gaussian/Cubic).
2. `output.job.CorrelationEstimationMethod` returns the estimation method, which is 'MLE'/'REML'.
3. `output.job.X` is an \(n \times p \) training data inputs.
4. `output.job.Y` is an \(n \times 1 \) training data outputs.
5. `output.job.XPred` is an \(n_{\text{pred}} \times p \) prediction inputs.
6. `output.job.RegressionModel` = \(F \).
7. `output.job.PredRegressionModel` = \(F_{\text{pred}} \).

The object `output.corparms` is a structure that contains the estimated correlation parameters.

1. `output.corparms.theta` = \(\theta \) for the Gaussian/Power Exponential/Cubic correlation function.
2. `output.corparms.power` is \((p_1,\ldots,p_d) \) for the Power Exponential correlation; `output.corparms.power` is the vector \((2,2,\ldots,2) \) for the Gaussian correlation; `output.corparms.power` = \(\text{Inf} \) for the Cubic correlation.

The object `output.est` is a structure that contains the following estimated quantities.

1. `output.est.loglik` is the maximized log likelihood/restricted likelihood value. For the log likelihood, `output.est.loglik` returns
 \[
 -\frac{1}{2} \left(\log(\hat{\sigma}^2(\xi)) + \log(\det(R(\xi))) + n + n \times \log(2\pi) \right),
 \]
 where \(\log \) denotes logarithm base \(e \); this is the maximized log likelihood. When `CorrelationEstimationMethod` = REML, `output.est.loglik` returns
 \[
 -\frac{1}{2} \left((n-p) \log \left(\frac{n-1}{n} \hat{\sigma}^2(\xi) \right) + \log(\det(R(\xi))) + \log(\det(F^\top R(\xi)^{-1} F)) \right),
 \]
 which is the maximized restricted log likelihood up to a constant.
2. `output.est.beta` is the \(q \times 1 \) vector of the MLE or REML of the regression parameters \(\beta \).
3. `output.est.invR` is an \(n \times n \) estimated inverse correlation matrix \(\text{inv}(\hat{R}) \) corresponding to the training data inputs and the estimated correlation parameters.
4. `output.est.sigma2` is the MLE or REML estimate of σ. When
 `CorrelationEstimationMethod = MLE`,
 \[\text{output.est.sigma2} = \frac{1}{n} (y^n - \hat{F}\beta)^\top R^{-1} (y^n - \hat{F}\beta) \]
 When
 `CorrelationEstimationMethod = REML`,
 \[\text{output.est.sigma2} = \frac{1}{n-p} (y^n - \hat{F}\beta)^\top R^{-1} (y^n - \hat{F}\beta) \].

The object `output.preds` is a MATLAB structure that contains the predictions and their estimated
standard deviations.

Note `output.preds` is created only when ‘`XPred’` is specified at the input stage.

1. `output.preds.ypreds`: an $n_{\text{pred}} \times 1$ vector containing the predictions.
2. `output.preds.se`: an $n_{\text{pred}} \times 1$ vector containing the standard errors of the predictions.

The object `output.cv` is a structure that contains the leave-one-out cross validation predictions, stan-
dard errors, and residuals.

Note: `output.cv` is created only when ‘`CrossValidation’ = ‘Yes’` at the input stage.

1. `output.cv.ypreds`: an $n \times 1$ vector having the leave one out predictions.
2. `output.cv.se`: an $n \times 1$ vector having the standard errors of the predictions.
3. `output.cv.resids`: an $n \times 1$ vector having the cross validation residuals.

The object `output.sens` is a structure that gives the estimated sensitivity coefficients.

Note: `output.sens` is created only when ‘`SensitivityAnalysis’ = ‘Yes’` is specified at the input stage. Further more, this command produces estimated sensitivity indices and main effect plots (mainplot.jpg) only for the Gaussian or Cubic correlation family and the constant mean model are speci-
fied. In this case,

1. `output.sens.sme`: a $1 \times p$ vector having estimated main effect sensitivity indices.
2. `output.sens.ste`: a $1 \times p$ vector having estimated total effect sensitivity indices.
3. `output.sens.totalvar`: an estimated total variance.
4. `output.sens.ngrid`: the number of grids of input region for evaluating the main effect values.
5. `output.sens.maineffect`: an $n_{\text{grid}} \times p$ matrix having the main effect values evaluated at
 the grids of inputs which are used to create main effect plots.

For other correlation families or mean models, setting ‘`SensitivityAnalysis’ = ‘Yes’’ results
in `output.sens` being set equal to the warning message

`'MPERK only does sensitivity analysis for Gaussian or Cubic correlation family and constant
mean.'`
3 Examples

This sections gives two examples demonstrating the use of MPErK.

3.1 Example 1

The training data for Example 1 is generated from the Branin function

\[y(x_1, x_2) = (x_2 - \frac{5.1}{4\pi^2} x_1^2 + \frac{5}{\pi} x_1 - 6)^2 + 10(1 - \frac{1}{8\pi}) \cos(x_1) + 10, \]

for \((x_1, x_2) \in [-5, 10] \times [0, 15]\) in \(\mathcal{R}^2\).

Goal: Predict \(y(\cdot)\) for the Branin function at \(x_{\text{pred}}\) based on the Gaussian process model with mean

\[E[Y(x_1, x_2)] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 \]

and cubic correlation function whose parameters are to be estimated by REML. Predictions are to be made at five new inputs.

The training data inputs are 21 points are obtained from a maximin Latin hypercube design in \([-5, 10] \times [0, 15]\).

<table>
<thead>
<tr>
<th>X</th>
<th>7.5000</th>
<th>6.0714</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0714</td>
<td>3.9286</td>
</tr>
<tr>
<td>9.6429</td>
<td>8.2143</td>
<td></td>
</tr>
<tr>
<td>4.6429</td>
<td>4.6429</td>
<td></td>
</tr>
<tr>
<td>2.5000</td>
<td>14.6429</td>
<td></td>
</tr>
<tr>
<td>-3.2143</td>
<td>2.5000</td>
<td></td>
</tr>
<tr>
<td>3.2143</td>
<td>0.3571</td>
<td></td>
</tr>
<tr>
<td>-4.6429</td>
<td>6.7857</td>
<td></td>
</tr>
<tr>
<td>-3.9286</td>
<td>12.5000</td>
<td></td>
</tr>
<tr>
<td>6.0714</td>
<td>1.7857</td>
<td></td>
</tr>
<tr>
<td>8.2143</td>
<td>11.0714</td>
<td></td>
</tr>
<tr>
<td>6.7857</td>
<td>13.9286</td>
<td></td>
</tr>
<tr>
<td>-0.3571</td>
<td>1.0714</td>
<td></td>
</tr>
<tr>
<td>-1.7857</td>
<td>5.3571</td>
<td></td>
</tr>
<tr>
<td>0.3571</td>
<td>10.3571</td>
<td></td>
</tr>
<tr>
<td>8.9286</td>
<td>3.2143</td>
<td></td>
</tr>
<tr>
<td>-2.5000</td>
<td>9.6429</td>
<td></td>
</tr>
<tr>
<td>5.3571</td>
<td>8.9286</td>
<td></td>
</tr>
<tr>
<td>3.9286</td>
<td>11.7857</td>
<td></td>
</tr>
<tr>
<td>-1.0714</td>
<td>13.2143</td>
<td></td>
</tr>
<tr>
<td>1.7857</td>
<td>7.5000</td>
<td></td>
</tr>
</tbody>
</table>
The training data outputs Y

\[
y = \begin{bmatrix} 35.80951 \\ 14.86287 \\ 31.41880 \\ 19.87899 \\ 141.88566 \\ 99.43335 \\ 3.88973 \\ 97.47380 \\ 6.27060 \\ 19.85914 \\ 95.50587 \\ 181.74214 \\ 49.39445 \\ 23.13762 \\ 43.09524 \\ 2.82392 \\ 3.61474 \\ 75.79100 \\ 104.11175 \\ 43.33586 \\ 23.39797 \end{bmatrix};
\]

Predictions of $y(\cdot)$ are desired at (x_1, x_2) points in x_{pred}

\[
x_{\text{pred}} = \begin{bmatrix} -4.5000 & 0.5000 \\ -4.5000 & 14.5001 \\ 2.5000 & 7.5000 \\ 9.5000 & 0.5000 \\ 9.5000 & 14.5001 \end{bmatrix};
\]

The regression function for the training data is specified by.

\[
F = \text{[ones}(21,1) \times(:,1) \times(:,2) \text{ diag}(\times(:,1) \times(:,2))']];
\]

The regression function for the prediction inputs is specified by.

\[
F_{\text{pred}} = \text{[ones}(5,1) \times\text{pred}(:,1) \times\text{pred}(:,2) ... \text{ diag}(\times\text{pred}(:,1) \times(\times\text{pred}(:,2))')];
\]
The MATLAB command to execute `mperk` is

```matlab
branin_output = mperk('X',x,...
    'Y',y,...
    'CorrelationEstimationMethod','REML',...
    'CorrelationFamily','Cubic',...
    'Xpred',xpred,...
    'RegressionModel',F,...
    'PredRegressionModel', Fpred);
```

The output is the structure `branin_output` which has components

- The original job specification

```matlab
branin_output.job =
    CorrelationFamily: 'Cubic'
    CorrelationEstimationMethod: 'REML'
    X: [21x2 double]
    Y: [21x1 double]
    XPred: [5x2 double]
    RegressionModel: [21x4 double]
    PredRegressionModel: [5x4 double]
```

- Estimated correlation parameters

```matlab
branin_output.corparms =
    theta: [2x1 double]
    power: Inf
branin_output.corparms.theta =
    18.5006
    43.8566
```

- Miscellaneous estimated quantities

```matlab
branin_output.est =
    loglik: -56.2986
    beta: [4x1 double]
    inv_R: [21x21 double]
    sigma2: 1.1362e+004
branin_output.est.beta =
    227.0857
    -24.3526
    -5.0816
    2.0273
```
• Predictions and their standard errors

\[
\begin{array}{llllllllll}
\text{b branin_output.preds.ypreds branin_output.preds.se} = \\
214.6038 & 14.3067 \\
3.3244 & 10.8935 \\
23.8428 & 3.7069 \\
-19.0365 & 14.1905 \\
153.1061 & 15.7321 \\
\end{array}
\]

A second use of \texttt{mperk} requests the MLEs of the correlation parameters and the sensitivity analysis.

\begin{verbatim}
branin_outsen = mperk('X',x,...
 'Y',y,...
 'CorrelationEstimationMethod','MLE',...
 'CorrelationFamily','Gaussian',...
 'SensitivityAnalysis','Yes');
\end{verbatim}

The output structure \texttt{b branin_outsen} has components

• The original job specification

\begin{verbatim}
branin_outsen.job =
 CorrelationFamily: 'Gaussian'
 CorrelationEstimationMethod: 'MLE'
 X: [21x2 double]
 Y: [21x1 double]
 RegressionModel: [21x1 double]
 PredRegressionModel: 1
 XPred: 'None'
\end{verbatim}

• Estimated correlation parameters

\begin{verbatim}
branin_outsen.corparms =
 theta: [2x1 double]
 power: [2x1 double]

branin_outsen.corparms.theta =
 0.0345
 0.0022
\end{verbatim}

• Miscellaneous estimated quantities

\begin{verbatim}
branin_outsen.est =
 loglik: -94.8882
 beta: 196.4499
 inv_R: [21x21 double]
 sigma2: 2.2472e+04
\end{verbatim}
Sensitivity indices

\[
\text{branin_outsen.sens = }
\begin{align*}
\text{sme: } & [0.1259 0.2966] \\
\text{ste: } & [0.7034 0.8741] \\
\text{totalvar: } & 2.1400e+03 \\
\text{ngrid: } & 21 \\
\text{maineffect: } & [21 \times 2 \text{ double}]
\end{align*}
\]

Main effect plots (mainplot.jpg)

3.2 Example 2

Example 2 uses the piston slap data in Runze Li and Agus Sudjianto (2005). The goal is to estimate the correlation for the piston slap data based on the Gaussian process model with constant mean power exponential correlation function whose parameters are estimated by MLE. Also construct cross validation estimates for all training data inputs.

The training data inputs are the 12 points
The training data outputs Y:

\[
Y = \begin{bmatrix}
56.7500 \\
57.6500 \\
53.9700 \\
58.7700 \\
56.3400 \\
56.8500 \\
56.6800 \\
58.4500 \\
55.5000 \\
52.7700 \\
57.3600 \\
59.6400
\end{bmatrix}
\]

The MATLAB command to find the maximum likelihood estimates of the correlation parameters for the power exponential family (3) with cross validated predictions is:

```matlab
pistslap_out = mperk('X',X,...
    'Y',Y,...
    'CorrelationEstimationMethod','MLE',...
    'CorrelationFamily','PowerExponential',...
    'CrossValidation','Yes');
```

The output structure `pistslap_out` has components

```
pistslap_out =
    job: [1x1 struct]
    corparms: [1x1 struct]
    est: [1x1 struct]
    cv: [1x1 struct]
```

which give
• The original job specifications:

<table>
<thead>
<tr>
<th>pistslap_out.job =</th>
</tr>
</thead>
<tbody>
<tr>
<td>CorrelationFamily: 'PowerExponential'</td>
</tr>
<tr>
<td>CorrelationEstimationMethod: ‘MLE’</td>
</tr>
<tr>
<td>X: [12x6 double]</td>
</tr>
<tr>
<td>Y: [12x1 double]</td>
</tr>
<tr>
<td>RegressionModel: [12x1 double]</td>
</tr>
<tr>
<td>PredRegressionModel: 1</td>
</tr>
<tr>
<td>Xpred: ‘None’</td>
</tr>
</tbody>
</table>
• Estimated correlation parameters:

```
[pistslap_out.corparms.theta, pistslap_out.corparms.power] =
  0.0008  2.0000
  0.0000  2.0000
  0.0397  2.0000
  0.0000  2.0000
  0.0000  2.0000
  4.4468  2.0000
```

• Miscellaneous estimated quantities:

```pistslap_out.est =
  loglik: -21.9834
  beta: 56.2509
  inv_R: [12x12 double]
  sigma2: 4.2716```

• Leave-one-out cross validation predictions, their standard errors, and their residuals:

```pistslap_out.cv =
 ypreds: [12x1 double]
 se: [12x1 double]
 resids: [12x1 double]

[pistslap_out.cv.ypreds, pistslap_out.cv.se,...
pistslap_out.cv.resids] =
 57.5857 1.2307 -0.8357
 55.3592 1.5600 2.2908
 55.9102 1.3402 -1.9402
 58.1166 1.5030 0.6534
 55.9018 1.5935 0.4382
 56.8350 0.6705 0.0150
 55.5453 1.9629 1.1347
 58.8664 1.0728 -0.4164
 55.6000 0.8836 -0.1000
 55.4814 1.6218 -2.7114
 57.8271 1.0015 -0.4671
 58.6507 0.7175 0.9893```
4 Some Program Notes

For numerical stability, MPErK calculates correlation parameters to minimize the likelihood with correlations expressed in terms of standardized input values. For example, in the case of the Gaussian correlation function (2), MPErK calculates $\hat{\theta}_1^\star, \ldots, \hat{\theta}_d^\star$ to maximize the log-likelihood with $R = (R_{ij})$ and

$$R_{ij} = \exp \left\{ -\sum_{\ell=1}^d \frac{\theta_\ell^\star (x_{i\ell} - x_{j\ell})^2}{r_\ell} \right\},$$

where $r_\ell = \max_q\{x_q\ell\} - \min_q\{x_q\ell\}$. The MLE (or REML) of $\theta_1, \ldots, \theta_d$ in (2) are obtained by mperk from the estimated $\{\hat{\theta}_\ell^\star\}_\ell$ using $\hat{\theta}_l = \hat{\theta}_l^\star / r_l^2$, for $l = 1, \ldots, d$.

MPErK uses fmincon function to estimate the unknown correlation parameters based the largest value of the (restricted) likelihood that fmincon obtains starting with a user-specified number of starting points. The options for fmincon are set by the command.

```matlab
options = optimset('Display','off', ...  
    'LargeScale','on', ...  
    'TolFun',0.0001, ...  
    'Algorithm','active-set');
```

The default settings are used for all other fmincon options. Detailed explanations of the settings and all possible values of each option can be found in the MATLAB help file for functions optimset and fmincon.

We apply fmincon with lower and upper bounds all θ_i^\star, $i = 1, \ldots, d$. For the product power exponential and Gaussian correlation functions, the lower bound for θ_i^\star is set so that the correlation between the two (hypothetical) points obtained by projecting the training input data into each dimension is less than or equal to 0.99 and the correlation between the two (hypothetical) points obtained by projecting the training input is greater than or equal to 0.01. More specifically, for the Gaussian correlation function let M_i denote the largest Euclidean (L_2) distance between two training data inputs in ith dimension, and m_i is the smallest non-zero L_2 distance between two training data inputs in ith dimension, $i = 1, \ldots, d$. Then we take the lower bound for θ_i^\star to be

$$-\log(0.99^{1/d})/M_i$$

and the upper bound for θ_i to be

$$-\log(0.01^{1/d})/m_i,$$

where d is the number of inputs. For the cubic correlation function, it is hard to set the bounds of θ_i^\star to control the overall correlations $\text{Cov}(Z(x_i), Z(x_i))$. We take the lower bound for θ_i^\star to be 0.00001 and the upper bound to be $100/d$.

References
