Optimization Algorithms in MATLAB

Maria G Villarreal

ISE Department
The Ohio State University

Outline

- Problem Description
- Optimization Problem that can be solve in MATLAB
- Optimization Toolbox solvers
- Non Linear Optimization
- Multobjective Optimization

Problem Description

Objective:

 Determine the values of the controllable process variables (factors) that improve the output of a process (or system).

• Facts:

- Have a computer simulator (input/output black-box) to represent the output of a process (or system).
- The simulation program takes very long time to run.

• Procedure:

- Evaluate a set (usually small) of input combination (DOE) into the computer code and obtain an output value for each one.
- Construct a mathematical model to relate inputs and outputs, which is easier and faster to evaluate then the actual computer code.
- Use this model (metamodel), and via an optimization algorithm obtained the values of the controllable variables (inputs/factors) that optimize a particular output (s).

Optimization Problem that can be solve in MATLAB (Optimization Toolbox)

- Constrained and Unconstrained continues and discrete
 - Linear
 - Quadratic
 - Binary Integer
 - Nonlinear
 - Multiobjective Problems

Optimization Toolbox solvers

Minimizers

This group of solvers attempts to find a local minimum of the objective function near a starting point x_0 .

If you have a Global Optimization Toolbox license, use the GlobalSearch or MultiStart solvers. These solvers automatically generate random start points within bounds.

Minimization Problems

Туре	Formulation	Solver
Scalar minimization		fminbnd
	$\min_{x} f(x)$	
	such that $l < x < u$ (x is scalar)	
Unconstrained minimization		fminunc,
	$\min_{x} f(x)$	fminsearch
Linear programming		linprog
	$\min f^T x$	
	such that $A x \le b$, $Aeq x = beq$, $l \le x \le u$	
Quadratic programming		quadprog
	$\min_{x} \frac{1}{2} x^T H x + c^T x$	
	such that $A x \le b$, $Aeq x = beq$, $l \le x \le u$	
Constrained minimization		fmincon
	$\min_{x} f(x)$	
	such that $c(x) \le 0$, $ceq(x) = 0$, $Ax \le b$, $Aeq x = beq$, $l \le x \le u$	
Semi-infinite minimization		fseminf
	$\min_{x} f(x)$	
	such that $K(x,w) \le 0$ for all w , $c(x) \le 0$, $ceq(x) = 0$, $Ax \le b$, $Aeq x = beq$, $l \le x \le u$	
Binary integer programming		bintprog
	$\min_{x} f^{T} x$	
	such that $A x \le b$, $Aeq x = beq$, $x ext{ binary}$	

Optimization Toolbox solvers

Multiobjective minimizers

This group of solvers attempts to either minimize the maximum value of a set of functions (fminimax), or to find a location where a collection of functions is below some prespecified values (fgoalattain).

Multiobjective Problems

Туре	Formulation	Solver
Goal attainment		fgoalattain
	$\min_{x,\gamma} \gamma$	
	such that $F(x) - w \gamma \le \text{goal}$, $c(x) \le 0$, $ceq(x) = 0$,	
	$A x \le b$, $Aeq x = beq$, $l \le x \le u$	
Minimax		fminimax
	$\min_{x} \max_{i} F_i(x)$	
	such that $c(x) \le 0$, $ceq(x) = 0$, $A x \le b$, $Aeq x = beq$, $l \le x \le u$	

Non Linear Optimization

A General Problem (GP) description is stated as

$$\min_{x} f(x),\tag{6-1}$$

subject to

$$\begin{split} G_i(x) &= 0 \quad i = 1,...,m_e, \\ G_i(x) &\leq 0 \quad i = m_e + 1,...,m, \end{split}$$

where x is the vector of length n design parameters, f(x) is the objective function, which returns a scalar value, and the vector function G(x) returns a vector of length m containing the values of the equality and inequality constraints evaluated at x.

Rastrigin's function

$$f_6(x) = 10 \cdot n + \sum_{i=1}^{n} (x_i^2 - 10 \cdot \cos(2 \cdot \pi \cdot x_i)) - 5.12 \le x_i \le 5.12$$

General Search Algorithm

Move from point $\mathbf{x}^{(k)}$ to $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}$, where $\Delta \mathbf{x}^{(k)} = \alpha_k d^{(k)}$, such that $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$. $d^{(k)}$ is a "desirable" search direction and, α_k is called the step size.

To find $\Delta \mathbf{x}^{(k)}$ we need to solve to subproblems, one to find $d^{(k)}$ and one for α_k .

These iterative procedures (techniques) are often called "direction methods".

General Steps

- 1. Estimate a reasonable initial point $\mathbf{x}^{(0)}$. Set k=0 (iteration counter).
- 2. Compute a direction search d^(k)
- 3. Check convergence.
- 4. Calculate step size α_k in the direction $d^{(k)}$.
- 5. Update $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k d^{(k)}$
- 6. Go to step 2.

Algorithms to compute Search Direction (d)

- Steepest Descent Method (Gradient method)
- Conjugate Gradient Method
- Newton's Method (Uses second order partial derivative information)
- Quasi-Newton Methods (Approximates Hessian matrix and its inverse using first order derivative)
 - DFP Method (Approximates the inverse of the Hessian)
 - BFGS Method (Approximates Hessian matrix)

Steepest Descent Method

- 1. Estimate starting point $\mathbf{x}^{(0)}$. Set k=0
- 2. Calculate the gradient of $f(\mathbf{x})$ at $\mathbf{x}^{(k)}$ as $\mathbf{c}^{(k)} = \nabla f(\mathbf{x}^{(k)})$
- 3. Check convergence.
- 4. Let $d^{(k)} = -c^{(k)}$. Use another algorithm to find α_k .
- 5. Update $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k d^{(k)}$. Set k = k+1
- 6. Go to step 2.

Drawbacks: Poor rate of convergence

Newton's Method

- 1. Estimate starting point $\mathbf{x}^{(0)}$. Set k=0
- 2. Calculate $\mathbf{c}^{(k)}$ (gradient of $f(\mathbf{x})$ at $\mathbf{x}^{(k)}$)
- 3. Check convergence (if $||\mathbf{c}^{(k)}|| < \epsilon$, stop)
- 4. Calculate the Hessian matrix at $\mathbf{x}^{(k)}$, $\mathbf{H}^{(k)}$.
- 5. Calculate the direction search as $d^{(k)} = -[H^{(k)}]^{-1}c^{(k)}$. Use another algorithm to compute α_k .
- 6. Update $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k d^{(k)}$.
- 7. Set k=k+1 and go to step 2.

Drawbacks:

- Needs to calculate second order derivatives.
- H needs to be positive definite to assure a decent direction
- H may be singular at some point.

Quasi-Newton's Method BFGS Method (Used in MALTAB)

Step 1. Estimate an initial design $\mathbf{x}^{(0)}$. Choose a symmetric positive definite $n \times n$ matrix $\mathbf{H}^{(0)}$ as an estimate for the Hessian of the cost function. In the absence of more information, let $\mathbf{H}^{(0)} = \mathbf{I}$. Choose a convergence parameter ε . Set k = 0, and compute the gradient vector as $\mathbf{c}^{(0)} = \nabla f(\mathbf{x}^{(0)})$.

Step 2. Calculate the norm of the gradient vector as $\|\mathbf{c}^{(k)}\|$. If $\|\mathbf{c}^{(k)}\| < \varepsilon$ then stop the iterative process; otherwise continue.

Step 3. Solve the linear system of equations $\mathbf{H}^{(k)}\mathbf{d}^{(k)} = -\mathbf{c}^{(k)}$ to obtain the search direction.

Step 4. Compute optimum step size $\alpha_k = \alpha$ to minimize $f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$.

Step 5. Update the design as $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$

Step 6. Update the Hessian approximation for the cost function as

$$\mathbf{H}^{(k+1)} = \mathbf{H}^{(k)} + \mathbf{D}^{(k)} + \mathbf{E}^{(k)}$$
 (a)

where the correction matrices $\mathbf{D}^{(k)}$ and $\mathbf{E}^{(k)}$ are given as

$$\mathbf{D}^{(k)} = \frac{\mathbf{y}^{(k)} \mathbf{y}^{(k)^T}}{(\mathbf{y}^{(k)} \cdot \mathbf{s}^{(k)})}; \qquad \mathbf{E}^{(k)} = \frac{\mathbf{c}^{(k)} \mathbf{c}^{(k)^T}}{(\mathbf{c}^{(k)} \cdot \mathbf{d}^{(k)})}$$
(b)

$$\mathbf{s}^{(k)} = \alpha_k \mathbf{d}^{(k)}$$
 (change in design); $\mathbf{y}^{(k)} = \mathbf{c}^{(k+1)} - \mathbf{c}^{(k)}$ (change in gradient); $\mathbf{c}^{(k+1)} = \nabla f(\mathbf{x}^{(k+1)})$ (c)

Step 7. Set k = k + 1 and go to Step 2.

Method to calculate step size (assuming **d** is known)

- Equal interval search
- Golden Search
- Polynomial Interpolation
- Inaccurate Line Search

Optimization toolbox for Non Linear Optimization

Solvers:

- fmincon (constrained nonlinear minimization)
 - Trust-region-reflective (default)
 - Allows only bounds or linear equality constraints, but not both.
 - Active-set (solve Karush-Kuhn-Tucker (KKT) equations and used quasi-Netwon method to approximate the hessian matrix)
 - Interior-point
 - Sequential Quadratic Programming (SQP)
- fminunc (unconstrained nonlinear minimization)
 - Large-Scale Problem: Trust-region method based on the interior-reflective Newton method
 - Medium–Scale: **BFGS Quasi-Newton method** with a cubic line search procedure.
- fminsearch (unconstrained multivariable optimization, nonsmooth functions)
 - Nelder-Mead simplex (derivative-free method)

Multiobjective Optimization

Solvers:

- fminmax (minimize the maximum value of a set of functions).
- fgoalattain (find a location where a collection of functions are below some prespecified values).

Choosing a Solver (Optimization Decision Table)

Solvers by Objective and Constraint

Constraint Type	Objective Type					
	Linear	Quadratic	Least Squares	Smooth nonlinear	Nonsmooth	
None	n/a ($f = \text{const}$, or min = $-\infty$)	quadprog, Theory, Examples	 lsqcurvefit, lsqnonlin, Theory, Examples	fminsearch, fminunc, Theory, Examples	fminsearch, *	
Bound	linprog, Theory, Examples	quadprog, Theory, Examples	lsqcurvefit, lsqlin, lsqnonlin, lsqnonneg, Theory, Examples	fminbnd, fmincon, fseminf, Theory, Examples	*	
Linear	linprog, Theory, Examples	quadprog, Theory, Examples	1sqlin, Theory, Examples	fmincon, fseminf, Theory, Examples	*	
General smooth	fmincon, Theory, Examples	fmincon, Theory, Examples	fmincon, Theory, Examples	fmincon, fseminf, Theory, Examples	*	
Discrete	bintprog, Theory, Example					