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A new space-filling design, called minimum energy design (MED), is proposed to explore unknown
regions of the design space of particular interest to an experimenter. The key ideas involved in constructing
the MED are the visualization of each design point as a charged particle inside a box, and minimization
of the total potential energy of these particles. It is shown through theoretical arguments and simulations
that with a proper choice of the charge function, the MED can asymptotically generate any arbitrary
probability density function. A version of the MED, which adaptively updates the design by “learning”
about the unknown response surface sequentially, is proposed and implemented. Two potential applications
of MED in simulation of complex probability densities and optimization of complex response surfaces are
discussed and demonstrated with examples. This article has supplementary material online.

KEY WORDS: Experiments; Kriging; Optimization; Quasi-Monte Carlo; Sequential designs; Space-
filling designs.

1. INTRODUCTION

Many modern-day scientific experiments involve exploration
of complex response surfaces. Such exploration may have dif-
ferent goals depending on the context and the nature of the
experiment, for example, (i) prediction of the response surface,
(ii) detecting regions in the design space where the value of the
response exceeds a certain threshold, (iii) finding the global op-
timum, and (iv) finding settings which are robust to changes in
uncontrollable variables. This work proposes designs suitable
for exploring complex surfaces which can be easily adopted
depending on the objective of the experiment.

Our initial motivation for this work comes from the nanos-
tructure yield surface shown in the top left panel of Figure 1
(Dasgupta et al. 2008). As can be seen in that figure, the surface
is complex with many local optima and regions with no yield.
This makes designing an experiment to find the global optimum
with respect to the two variables, pressure and temperature, a
challenging task. Design points placed in the zero-yield regions
are not useful because they produce no nanostructures. Thus,
we would like our experimental design to place more points
in the high-yield regions. Similar problems arise quite often in
the global optimization of expensive black-box functions (e.g.,
Jones 2001). The top right panel of Figure 1 shows the plot
of gap lift in an engine head and block joint sealing assembly
against two variables: gasket thickness and deck face surface
flatness (Joseph, Hung, and Sudjianto 2008). If the objective is
to find the global optimum of the gap lift and to identify other

good locations so that the product can be optimized with respect
to a secondary criterion (e.g., minimize variance for achieving
robustness), then we need to spread out the design points in
the optimum regions. A similar example is shown in bottom left
panel of Figure 1, which depicts the thickness of a circular wafer
for making computer chips (Jin, Chang, and Shi 2012). The ob-
jective was to devise a measurement strategy to understand the
wafer profile with minimum number of measurements. Since
the variability toward the edges is higher (a characteristic of the
manufacturing process), Jin, Chang, and Shi (2012) argued that
a strategy that places more points near the edges than at the
center would be better. A similar goal was observed in a totally
different application area, which is shown in bottom right panel
of Figure 1. Here the objective is to obtain a representative sam-
ple from the probability density which allocates more points in
the high probability regions than in the low probability regions.

A major feature in these examples is the spreading out of
design points in the regions of interest. Keeping the probability
density example in mind, we can state the objective as “sam-
pling points which are as apart as possible, but in a way still
mimic the density of the distribution.” This is related to the
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SEQUENTIAL EXPLORATION OF COMPLEX SURFACES USING MINIMUM ENERGY DESIGNS 65

Figure 1. Motivating examples.

idea of principal points in stratified sampling (Dalenius 1950;
Cox 1957; Flury 1990), quantizers in communications theory
(Llyod 1957; Max 1960), and the mean squared error represen-
tative points in Quasi-Monte Carlo (see, e.g., Fang and Wang
1994). However, the ability to mimic an arbitrary distribution
is unique to our design strategy. Moreover, the complex na-
ture of the surface and expensive simulations/experiments make
our approach quite different from theirs. Although many of our
ideas are intertwined with the above literature, because of the
other potential applications, we keep a broad perspective in the
exposition of our article.

We use a physical system analogy of electrical particles inside
a box to motivate the proposed design, which we call minimum
energy design. This physical analogy helps to visualize the basic
working of the design strategy and devise sequential designs
in a physically interpretable way. Similar analogies have been
used in the literature by Audze and Eglais (1977) and Kessels
et al. (2009). Different from the earlier works, we explicitly

use the “charge” of the electrical particles, which is crucial for
emulating the underlying distributions.

The article is organized as follows. In the following section,
we develop the MED using the physical analogy mentioned in
the previous paragraph, explore its connections with similar de-
signs, and present some theoretical and heuristic arguments to
provide insights to these connections and properties of MED.
In Section 3, we develop the sequential version of MED and
propose an algorithm for its implementation. Two potential ap-
plications, one in the simulation of complex probability densi-
ties, and the other related to optimization of complex response
surfaces, are discussed in Section 4. Section 5 presents some
concluding remarks and directions for future research.

2. MINIMUM ENERGY DESIGNS

In this section, we first present the main idea of minimum en-
ergy designs and then study its asymptotic properties. We then
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66 V. ROSHAN JOSEPH ET AL.

present a computational algorithm to construct the proposed
designs and illustrate it with a few simple examples. High
dimensional and more complex problems are considered in
Section 4.

2.1 Energy Criterion

We start with a motivation from physics and explain how it
drives the proposed design procedure. Consider a box containing
some charged particles. If they have the same sign for the charge,
then they will repel each other and occupy positions inside the
box so as to minimize the total potential energy. Here, the box
is the experimental region, each position taken by the charged
particles is a design point, and the charge represents the exper-
imental response. Consequently, the experimental design con-
sists of all the positions occupied by the particles. Because this
design is obtained by minimizing the potential energy, we call it
minimum energy design (MED). This follows from Thomson’s
theorem in electrodynamics (Zhou 1999, p. 59). Because the
particles repel and try to be as away as possible from each other,
as will be seen later, MED has close connections to the max-
imin distance designs (Johnson, Moore, and Ylvisaker 1990).
The box representing the experimental region can be in a high-
dimensional space. Let there be p factors. For simplicity, we
scale the experimental range of each factor into [0, 1], so that
the box under consideration is [0, 1]p.

Because the “repulsion principle” mentioned in the previous
paragraph requires all the particles to have the same sign for the
charge, without loss of generality, assume that the particle charge
is positive. Note that if the response is unrestricted, it can be con-
verted to a positive variable for the purpose of constructing the
design (see Section 4.2). Let q(xi) be the charge of the particle
at the ith design point xi . Then the potential energy between
the ith and jth particle is proportional to q(xi)q(xj )/d(xi , xj ),
where d(xi , xj ) denotes the Euclidean distance between the two
points. We can take the proportionality constant to be 1. Thus,
the total potential energy for n charged particles is given by

E =
n−1∑
i=1

n∑
j=i+1

q(xi)q(xj )

d(xi , xj )
. (1)

MED can be obtained by minimizing E with respect to the design
D = {x1, x2, . . . , xn}.

Now the different objectives stated in the introduction can
be achieved by judiciously choosing the charge of the particles.
For example, if we are interested in the high-yield regions of the
nanostructures, we could take q(x) = 1 − y(x), where y(x) de-
notes the yield at point x which is in [0, 1]. By doing this, higher
charges will be assigned to particles in low-yield region, which
causes the particles to repel from those regions and occupy po-
sitions in the high-yield regions. Careful choice of the charge
function will be discussed soon.

We first consider the case where equal charges are assigned
to the particles. Without loss of generality, let q(xi) = 1 for all
i = 1, . . . , n. Then our criterion reduces to

min
D

n−1∑
i=1

n∑
j=i+1

1

d(xi , xj )
,

which can be compared with some of the existing criteria in the
literature. Audze and Eglais (1977) proposed to find designs by
minimizing the force among the particles:

min
D

n−1∑
i=1

n∑
j=i+1

1

d2(xi , xj )
,

which uses a power of 2 in the denominator instead of 1. Bates,
Sienz, and Langley (2003) have studied its applications for
finding optimal Latin hypercube designs (LHD). Morris and
Mitchell (1995) proposed the following criterion

min
D

⎧⎨
⎩

n−1∑
i=1

n∑
j=i+1

1

dk(xi , xj )

⎫⎬
⎭

1/k

, (2)

for finding maximin LHDs. This is because as k → ∞, the
criterion in (2) reduces to

max
D

min
i,j

d(xi , xj ), (3)

which is the maximin distance criterion proposed by Johnson,
Moore, and Ylvisaker (1990). Morris and Mitchell (1995) fur-
ther showed that for large but finite values of k, (2) produces
nearly maximin distance designs with the smallest index, where
index is the number of pairs of points with minimum distance. In
a recent work, Dette and Pepelyshev (2010) considered a family
of criteria similar to (2), but for small values of k in the range of
[0, 1). It is easy to show that as k → 0, the criterion reduces to

min
D

n−1∑
i=1

n∑
j=i+1

− log d(xi , xj ),

which is called the logarithmic potential criterion. In another
recent work, Kessels et al. (2009) proposed the criterion

min
D

n−1∑
i=1

n∑
j=i+1

(
1

d(xi , xj )
+ d2(xi , xj )

)
,

where the second term, representing the potential energy of a
spring attached to each particle, is added to the potential energy
of the electrical particles to remove the box constraints. Their
design, called minimum potential design, is available in the
popular statistical software package JMP.

Motivated by the foregoing works, we propose a generalized
version of our MED given by

min
D

GEk =
⎧⎨
⎩

n−1∑
i=1

n∑
j=i+1

(
q(xi)q(xj )

d(xi , xj )

)k

⎫⎬
⎭

1/k

. (4)

In contrast to Dette and Pepelyshev (2010), we are more inter-
ested in larger values of k in the range of [1,∞) as in Morris and
Mitchell (1995). The extreme case of k → ∞ gives the criterion

max
D

min
i,j

d(xi , xj )

q(xi)q(xj )
. (5)

Following an example from Johnson, Moore, and Ylvisaker
(1990), an interesting interpretation can be given for the MED
produced by the above criterion. Consider the example of finding
the best locations to start gas stations in a region. A maximin
distance design will try to look for locations that will minimize
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SEQUENTIAL EXPLORATION OF COMPLEX SURFACES USING MINIMUM ENERGY DESIGNS 67

the competition among the gas stations, whereas by choosing the
charges to be inversely proportional to the population density,
the MED will look for locations that are highly populated as
well as to minimize the competition among the gas stations.
Thus, our designs will tend to avoid the less-populated regions
to start the gas stations, which is meaningful.

2.2 Limiting Distribution and Charge Function

Our choice for the charge function is guided by the limiting
distribution of the design points generated by the MED. That
is, we choose the charge function so that we can get the desired
distribution of the points.

We need the following definition to explain the results. For
a design D = {x1, . . . , xn}, define its index to be the number
of pairs (xl , xm), 1 ≤ l < m ≤ n, with the smallest value of
d(xi , xj )/(q(xi)q(xj )) over all i �= j . Denote the index of D by
IN (D). We are particularly interested in the MEDs with the
smallest index, because such designs enjoy some nice theoretical
properties. Let D∗ = {x∗

1, . . . , x∗
n} be the MED produced by (5)

with the smallest index, and B be the Borel σ -algebra over
X = [0, 1]p. Define the probability measures on (X ,B):

Pn(A) = #{x∗
i : 1 ≤ i ≤ n, x∗

i ∈ A}
n

, for any A ∈ B. (6)

We have the following result on the limiting measure of Pn as
n → ∞. All the proofs are given in the online supplementary
material file associated with this article.

Theorem 1. If q(x) ≡ 1, Pn converges to the uniform distri-
bution over X .

Theorem 1 establishes the fact that a uniform distribution can
be obtained as the limiting distribution of the design points by
choosing the particle charges to be equal. This theorem forms
the basis of our main result to be discussed next. Further, this
theorem is interesting in its own right, because it makes a three-
way connection between MED, maximin distance designs, and
uniform designs (see, e.g, Fang, Li, and Sudjianto 2006), and
places the MED criterion on a firm theoretical footing.

Now we want to study what happens when q(x) is not iden-
tical to 1. If q(x) �= 1, then the points will accumulate more in
the regions where the charge is less. Thus, intuitively, the limit-
ing measure of Pn will be inversely proportional to the charge
function q(x). A stronger result is stated below. Because only a
heuristic proof is given, we refer to it as “result.”

Result 1. If 1/q is differentiable over X and bounded away
from 0, there exists a probability measure P such that Pn con-
verges to P . Moreover, P has a density f over X with f (x) ∝
1/q2p(x).

Thus, to obtain a desired density f (x), we choose the charge
function to be

q(x) = 1

{f (x)}1/(2p)
. (7)

This choice agrees with our intuition that the charges should
be inversely proportional to the function values (when large
function values are desired). Moreover, Result 1 gives us the
right value of the power to be used for a nonnegative function

so that we get the desired density in the limit as the sample
size grows. The result can be made to work approximately for
densities whose domain is different from [0, 1]p through some
modifications. For x ∈ Rp, find a box that encloses most of
the probability mass of f (x). Since the box size can be made
very large, the MED samples will approximately follow the
distribution f (x). For a nonrectangular region X such as the
circular wafer shown in Figure 1, find a box that covers X ,
rescale it to [0, 1]p, and change f (x) to f (x) + ε. Now for
ε > 0 small enough, the MED samples can approximate f (x). In
practical implementation, these modifications are not necessary.
One can use unconstrained optimization for finding MED if
x ∈ Rp and use a constrained optimization with x ∈ X if X is
nonrectangular.

2.3 A Greedy Algorithm

Finding the MED is a computationally difficult problem. We
can adapt the optimal design algorithms used in the litera-
ture such as simulated annealing (Morris and Mitchell 1995)
and stochastic evolutionary algorithm (Jin, Chen, and Sudjianto
2005) for our purpose. See Fang, Li, and Sudjianto (2006, ch. 4)
for a review of some useful optimization algorithms. Different
from theirs, we propose a one-point-at-a-time greedy algorithm
for the generation of our designs because it serves as a motiva-
tion and justification for developing the sequential design in the
next section. This is described below.

Suppose we want to generate an N-point MED DN . We start
with a “good” point x1, and generate x2, x3, . . . sequentially.
Suppose we have already generated n points using the criterion
in (4). Then the (n + 1)th point is obtained by

xn+1 = arg min
x

{ n−1∑
i=1

n∑
j=i+1

(
q(xi)q(xj )

d(xi , xj )

)k

+
n∑

i=1

(
q(xi)q(x)

d(xi , x)

)k }1/k

= arg min
x

n∑
i=1

(
q(xi)q(x)

d(xi , x)

)k

= arg min
x

1

f k/2p(x)

n∑
i=1

1

f k/2p(xi)dk(xi , x)
. (8)

Such an algorithm can get stuck in a local optimum, but we had
great success with it as long as the starting point is good. We
choose the starting point by

x1 = arg min
x

q(x) = arg max
x

f (x). (9)

Based on an earlier version of our article, a heuristic proof for
the convergence of this algorithm was provided by Wang (2011)
in his Ph.D. thesis. He showed that the design points converge
to the target distribution as long as k > p.

To illustrate the algorithm, first consider the case with
q(x) = 1. According to Theorem 1, the asymptotic distribu-
tion of MED points should be uniform. A large value of k in
(8) is needed to achieve uniformity, but at the same time, a very
large value of k can cause numerical instability in the algorithm.
In our simulations (not reported here), we found k = 4p to be
a good compromise choice, which will be used throughout this
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Figure 2. Histograms of 100 points generated by MED. The true density curves are plotted in dashed lines.

article. The left panel in Figure 2 shows the histogram of 100
points generated by the greedy algorithm. Although the exact
optimum {0, 1/99, . . . , 1} is missed, the approximation looks
reasonable.

Now consider the case of nonuniform distributions. The mid-
dle and right panels in Figure 2 shows the histogram of 100
points generated by MED from a Beta (4,2) distribution and that
of a standard normal distribution (Q-Q plots are given in the on-
line supplementary material file). We can see that by choosing
q(x) = 1/

√
f (x), the MED is able to approximately reproduce

the true distributions. Note that the support of normal is not in
[0, 1] and, therefore, more care is needed to generate the MED
points. To generate the 100 points, we first chose 1000 equally
spaced candidate points in [−3, 3]. In general, it is not easy
to identify the correct range for the candidate points. In such
cases, one can use an unconstrained continuous optimization al-
gorithm for obtaining each MED point, but it is computationally
more challenging because of the multimodality of the objective
function.

The first 25 MED points for a two-dimensional uniform dis-
tribution is shown in Figure 3(a). We can see that it is a full
factorial 52 design, which can be viewed as a quasirandom sam-
ple for the two-dimensional uniform distribution. Here 16 out
of the 25 points are on the boundary and only 9 points are inside
the square [0, 1]2. This may not be an attractive design if our

interest is in approximating functions inside [0, 1]2. One option
to overcome this boundary problem is to shrink the design re-
gion. As shown in Lemma 2 in the Appendix, a lower bound for
the minimum distance of an N-point maximin distance design
is 1/(N1/p + 1). Thus, instead of generating points in [0, 1]p,
we can generate points in

[
0.5

N1/p + 1
, 1 − 0.5

N1/p + 1

]p

.

This helps in reducing the L2 discrepancy measure (L2) (see
Fang and Wang 1994, p. 34) from 0.0397 to 0.0234 showing
that the overall uniformity of the points within [0, 1]2 has been
improved. However, the design (not shown here) is still a full
factorial in the reduced region, which again is not the best design
for approximating smooth functions in [0, 1]2. For comparison,
a Sobol sequence with 25 points shown in Figure 3(b) has a much
smaller L2 = 0.0168. One possible way to improve the unifor-
mity of the MED is to use a larger low-discrepancy sequence as
the candidate set for finding the MED. For example, the MED
obtained using a 100-point Sobol sequence as the candidate set
is shown in Figure 3(c). It has a smaller L2 = 0.0157 as well as
a much larger interpoint distance (0.1482) compared to that of
the 25-point Sobol (0.0883).

Figure 3. Two-dimensional uniform distribution. (a) 25-point MED, (b) 25-point Sobol sequence, and (c) 25-point MED obtained from a
100-point Sobol sequence as the candidate set.
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SEQUENTIAL EXPLORATION OF COMPLEX SURFACES USING MINIMUM ENERGY DESIGNS 69

3. SEQUENTIAL MINIMUM ENERGY DESIGNS

Direct application of MED is impossible in situations where
the true response function f (x) is unknown or its evaluation
is computationally expensive. For example, in physical ex-
periments, the underlying response surface f (x) is unknown.
In computer experiments, even though the computer model
is known, it is often an expensive black-box code making the
optimization in (8) impossible to perform. Here we propose a
sequential strategy to implement MED in such situations. The
key idea is to “learn” about the underlying surface sequentially,
and implement the MED accordingly. For this purpose, we
adapt the one-point-at-a-time greedy algorithm described in
the previous section. Suppose we have already generated an
n-point design Dn = {x1, . . . , xn} and obtained the obser-
vations y(n) = (y1, . . . , yn)′, where yi = f (xi). We can use
some statistical techniques such as regression or kriging to
estimate the underlying response surface. Denote it by f̂ (n)(x).
Let q̂(n)(x) = 1/{f̂ (n)(x)}1/2p. Then, the next design point is
given by

xn+1 = arg min
x

n∑
i=1

(
q̂(n)(xi)q̂(n)(x)

d(xi , x)

)k

. (10)

We call the design generated by this algorithm as sequential
minimum energy design (SMED).

A major problem with this approach is that we cannot ensure
the starting point to be good because we cannot find it as in
(9) and thus, the whole sequence of points can go astray. One
approach to overcome this problem is to start with an n0-run
initial design (n0 << N ) and discard points that have small
function values, say less than a threshold �. This is similar to a
“burn-in” procedure in a Markov chain Monte Carlo (MCMC)
algorithm except that we reject only the bad points. A rule of
thumb for choosing the threshold is � = 0.01 maxi{f̂ (n0)(xi)},
that is, 1% of the maximum observed value from the initial
design. We can decrease this threshold as the sample size grows,
a strategy that will allow the design to explore the low (or tail)
regions as well. Therefore, we choose

�n = 0.01
(n0

n

)1/p

max
i

{f̂ (n)(xi)}.

Let In = {i : f̂ (n)(xi) > �n}. Thus, SMED becomes

xn+1 = arg min
x

∑
i∈In

(
q̂(n)(xi)q̂(n)(x)

d(xi , x)

)k

, (11)

for n = n0 + 1, . . . , N .
The initial design can be a fractional factorial design for

physical experiments or a space-filling design for computer ex-
periments. In fact, SMED can be made as a fully sequential
procedure by using an MED as the initial design. For doing this,
let

q̂(n)(x) = 1

{f̂ (n)(x)}γn

. (12)

Now, we can take γn = 0 for n = 1, . . . , n0 to generate the initial
design as described at the end of Section 2 and then use γn =
1/(2p) for n > n0. One could also consider increasing γn slowly

from 0 to 1/(2p) for n = 1, . . . , n0 to get some adaptivity from
the beginning.

4. APPLICATIONS

As discussed in the introduction, we envisage several applica-
tions for the proposed MED and SMED. Here we demonstrate
two of the potential applications.

4.1 Simulations From Complex Probability Densities

Because MED can reconstruct the underlying distribution, we
believe that a major application for MED is in obtaining a repre-
sentative sample from a desired density. The standard approach
to obtain a representative sample is to first generate a uniform
sample and then use the inverse probability transform method.
However, such an approach cannot be used when the density is
complex, which is common in Bayesian applications. In fact, in
most Bayesian applications, the posterior is known only up to a
normalizing constant and thus, it is impossible to use the inverse
probability transform method to obtain the samples. This does
not cause a problem for MED because the normalizing constant
does not affect the optimization in (8). Moreover, simulating
from a computationally expensive probability density is a chal-
lenging task, which can be efficiently solved using the proposed
SMED algorithm.

Consider, for example, the two-dimensional probability
density with banana-shaped contours discussed in Haario,
Saksman, and Tamminen (2001) given by

f (x) ∝ exp

{
−1

2

x2
1

100
− 1

2

(
x2 + 0.03x2

1 − 3
)2

}
.

Using (9), we place the first sample at the mode. Now 49
more points are added one-by-one using the greedy algorithm
(8) and are shown in Figure 4 (the region [0, 1]2 corresponds
to [−20, 20] × [−10, 5] in the actual scale). We used the
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Figure 4. 50-point MED in the banana-shaped probability density
example.
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70 V. ROSHAN JOSEPH ET AL.

generalized simulated annealing algorithm using the R package
GenSA (Gubian et al. 2012) for the optimization. We can see
that the samples are well spread out and are placed at the
high-probability regions of the density.

An important application of MED is that it can be used as
the experimental design for DoIt (Joseph 2012, 2013). DoIt is
mainly developed for approximating computationally expen-
sive posterior densities. With the use of MED, DoIt can also
be used for efficiently approximating inexpensive posteriors
because MED can generate good space-filling designs in the
high-probability regions without the need of any model fitting.
Figure 3 in the online supplementary material file shows the
DoIt approximation with the 50 MED samples generated earlier.
This approximation is much better than the 100-run maximin
LHD-based DoIt approximation shown in Figure 2 of Joseph
(2013).

A major advantage of MED over the QMC sampling tech-
niques is that it does not require the specification of an accu-
rate region for exploration, which is usually unknown in most
Bayesian applications. For example, suppose we use a larger
region [−40, 40] × [−20, 10] for exploring the banana-shaped
density. The MED samples are plotted in Figure 5. We can see
that only a few points fall outside the high-probability region,
whereas if we use a Sobol sequence, then 45 out of 50 points
fall outside the high-probability region. This advantage of MED
over QMC sampling increases as the number of dimensions
increases because the region occupied by a density of highly
correlated variables inside a hypercube can be negligibly small
in higher dimensions. However, this advantage is not easy to
realize in practice because generating MED samples in higher
dimensions is hampered by the computational complexity of the
global optimization required in (8).

To understand more about the effect of number of di-
mensions, consider the problem of simulating from a multi-
variate normal distribution. Let the mean be (0, . . . , 0)′ and
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Figure 5. MED with a larger region of exploration in the banana-
shaped probability density example.

Figure 6. A two-dimensional projection of 100 MC (×’s), QMC
(+’s), and MED (o’s) samples of a 10-dimensional multivariate normal
distribution.

variance-covariance matrix � = (σij )p×p, where σij = ρ|i−j |.
Let ρ = 0.9 and [−4, 4]p be the region of exploration. Figure 4
in the online supplementary material file shows the time taken to
generate N = 10p and N = 20p MED samples as a function of
p in a 3.4 GHz desktop computer (the maximum number of itera-
tions in GenSA is fixed at n + 10p, for n = 1, . . . , N ). Through
curve fitting we find that the time increases approximately at
the rate of p1.5N2.25. If N ∝ p, then the time increases at the
rate of p3.75, which limits the applicability of MED in very high
dimensions. To check the quality of the samples, we have gen-
erated MC and QMC samples (Sobol) of N = 10p for p = 10.
Figure 6 shows one of the two-dimensional projections of the
samples. We can see that MED and MC samples nicely capture
the high-probability regions of the density, whereas most of the
QMC samples are wasted. Compared to MC simulation, MED
has ceratin advantages. First, MED can be used for obtaining
samples from any complex densities, whereas MC samples can
be generated only for some standard densities. Of course, more
advanced sampling techniques such as MCMC can be used to
generate samples from complex densities but those samples are
not as efficient as the MC samples because of their dependency.
Second, since the MED points are well spread out, they can
represent the probability density with much fewer samples than
required by MC/MCMC samples. This helps in reducing the
cost of subsequent predictions and optimizations using the sim-
ulated samples. Third, the advantage of MED over MC/MCMC
increases as the probability density becomes more and more
expensive to evaluate (Fielding, Nott, and Liong 2011) because
we can use the SMED algorithm to generate samples. We now
discuss the last point in more detail.

To illustrate the use of SMED, now suppose the probability
density is expensive to evaluate. Because each evaluation is ex-
pensive, we can neither start at the mode nor can we find the
design points by directly minimizing the energy criterion. We
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SEQUENTIAL EXPLORATION OF COMPLEX SURFACES USING MINIMUM ENERGY DESIGNS 71

need to start somewhere in the design region and approximate
the density using an easy-to-evaluate metamodel. The approx-
imation can be refined as more points are added to the design.
Here we choose a Gaussian process (GP) model (or kriging) for
constructing the metamodel. Because the approximated density
should be nonnegative, we fit the following stationary GP model
(ordinary kriging) after taking a logarithmic transformation on
the unnormalized density:

log f (x) ∼ GP(μ, σ 2R(·)),
where the correlation function is defined as
cor(log f (xi), log f (xj )) = R(xi − xj ). If we observe the data
y(n) = (y1, . . . , yn)′ at the locations Dn = {x1, . . . , xn}, where
yi = log f (xi), then the metamodel is given by (see Santner,
Williams, and Notz 2003)

f̂ (n)(x) = exp
{
μ̂(n) + r (n)(x)′ R−1

(n) ( y(n) − μ̂(n)1n)
}
,

where r (n)(x) is a vector of length n with ith element R(x − xi),
R(n) is the n × n correlation matrix with ij th element R(xi −
xj ), 1n is a vector of 1’s, and μ̂(n) = 1′

n R−1
(n) y(n)/1′

n R−1
(n)1n. For

the correlation function, we choose the popular Gaussian corre-
lation function given by

R(h) = exp

{
−

p∑
i=1

θih
2
i

}
.

The correlation parameters can be estimated using a profile like-
lihood method (Santner, Williams, and Notz 2003). However, if
a fully sequential design algorithm is used or if n0 is small, then
the maximum likelihood estimates may not exist. Therefore, we
use a proper prior on the correlation parameters. We assume

log θ
(n)
i

iid∼ N

(
log n

2p
, n1/p

)
,

for i = 1, . . . , p. This choice is based on our experience that a
larger θi is needed for larger n. The variance is also increased
with n because the optimal values of the correlation parameters
can vary a lot, depending on the distribution of the points. Thus,
log θ (n) is estimated by minimizing

n log σ̂ 2 + |R(n)| + 1

n1/p

p∑
i=1

(
log θi − log n

2p

)2

,

where σ̂ 2 = ( y(n) − μ̂(n)1n)′ R−1
(n) ( y(n) − μ̂(n)1n)/n.

We generated an initial design of n0 = 20 runs using a max-
imin LHD (Morris and Mitchell 1995). Another 30 points were
generated using the SMED algorithm and are shown as circles
in Figure 7 along with the 20-run initial points. For comparison,
we also generated 30 points using the sequential design method
in DoIt (Joseph 2013), that are also shown in the same figure
as crosses. We can see that the SMED is a much better design
which places more points in the high-probability regions. To
quantify the improvement, we fitted the DoIt approximation us-

ing both the designs and computed the error
√̂

f (x) − √
f (x).

The mean squared error computed over a 100 × 100 grid for
the approximation using SMED (0.0051) is found to be much
less than that of the other sequential design method (0.0080).
We repeated this process 100 times using a random LHD as the

Figure 7. Comparison of SMED (o’s) with the sequential design
of Joseph (2013) (×’s). The initial points generated using a maximin
LHD are shown as +’s.

initial design. The ratio of the mean squared error of Joseph’s
sequential design to that of the SMED has a median (Q2) of
2.74 (Q1 = 1.80 and Q3 = 4.57), which clearly shows the su-
periority of SMED.

4.2 Exploration and Optimization of Expensive
Black-Box Functions

Global optimization is an important but difficult problem.
Many algorithms can be used to search for global optima such
as simulated annealing and genetic algorithm. However, these
algorithms require numerous evaluations of the function which
can become costly if the objective function is expensive to evalu-
ate. A popular approach for the optimization of expensive func-
tions is the kriging-based expected improvement (EI) algorithm
(Jones, Schonlau, and Welch 1998). See Jones (2001) for an
entertaining review. Because SMED generates points with large
function values and also with large interpoint distances, the
points can become a dense set in the region of exploration and
thus, can be useful for global optimization.

Instead of tuning the SMED for the purpose of global opti-
mization, we focus on a slightly different objective. Suppose the
objective is not only to find a global optimum, but also to find
several good points that can serve as alternatives to the global
optimum. This situation arises quite often in multiobjective op-
timization. Here is a real situation that we encountered during
our consulting experience. A company wanted to optimize the
design of their product using a computer model. However, the
design engineers were not solely interested in the global opti-
mum because the final decision about the product design would
eventually be made by marketing people by looking at the aes-
thetics of the product and choosing the one that would be most
appealing to the customers. Because the customer’s taste was
not well-defined and no mathematical formula could be derived
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72 V. ROSHAN JOSEPH ET AL.

Figure 8. EI algorithm (left) and SMED (right) in the Franke’s test function example.

on the beauty of the product, the only option for the engineers
was to produce several prototypes and show them to the market-
ing people. In creating these prototypes, they wanted to choose
products that would optimize the quality measures and also
make them look different, so that they could present a wide
choice of products to the marketing people. Clearly, SMED has
the potential of offering a good solution to this problem.

Without loss of generality, define the optimization problem
as to maximize f (x) for x in some bounded region X , which
is taken to be [0, 1]p. If the objective is minimization, we can
use −f (x) in place of f (x). We cannot directly use SMED on
f (x) because the function values can be negative. Therefore,
we define an auxiliary function:

g(x) = f (x) − fmin,

where fmin = minX f (x). Clearly, g(x) ≥ 0 and has the same
shape and maximum as f (x). Now SMED can be applied on
g(x). However, for expensive functions, fmin cannot be ob-
tained easily. Therefore, we proceed as before in approximating
f (x) sequentially.

Suppose again we choose a GP model to approximate the
expensive computer model: f (x) ∼ GP(μ, σ 2R(·)). As before,
based on the evaluations using an initial space-filling design
containing n0 points, we have the approximation

f̂ (n0)(x) = μ̂(n0) + r (n0)(x)′ R−1
(n0)

(
y(n0) − μ̂(n0)1n0

)
.

Note that if the computer model is noisy or if the data are from
a physical experiment, then a nugget term (see, e.g., Joseph
2006) should be added to the foregoing kriging predictor. Now
we can obtain f̂ (n0)

min by minimizing f̂ (n0)(x). Thus, we obtain
ĝ(n0)(x) = f̂ (n0)(x) − f̂ (n0)

min , which can be used in the SMED
algorithm. At each n = n0 + 1, . . . , N , f̂ (n)(x) and f̂ (n)

min can be
updated to give the new ĝ(n)(x).

For illustration, consider Franke’s two-dimensional function
(see, e.g., Fasshauer 2007)

f (x) = 3

4
exp

{
−1

4
(9x1 − 2)2 − 1

4
(9x2 − 2)2

}

+ 3

4
exp

{
− 1

49
(9x1 + 1)2 − 1

10
(9x2 + 1)2

}

+ 1

2
exp

{
−1

4
(9x1 − 7)2 − 1

4
(9x2 − 3)2

}

− 1

5
exp{−(9x1 − 4)2 − (9x2 − 7)2}.

We start with a maximin LHD of n0 = 30 points. The minimum
value is estimated as f̂ 30

min = −0.095. Now SMED can be ap-
plied on the auxiliary function. The next 20 points are shown
in the right panel of Figure 8. Although the global optimum
x∗ = (0.21, 0.17) is missed, there are many points close to the
optimum. In fact, if we maximize f̂ 50(x), we obtain approxi-
mately the optimum x∗. This is because there are many points
around the optimum and thus f is well approximated by f̂ in
that region.

For comparison, the EI algorithm is used to generate 20 points
using the same 30-run initial design. The points are shown in
the left panel of Figure 8. We can see that EI works beautifully
and identifies the global optimum successfully. In fact, there are
several points clustered around the global optimum. However,
this clustering can be perceived as a weakness because it cannot
provide as many distinct alternatives as SMED. For example,
the SMED contains 13 points for which the function values
are higher than 0.5 but less than 1, whereas only 3 points are
available in the design generated by the EI algorithm. More-
over, the clustering can cause severe numerical instability in the
kriging predictor (Haaland and Qian 2011), leading to a poor
approximation of the overall surface. In fact, when we used
the R package DiceOptim (Ginsbourger, Picheny, and Roustant
2013), it could not add more than four points to the initial design
due to numerical problems.
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SEQUENTIAL EXPLORATION OF COMPLEX SURFACES USING MINIMUM ENERGY DESIGNS 73

Figure 9. Comparison of EI algorithm and SMED.

We have repeated the above comparison 100 times using ran-
domly generated LHDs as the initial designs. Three performance
measures are computed for the EI algorithm and SMED: (i) the
Euclidean distance of the optimum found by the method from
the global optimum, (ii) minimum pair-wise distance among the
50 points, and (iii) number of points among the 20 sequentially
generated points with function values more than 0.5 but less
than 1.0. The boxplots of the performance measures are shown
in Figure 9. As expected, the EI algorithm shows superior per-
formance over SMED in terms of finding the global optimum.
However, the performance of SMED is not bad in the sense that
it could locate the global optimum within a radius of 0.005.
On the other hand, SMED is superior to EI in terms of the
minimum distance. In fact, the minimum distance among the
SMED points is about 1000 times larger than that of EI. This
will have a significant effect on numerical stability of kriging
and the quality of approximation of the whole surface. Clearly,
the number of points identified by SMED with high function
values are much larger than that of EI. Thus, we believe that
the points generated by SMED can be more useful than those
generated by the EI algorithm in many problems, especially in
multiobjective optimization.

5. CONCLUDING REMARKS

We have proposed a new space-filling design for exploration
of complex response surfaces, with particular sensitivity to sit-
uations where specific regions of the design space are of special
interest. The proposed minimum energy design (MED) is based
on ideas drawn from the physical system analogy of visualiz-
ing design points as charged particles in a box, and minimizing
the total potential energy inside the box. The key aspect which
makes MED a novel approach different from similar criteria-
based designs is its ability to adapt to different types of response
surfaces by choosing the charge function inversely proportional
to the function of interest. A theoretical result associated with

MED provides us with insights into connections between two
well-known designs—maximin distance designs and uniform
designs. We have also heuristically argued that under regularity
conditions and proper choice of the charge function, the MED
can generate any arbitrary probability density function in the
limit. We have developed a sequential algorithm for adaptive
implementation of MED and demonstrated two potential appli-
cations in simulation and optimization through implementation
of the algorithm.

As demonstrated in Section 4.1, the time required to obtain
the MED samples explodes as the dimension gets very large.
For example, generating 100 samples in 10 dimensions took
about 3 min but it took more than 3 hr to generate 300 sam-
ples in 30 dimensions. Of course, efficient programming and
changing from R to C++ environment can drastically reduce
this computational time. However, it can still be a problem if we
need to generate samples of larger size. Therefore, developing
an efficient optimization algorithm that is specifically designed
for the MED objective function, especially in high dimensions,
is an important problem for future investigation.

Another topic mentioned by a reviewer is about incorporat-
ing the uncertainties of the approximate model f̂ (n)(x) in the
SMED algorithm. The current implementation neglects these
uncertainties and, therefore, SMED can miss some important
regions of the response surface if the initial design is poor. We
hope to address this important issue in a future work.

APPENDIX: TWO LEMMAS

Two lemmas are stated in this appendix which will be used for
proving Theorem 1. Lemma 1 describes an important property of the
maximin distance designs with the smallest index (note that when
q(x) ≡ 1, an MED with k = ∞ becomes a maximin distance design.)
Lemma 2 gives lower and upper bounds of the minimum distance for n-
point designs. The proof of the lemmas are given in the supplementary
file.
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74 V. ROSHAN JOSEPH ET AL.

First we introduce the following notation. Given a design D, define
the minimum distance over a subset A ⊂ X by

d∗(A, D) := min{d(xi , xj ) : xi , xj ∈ A ∩ D, xi �= xj },
if A ∩ D has at least two points. Let d∗(D) = d∗(X , D). It is easily
seen that

d∗(D) = min(d∗(A, D), d∗(Ac, D), d(D ∩ A, D ∩ Ac)),

(A.1)

for any A so that both A ∩ D and Ac ∩ D have at least two points.
We call x ∈ D a critical point if there exists x ′ ∈ D with x ′ �= x such
that d(x, x′) = d∗(D). Let B(a, r) be the open ball centered at a with
radius r.

Lemma A.1. Suppose D is an n-point maximin distance design
with the smallest index and D′ is an n′-point design with n′ > n and
d∗(D′) = d∗(D). Then IN (D′) > IN (D) holds.

Lemma A.2. Suppose D = {x1, . . . , xn} is a design over �. Let
d0 = mini �=j d(xi , xj ). Then

1. If � = [0, 1]p , and D is a maximin distance design, then

1

n1/p + 1
< d0.

2. If � = [0, 1]p , for any design D,

d0 <
2(	(p/2 + 1))1/p

n1/pπ 1/2 − 2(	(p/2 + 1))1/p
,

provided that n > (2/
√

π)p	(p/2 + 1), where 	 is the Gamma
function.

3. Suppose � = [0, 1]p and D is a maximin distance design. For
any B(a, r) ⊂ �, let NB = card(D ∩ B(a, r)). Then for suffi-
ciently large n,

NB ≥
(

2r − 2d0√
pd0

− 1

)p

.

4. If � = cl(B(0, r1) − B(0, r2)), 0 < r2 < r1, where cl denotes
the closure of a set and the two balls are p-dimensional, then for
sufficiently large n and any design D,

nd
p

0 < (2r1 + d0)p − (2r2 − d0)p.

SUPPLEMENTARY MATERIALS

Proofs and Figures: The proofs of Theorem 1, Result 1, and
the two lemmas stated in the Appendix are in the file sup-
plemtary.pdf. It also contains some figures.

R codes: The R codes can be downloaded as a .zip file.
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