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Problem Description

e Objective:
— Determine the values of the controllable process variables (factors)
that improve the output of a process (or system).

e Facts:

— Have a computer simulator (input/output black-box) to represent the
output of a process (or system).

— The simulation program takes very long time to run.

* Procedure:

— Evaluate a set (usually small) of input combination (DOE) into the
computer code and obtain an output value for each one.

— Construct a mathematical model to relate inputs and outputs, which is
easier and faster to evaluate then the actual computer code.

— Use this model (metamodel), and via an optimization algorithm
obtained the values of the controllable variables (inputs/factors) that
optimize a particular output (s).



Optimization Problem that can be solve in
MATLAB (Optimization Toolbox)

e Constrained and Unconstrained continues
and discrete

— Linear

— Quadratic

— Binary Integer
— Nonlinear

— Multiobjective Problems




Optimization Toolbox solvers

e Minimizers

This group of solvers
attempts to find a local
minimum of the objective

function near a starting
point Xx,.

If you have a Global Optimization Toolbox
license, use the GlobalSearch or
MultiStart  solvers.  These  solvers
automatically generate random start
points within bounds.

Minimization Problems

Type Formulation Solver
Sealar minimization fminbnd
min f(x)
.
such that [ < x < u (x is scalar)
Unconstrained minimization fminunc,
min f(x) fminsearch
x
Linear programming linprog
min f Ty
.
such that Awx=5b, Aegwx=beg, I=x=u
Quadratic programming quadprog
.1
min=x" Hx+c' x
-
such that Ax=b, Aegx=beg, [=x=u
Constrained minimization fmincon
min fix)
-
such that e(x) =0, ceg(x) =0, Ax=b,
Aegx=beg, l=x=u
Semi-infinite minimization fseminf
min f(x)
-
such that K(x.w) =0 for all w, e(x) =0,
ceqix) =0, Ax=b, Aegx=beg. I=x=u
Binary integer programming bintprog

min f Ty
-

such that Awx<=5b, Aegwx= beg, xbinary




Optimization Toolbox solvers

e Multiobjective minimizers

This group of solvers attempts to either minimize the
maximum value of a set of functions (fminimax), or to find a
location where a collection of functions is below some
prespecified values (fgoalattain).

Multiobjective Problems

Type

Goal attainment

Formulation

miny

x,¥
such that Flx)—wy=goal, ec(x)=0, ceqglx)=0,
Ax=b, Aegqx=beg, l=x=u

Solver
fgoalattain

Minimax

min max F;(x)
X L

such that e(x) =0, ceqix) =0, Ax=b,
Aegx=beq, l=x=u

fminimax




Non Linear Optimization

A General Problem (GP) description is stated as

m;nf(x), (6-1)

subject to
Gix)=0 i=1..m

oy PG,
G;(x)<0 i=m,+1,..,m,

where x 1s the vector of length n design parameters, f(x) is the objective
function, which returns a scalar value, and the vector function G(x) returns
a vector of length m containing the values of the equality and inequality
constraints evaluated at x.



Rastrigin's function

Folxi=10m+ 2 =10 cosl2 )l -5128 5 <512

i=1

Glabal minmum ot [0 0]

Glubel minimusn o [0 0]

[Global Optimization Toolbox Guide]



General Search Algorithm

Move from point x to x(kl=xkl+Axk) where AxK)
=a, d¥, such that f{x*1)<f(xk)).

dk is a “desirable” search direction and,

a, is called the step size.

To find Ax*) we need to solve to subproblems, one
to find d) and one for a,.

These iterative procedures (techniques) are often
called “direction methods”.



DU A W N

General Steps

Estimate a reasonable initial point x(9). Set
k=0 (iteration counter).

Compute a direction search d®)

Check convergence.

Calculate step size a, in the direction d¥.
Update xk+t=xK+q, d®)

Go to step 2.



Algorithms to compute
Search Direction (d)

Steepest Descent Method (Gradient method)
Conjugate Gradient Method

Newton’s Method (Uses second order partial
derivative information)

Quasi-Newton Methods (Approximates Hessian
matrix and its inverse using first order derivative)

— DFP Method (Approximates the inverse of the
Hessian)

— BFGS Method (Approximates Hessian matrix)



Steepest Descent Method

Estimate starting point x(©, Set k=0

Calculate the gradient of f(x) at x¥ as ¢kI=Vf(x(k)
Check convergence.

Let dk) = -c(¥) , Use another algorithm to find a, .
Update xk+l=xkl+o, dK), Set k=k+1

Go to step 2.
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Drawbacks: Poor rate of convergence
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Newton’s Method

1. Estimate starting point x(?). Set k=0

2. Calculate c®(gradient of f(x) at x¥)

3. Check convergence (if | |c||<eg, stop)

4. Calculate the Hessian matrix at x(, H(),

5. Calculate the direction search as d¢ = -[H]1¢k) | Use another
algorithm to compute o .

6. Update xk*H=xk+q,d*)

7. Set k=k+1 and go to step 2.

Drawbacks:

e Needs to calculate second order derivatives.
 H needs to be positive definite to assure a decent direction
e H may be singular at some point.



Quasi-Newton’s Method
BFGS Method (Used in MALTAB)

Step 1. Estimate an initial design x"”. Choose a symmetric positive definite n X n matrix
H"™ as an estimate for the Hessian of the cost function. In the absence of more

information, let H" = I. Choose a convergence parameter €. Set k = 0, and compute
the gradient vector as ¢ = Vf(x'").

Step 2. Calculate the norm of the gradient vector as [l¢™||. If ||¢"|| < & then stop the
iterative process; otherwise continue

Step 3. Solve the linear system of equations H"d"™ = —¢" to obtain the search direction.

Step 4. Compute optimum step size o = & to minimize f(x"' + ad"™).

Step 5. Update the design as x"""' = x"' + ogd"”

Step 6. Update the Hessian approximation for the cost function as
H** =H" +D" +E" (a)

where the correction matrices D" and E"' are given as

. y'y i c“e
DY = < . g e e (b)
iy 8" ) (™™ =]
s“ = o d™ (change in design); y* =" — ¢ (change in gradient);
cHh = V(x®1 (c)

Step 7. Set k =k + 1 and go to Step 2

[Arora, J. (2004), Introduction to Optimum Design, 2" Ed, page. 327]



Method to calculate step size
(assuming d is known)

Equal interval search
Golden Search
Polynomial Interpolation
Inaccurate Line Search



Optimization toolbox for Non Linear
Optimization

e Solvers:

— fmincon (constrained nonlinear minimization)

e Trust-region-reflective (default)
— Allows only bounds or linear equality constraints, but not both.

e Active-set (solve Karush-Kuhn-Tucker (KKT) equations and used quasi-Netwon
method to approximate the hessian matrix)

* Interior-point
* Sequential Quadratic Programming (SQP)
— fminunc (unconstrained nonlinear minimization)

e Large-Scale Problem: Trust-region method based on the interior-reflective
Newton method

e Medium—Scale: BFGS Quasi-Newton method with a cubic line search
procedure.

— fminsearch (unconstrained multivariable optimization, nonsmooth
functions)

* Nelder-Mead simplex (derivative-free method)



Multiobjective Optimization

e Solvers:

— fminmax (minimize the maximum value of a set of
functions ).

— fgoalattain (find a location where a collection of
functions are below some prespecified values).



Choosing a Solver

(Optimization Decision Table)

Solvers by Objective and Constraint

Constraint Objective Type
Type . .
YP Linear Quadratic Least Smooth Nonsmooth
Squares nonlinear
None n/a (f = const, | quadprog, \. fminsearch, fminsearch, *
or min = —= ) | Theory. lsqcurvefit, | fminunc,
Examples lsqnonlin, Theory,
Theory, Examples
Examples
Bound linprog, guadprog. lsqcurvefit, | fminbnd. =
Theory. Theory. lsqlin, fmincon,
Examples Examples 1sgnonlin, fseminf,
lsgnonneg, Theory,
Theory, Examples
Examples
Linear linprog, guadprog, 1sqlin, fmincon, ®
Theory. Theory. Theory, fseminf,
Examples Examples Examples Theory.
Examples
General fmincon, fmincon, fmincon, fmincon, *
smooth Theory. Theory. Theory, fseminf,
Examples Examples Examples Theory,
Examples
Discrete bintprog,
Theory.
Example

[Optimization Toolbox Guide]




