Optimization Algorithms in
MATLAB

Maria G Villarreal

ISE Department
The Ohio State University

February 03, 2011

Outline

Problem Description

Optimization Problem that can be solve in MATLAB
Optimization Toolbox solvers

Non Linear Optimization

Multobjective Optimization

Problem Description

e Objective:
— Determine the values of the controllable process variables (factors)
that improve the output of a process (or system).

e Facts:

— Have a computer simulator (input/output black-box) to represent the
output of a process (or system).

— The simulation program takes very long time to run.

* Procedure:

— Evaluate a set (usually small) of input combination (DOE) into the
computer code and obtain an output value for each one.

— Construct a mathematical model to relate inputs and outputs, which is
easier and faster to evaluate then the actual computer code.

— Use this model (metamodel), and via an optimization algorithm
obtained the values of the controllable variables (inputs/factors) that
optimize a particular output (s).

Optimization Problem that can be solve in
MATLAB (Optimization Toolbox)

e Constrained and Unconstrained continues
and discrete

— Linear

— Quadratic

— Binary Integer
— Nonlinear

— Multiobjective Problems

Optimization Toolbox solvers

e Minimizers

This group of solvers
attempts to find a local
minimum of the objective

function near a starting
point Xx,.

If you have a Global Optimization Toolbox
license, use the GlobalSearch or
MultiStart solvers. These solvers
automatically generate random start
points within bounds.

Minimization Problems

Type Formulation Solver
Sealar minimization fminbnd
min f(x)
.
such that [< x < u (x is scalar)
Unconstrained minimization fminunc,
min f(x) fminsearch
x
Linear programming linprog
min f Ty
.
such that Awx=5b, Aegwx=beg, I=x=u
Quadratic programming quadprog
.1
min=x" Hx+c' x
-
such that Ax=b, Aegx=beg, [=x=u
Constrained minimization fmincon
min fix)
-
such that e(x) =0, ceg(x) =0, Ax=b,
Aegx=beg, l=x=u
Semi-infinite minimization fseminf
min f(x)
-
such that K(x.w) =0 for all w, e(x) =0,
ceqix) =0, Ax=b, Aegx=beg. I=x=u
Binary integer programming bintprog

min f Ty
-

such that Awx<=5b, Aegwx= beg, xbinary

Optimization Toolbox solvers

e Multiobjective minimizers

This group of solvers attempts to either minimize the
maximum value of a set of functions (fminimax), or to find a
location where a collection of functions is below some
prespecified values (fgoalattain).

Multiobjective Problems

Type

Goal attainment

Formulation

miny

x,¥
such that Flx)—wy=goal, ec(x)=0, ceqglx)=0,
Ax=b, Aegqx=beg, l=x=u

Solver
fgoalattain

Minimax

min max F;(x)
X L

such that e(x) =0, ceqix) =0, Ax=b,
Aegx=beq, l=x=u

fminimax

Non Linear Optimization

A General Problem (GP) description is stated as

m;nf(x), (6-1)

subject to
Gix)=0 i=1..m

oy PG,
G;(x)<0 i=m,+1,..,m,

where x 1s the vector of length n design parameters, f(x) is the objective
function, which returns a scalar value, and the vector function G(x) returns
a vector of length m containing the values of the equality and inequality
constraints evaluated at x.

Rastrigin's function

Folxi=10m+ 2 =10 cosl2)l -5128 5 <512

i=1

Glabal minmum ot [0 0]

Glubel minimusn o [0 0]

[Global Optimization Toolbox Guide]

General Search Algorithm

Move from point x to x(kl=xkl+Axk) where AxK)
=a, d¥, such that f{x*1)<f(xk)).

dk is a “desirable” search direction and,

a, is called the step size.

To find Ax*) we need to solve to subproblems, one
to find d) and one for a,.

These iterative procedures (techniques) are often
called “direction methods”.

DU A W N

General Steps

Estimate a reasonable initial point x(9). Set
k=0 (iteration counter).

Compute a direction search d®)

Check convergence.

Calculate step size a, in the direction d¥.
Update xk+t=xK+q, d®)

Go to step 2.

Algorithms to compute
Search Direction (d)

Steepest Descent Method (Gradient method)
Conjugate Gradient Method

Newton’s Method (Uses second order partial
derivative information)

Quasi-Newton Methods (Approximates Hessian
matrix and its inverse using first order derivative)

— DFP Method (Approximates the inverse of the
Hessian)

— BFGS Method (Approximates Hessian matrix)

Steepest Descent Method

Estimate starting point x(©, Set k=0

Calculate the gradient of f(x) at x¥ as ¢kI=Vf(x(k)
Check convergence.

Let dk) = -c(¥) , Use another algorithm to find a, .
Update xk+l=xkl+o, dK), Set k=k+1

Go to step 2.

o »n bk whnN PRk

Drawbacks: Poor rate of convergence

12

Newton’s Method

1. Estimate starting point x(?). Set k=0

2. Calculate c®(gradient of f(x) at x¥)

3. Check convergence (if | |c||<eg, stop)

4. Calculate the Hessian matrix at x(, H(),

5. Calculate the direction search as d¢ = -[H]1¢k) | Use another
algorithm to compute o .

6. Update xk*H=xk+q,d*)

7. Set k=k+1 and go to step 2.

Drawbacks:

e Needs to calculate second order derivatives.
 H needs to be positive definite to assure a decent direction
e H may be singular at some point.

Quasi-Newton’s Method
BFGS Method (Used in MALTAB)

Step 1. Estimate an initial design x"”. Choose a symmetric positive definite n X n matrix
H"™ as an estimate for the Hessian of the cost function. In the absence of more

information, let H" = I. Choose a convergence parameter €. Set k = 0, and compute
the gradient vector as ¢ = Vf(x'").

Step 2. Calculate the norm of the gradient vector as [l¢™||. If ||¢"|| < & then stop the
iterative process; otherwise continue

Step 3. Solve the linear system of equations H"d"™ = —¢" to obtain the search direction.

Step 4. Compute optimum step size o = & to minimize f(x"' + ad"™).

Step 5. Update the design as x"""' = x"' + ogd"”

Step 6. Update the Hessian approximation for the cost function as
H** =H" +D" +E" (a)

where the correction matrices D" and E"' are given as

. y'y i c“e
DY = < . g e e (b)
iy 8") (™™ =]
s“ = o d™ (change in design); y* =" — ¢ (change in gradient);
cHh = V(x®1 (c)

Step 7. Set k =k + 1 and go to Step 2

[Arora, J. (2004), Introduction to Optimum Design, 2" Ed, page. 327]

Method to calculate step size
(assuming d is known)

Equal interval search
Golden Search
Polynomial Interpolation
Inaccurate Line Search

Optimization toolbox for Non Linear
Optimization

e Solvers:

— fmincon (constrained nonlinear minimization)

e Trust-region-reflective (default)
— Allows only bounds or linear equality constraints, but not both.

e Active-set (solve Karush-Kuhn-Tucker (KKT) equations and used quasi-Netwon
method to approximate the hessian matrix)

* Interior-point
* Sequential Quadratic Programming (SQP)
— fminunc (unconstrained nonlinear minimization)

e Large-Scale Problem: Trust-region method based on the interior-reflective
Newton method

e Medium—Scale: BFGS Quasi-Newton method with a cubic line search
procedure.

— fminsearch (unconstrained multivariable optimization, nonsmooth
functions)

* Nelder-Mead simplex (derivative-free method)

Multiobjective Optimization

e Solvers:

— fminmax (minimize the maximum value of a set of
functions).

— fgoalattain (find a location where a collection of
functions are below some prespecified values).

Choosing a Solver

(Optimization Decision Table)

Solvers by Objective and Constraint

Constraint Objective Type
Type . .
YP Linear Quadratic Least Smooth Nonsmooth
Squares nonlinear
None n/a (f = const, | quadprog, \. fminsearch, fminsearch, *
or min = —=) | Theory. lsqcurvefit, | fminunc,
Examples lsqnonlin, Theory,
Theory, Examples
Examples
Bound linprog, guadprog. lsqcurvefit, | fminbnd. =
Theory. Theory. lsqlin, fmincon,
Examples Examples 1sgnonlin, fseminf,
lsgnonneg, Theory,
Theory, Examples
Examples
Linear linprog, guadprog, 1sqlin, fmincon, ®
Theory. Theory. Theory, fseminf,
Examples Examples Examples Theory.
Examples
General fmincon, fmincon, fmincon, fmincon, *
smooth Theory. Theory. Theory, fseminf,
Examples Examples Examples Theory,
Examples
Discrete bintprog,
Theory.
Example

[Optimization Toolbox Guide]

