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This article considers deterministic computer experiments with real-valued tuning parameters which
determine the accuracy of the numerical algorithm. A prominent example is finite-element analysis with
its mesh density as the tuning parameter. The aim of this work is to integrate computer outputs with
different tuning parameters. Novel nonstationary Gaussian process models are proposed to establish a
framework consistent with the results in numerical analysis. Numerical studies show the advantages of
the proposed method over existing methods. The methodology is illustrated with a problem in casting
simulation. Supplementary material for this article is available online.
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1. INTRODUCTION

Numerical computations like finite-element analysis (FEA)
are commonly used in simulating real-world phenomena like
soil erosion, climate change, etc. These computations often have
a tuning parameter like the mesh density in FEA, which controls
the numerical accuracy as well as the computational cost/time.
FEA with a coarser mesh is much cheaper but less accurate,
while FEA with a finer mesh is more accurate but more costly.
Therefore, it can be beneficial to run FEA with two choices of
mesh density to exploit the advantages of accuracy and cost.
This is particularly useful if many combinations of the input
variables should be considered, which is common in mechanical
or material design. More combinations can be explored using
cheaper but less accurate simulations while a smaller number
of expensive but accurate simulations can be used to improve
the overall prediction accuracy. The main goal of this article
is to develop a framework for studying the stated problem and
to propose a class of nonstationary Gaussian process models to
link the outputs of simulation runs with different mesh densities
to better use the data for modeling and prediction.

Specifically, we consider computer experiments in which a
set of partial differential equations (PDEs) is solved numerically
to simulate the result of a corresponding physical experiment.
There are two types of inputs for such experiments. One type is
the input variables. Computer runs with different input variables
solve different PDEs or the same PDEs but with different initial
or boundary conditions. Input variables can be control variables,
environmental variables (Santner, Williams, and Notz 2003, pp.
15–16), or calibration variables (Kennedy and O’Hagan 2001).

The other type is the tuning variables, which determine the per-
formance of the numerical computations. The main focus of
this article is on the tuning variables. If the numerical solution
is sufficiently accurate for each simulation run, it would not
be necessary to incorporate the tuning variables in the statisti-
cal model. Then, stationary Gaussian process models would be
suitable for modeling the computer outputs (Santner, Williams,
and Notz 2003). This is often not the case for two reasons.
First, implementing high-accuracy computer runs for the whole
experiment can be costly. Second, FEA with finer mesh gives
more accurate results than those with coarser mesh. In such
scenarios, nonstationary Gaussian process models that incorpo-
rate the varying accuracies with the mesh density will be more
appropriate.

To motivate and justify the proposed model for the tuning
parameters, we import some basic concepts and results from
numerical analysis. We first describe the mathematical theory
which gives an error bound for the finite-element methods. This
can be used to guide the construction of the corresponding statis-
tical model. Theoretically, there exists a solution with the highest
accuracy, called the exact solution. Since this exact solution is
usually not obtainable with a reasonable cost, a statistical ap-
proach can be used to find a good approximation to it. To this
end, the proposed nonstationary Gaussian process model is used
as an emulator which integrates the outputs from the simulator
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with different mesh densities. When the simulator is expensive
to run, a fast and relatively accurate emulator can be a good
computational and modeling tool, especially when many com-
binations of the input variables need to be considered. In view
of the widespread use of FEA, the proposed approach can have
a wide range of applications.

This work is related to the modeling of computer experiments
with multiple levels of fidelity. The existing works have focused
on using the qualitative information of the resolution level, for
example, those of Kennedy and O’Hagan (2000), Reese et al.
(2004), Qian and Wu (2008). These methods are applicable if the
tuning parameter takes on a few discrete values. We will show
that the predictive results can be improved by using the proposed
method which uses a real-valued tuning parameter. Another re-
lated method is Han, Santner, and Rawlinson (2009), which
chose optimal tuning parameters to minimize the discrepancy
between the computer outputs and the physical observations.
Because we do not assume the existence of physical data, the
method of Han et al. was not applicable here. This work is also
related to that of Picheny et al. (2013). While our work focuses
on modeling of deterministic computer experiments with differ-
ent mesh densities, their work focuses on modeling for stochas-
tic simulation experiments with tunable precision. Inspired by
the current work, Tuo, Qian, and Wu (2013) proposed, in a dis-
cussion of Pecheny et al. (2013), a Brownian motion model for
stochastic simulations and gave some mathematical justification
for the model.

This article is organized as follows. In Section 2, we discuss
the nature of tuning parameters and import some concepts and
results from numerical analysis and finite-element analysis. In
Section 2, we introduce a new class of nonstationary Gaussian
process models and show how they can be employed for the
problems with different mesh densities. Numerical studies given
in Section 4 show the advantages of the proposed models over
existing ones. The methodology is illustrated in Section 5 using
a casting process simulation problem. Concluding remarks and
future work are given in Section 6. In Appendix, a maximum
entropy design strategy is considered and arguments are made
to justify its use for multifidelity problems.

2. PHYSICAL MODEL AND MESH DENSITY

The prevailing statistical approaches for computer experi-
ments treat computer simulation codes as black-box functions.
Since the tuning parameter is part of the algorithm, a reasonable
model for the tuning parameter should take the mechanism in
the “black-box functions” into account. To this end, we borrow
some basic concepts and results from numerical analysis in de-
veloping our models. The three basic concepts are: (1) the exact
solution, (2) the approximate solution, and (3) the error.

The implementation of a computer experiment is based on
a physical model. Suppose a physical model is given by a set
of PDEs. The solution to this model can be used to predict the
results of the corresponding physical experiment. In a computer
experiment, the main interest lies in the exact solution to the
physical model. If the physical model can be solved in an ana-
lytic form, this analytic solution is what we want. However, in
our context, this analytic form does not exist so that the exact
solution cannot be obtained in finite time. By using a numer-

ical algorithm, the computer can only return an approximate
solution. The discrepancy between the approximate solution
and the exact solution is called the error. The size of the er-
ror can be controlled by the tuning parameter. Mesh density is
the most common tuning parameter in computer experiments.
As the mesh density increases, the numerical accuracy is im-
proved, while the computational cost goes up. For a uniform
mesh, the mesh size can be represented in one dimension. For
a nonuniform mesh, we can also parameterize the mesh size by
a multidimensional variable. In this work, we only focus on the
uniform case.

The mathematical theory of finite-element methods governs
the quantitative relationship between the error and the mesh
density. Here, we introduce some concepts and results from Sec-
tions 1 and 2 of Brenner and Scott (2007). Suppose � ∈ Rn. Let
L1

loc(�) denote the set of locally integrable functions on �, that
is, its elements are integrable on any compact subset of the inte-
rior of �. Let k be a nonnegative integer and f ∈ L1

loc(�). Sup-
pose that the weak derivatives Dα

wf exist for all |α| ≤ k, where
α is a vector of integers. Define the Sobolev norm ‖f ‖Wk

p (�) =
(
∑

|α|≤k ‖Dα
wf ‖p

Lp(�))
1/p for 1 ≤ p < ∞, where ‖ · ‖Lp(�) is

the norm of the Lp space over �. Define the Sobolev spaces
via Wk

p(�) = {f ∈ L1
loc(�) : ‖f ‖Wk

p (�) < ∞}. For a nonnega-
tive integer k and f ∈ Wk

p(�), define the Sobolev seminorm
|f |Wk

p (�) = (
∑

|α|=k ‖Dα
wf ‖p

Lp(�))
1/p. Let v denote the exact so-

lution to the PDEs given by the physical model. Suppose there
exists a Sobolev space Wm

p (�) where v lies. Let vh denote
the solution of the finite-element variational problem with the
mesh density h. If the solution to the PDEs exists in the classical
sense, vh is the approximate solution given by the finite-element
method. Then, the error is v − vh. According to the theorems
in Brenner and Scott (2007, p. 64 and p. 110), for s ≤ m, the
‖ · ‖Ws

p(�) norm of the error can be controlled by the following
inequality

‖v − vh‖Ws
p(�) ≤ Chm−s |v|Wm

p (�), (1)

where C is independent of h and v. By specifying m = p =
2, s = 1 and m = p = 2, s = 0 in Equation (1), respectively,
and defining the H 1 norm to be the ‖ · ‖W 1

2 (�) norm, we can get
two important special cases of (1):

‖v − vh‖H 1 ≤ Ch‖v′′‖L2 , (2)

and

‖v − vh‖L2 ≤ Ch2‖v′′‖L2 , (3)

where v′ is the generalized gradient of v, ‖v′′‖L2 =
(
∑
i,j

‖ ∂2v
∂xi∂xj

‖2
L2 )1/2, and the two norms are defined as ‖u‖H 1 =

(
∫
�

(uT u + (u′)Tu′))
1
2 , ‖u‖L2 = (

∫
�

uT u)
1
2 , for any u. These two

norms have different physical meanings. Note that the con-
vergence rate varies with the norm being used. In the present
context, the computer output is a scalar value. This value is a
functional of the underlying approximate solution. If the func-
tional only uses the approximate solution itself like the integral
operator, the L2 norm would be appropriate. If the functional
involves the derivative of the approximate solution, one should
use the H 1 norm. In practice, the norm should be chosen to suit
a particular need. We will revisit this topic in Section 5.
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374 RUI TUO, C. F. JEFF WU, AND DAN YU

3. NONSTATIONARY GAUSSIAN PROCESS MODEL

Before proposing novel nonstationary Gaussian process mod-
els in Section 3.2, we review in Section 3.1 the required Gaussian
processes.

3.1 Gaussian Processes

Stationary Gaussian process models have been extensively
discussed in Santner, Williams, and Notz (2003), and Baner-
jee, Carlin, and Gelfand (2004). The stochastic properties of a
Gaussian process Z(x) with zero mean are determined by its co-
variance function C(x1, x2). A Gaussian process Z(x) with zero
mean is said to be stationary if C(x1, x2) can be expressed as a
function of the difference between x1 and x2 (Santner, Williams,
and Notz 2003, pp. 29–30), that is,

C(x1, x2) = σ 2K(x1 − x2), (4)

where σ 2 is the variance and K is a correlation function satis-
fying K(0) = 1. Otherwise, we call it a nonstationary Gaussian
process.

For simplicity, we use the separable Gaussian correlation
function throughout this article, that is,

Kφ(x) =
k∏

i=1

exp
{−φix

2
i

}
, (5)

where xi is the ith component of x and the φi are the correlation
parameters. Other correlation function families can be consid-
ered, which will require parallel development of the methodol-
ogy.

Several methods were given for constructing nonstation-
ary covariances in Banerjee, Carlin, and Gelfand (2004, pp.
149–157). In this article, two types of nonstationary Gaus-
sian processes on R+ = {t ≥ 0} are considered. The first is the
simplest nonstationary Gaussian process, the Brownian motion
(also known as the Wiener process, see Durrett 2010). The co-
variance function of a Brownian motion {B(t); t ≥ 0} is

cov(B(t1), B(t2)) = min(t1, t2). (6)

The second one is constructed by the following strategy. Baner-
jee, Carlin, and Gelfand (2004, p. 150) presented this method
to introduce nonstationarity through the scaling of a station-
ary process. Assume Z(t) with the covariance (4) has variance
σ 2 = 1. Let V (t) = t

1
2 Z(t), (t ≥ 0). Then, V (t) is a nonstation-

ary Gaussian process with covariance function

cov(V (t1), V (t2)) = (t1t2)
1
2 Kφ(t1 − t2). (7)

It is clear that var(B(t)) = var(V (t)) = t . The main differ-
ences between B(t) and V (t) lie in the following aspects. First,
the sample path of a Brownian motion is nondifferentiable, while
V (t) is infinitely differentiable (Santner 2003, p. 40). In addi-
tion, if we fix t1 and let t2 go to infinity, the asymptotic behavior
of the two covariances are quite different. The covariance of
B(t) will stay constant because

lim
t2→+∞ cov(B(t1), B(t2)) = lim

t2→+∞ min(t1, t2) = t1,

while that of V (t) goes to 0 because

lim
t2→+∞ cov(V (t1), V (t2))= lim

t2→+∞(t1t2)
1
2 exp{−φ(t1 − t2)2} = 0.

Thus, the correlation of B(t) can be much stronger than that of
V (t).

The best linear unbiased predictor (BLUP) for stationary
Gaussian process models can be found in Santner, Williams,
and Notz (2003). These results can be extended to nonstation-
ary Gaussian process models without much difficulty. We dis-
cuss the Bayesian analysis for the nonstationary Gaussian pro-
cess models based on (6) and (7) in the supplementary material
(available online).

3.2 Modeling the Mesh Density

Let x = (x1, . . . , xm)T be the vector of the input variables and
t = (t1, . . . , tk)T the vector of the tuning parameter values such
as mesh densities. We assume ti > 0 for each i, and a smaller
ti indicates a higher accuracy. Suppose the experimental region
of interest is X × T , where x ∈ X and t ∈ T . Because our
interest is to predict the exact solution, we should include 0 in
the closure T of T , that is, 0 ∈ T . Denote the response of a
computer code run by (y, x, t), where y is the computer output
for the input (x, t). Since the computer code is deterministic, y is
a deterministic function of (x, t), that is, y = η(x, t). Recall the
concepts we describe in Section 2. The approximate solution
is η(x, t). The exact solution to this physical model is denoted
by ϕ(x). As t gets closer to zero, the output of the computer
experiment gets closer to the exact solution ϕ(x). We can thus
use the following equation to describe this relationship:

η(x, t) = η(x, 0) + δ(x, t) = ϕ(x) + δ(x, t), (8)

where δ(x, t) denotes the error with respect to the mesh density
t at input x.

We assume ϕ(x) and δ(x, t) are realizations of two mutually
independent Gaussian stochastic processes {V (x) : x ∈ X } and
{Z(x, t) : (x, t) ∈ X × T }. Note that neither E(V ) nor E(Z) is
identifiable, since we can only observe ϕ(x) + δ(x, t). For con-
venience, we assume the separable form

E(V (x)) = f T
1 (x)β1, E(Z(x, t)) = f T

2 (t)β2, (9)

where f T
1 (x) and f T

2 (t) are vectors of known regression func-
tions and β1 and β2 are vectors of unknown regression coeffi-
cients. Since the computational resource is limited, only data
with ti larger than a positive constant, say t0, are observed. Re-
call that the objective is to predict for φ(x) = η(x, 0). If the
regression function f T

2 (t) is nonzero, the prediction will extrap-
olate this function to t = 0 using only the observations with
ti ≥ t0. Therefore, a careful examination is needed while choos-
ing f T

2 (t). We will discuss this issue further in Section 4.3.
Now we turn to the variance structure of Z(x, t). First,

Z(x, t) must be a nonstationary process since it should satisfy
the limiting condition limt→0 Z(x, t) = 0 for any x. Therefore,
we propose the following variance structure:

var(Z(x, t)) = g(t; �), (10)

where g(·; �) can be a general increasing function with respect
to each component of t, and � is a vector of parameters.
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SURROGATE MODELING OF COMPUTER EXPERIMENTS WITH DIFFERENT MESH DENSITIES 375

As discussed earlier, g should satisfy limt→0 g(t; �) = 0. We
can assume that g is a polynomial function with little loss of
effectiveness in modeling.

To further develop the modeling approach, we assume for
the rest of the article that t is one-dimensional, denoted by t.
This is partly justified by the fact that there is no general error
bound for multivariate t in numerical analysis. For a typical
computer experiment, the tuning parameter should be relatively
small. Otherwise, its code cannot give a useful answer. Thus, to
simplify the model, we assume that the higher order terms in
the polynomial function are negligible, that is, we can assume
the following monomial function,

var(Z(x, t)) = σ 2t l . (11)

For limited data, which is commonly the case in expensive simu-
lations, l is a difficult parameter to estimate and can be sensitive
to the choice of t. As an alternative to the data-driven approach,
we can resort to the mathematical theory in numerical analysis
to guide the choice of l. Since l dominates the convergence rate
of var(Z(x, t)) to 0 as t → 0, its choice affects the convergence
rate of the numerical algorithm to the exact solution. As dis-
cussed in Section 2 (see (1)–(3)), the error bound, denoted by e,
is usually given in the form

|e| ≤ Ctκ, (12)

where C is independent of t. By Equation (11), we have

P (|e| < 3σ t
l
2 ) ≈ 99.7%. (13)

The theoretical error bound (12) and the error of the statistical
model (13) must have the same order, which leads to 3σ t

l
2 ∼

Ctκ , as t → 0. Thus, we have

l = 2κ. (14)

For the finite-element methods, if the input variables are fixed,
‖v′′‖L2 in the upper bound of Equations (2) and (3) remains
constant for different h. Then, we can obtain an appropriate l by
applying Equation (2) or Equation (3) to (14): for the H 1 norm,
l = 2 and for the L2 norm, l = 4.

Nonstationary Gaussian processes with variance (11) can be
flexible. Here, we consider two types of covariance structures.
One is derived from the Brownian motion (see Equation (6)),

cov(Z(x1, t1), Z(x2, t2)) = σ 2Kφ(x1 − x2) min(t1, t2)l , (15)

where K is defined by Equation (5). The other one is derived
from Equation (7),

cov(Z(x1, t1), Z(x2, t2)) = σ 2Kφ1 (x1−x2)Kφ2 (t1 − t2)(t1t2)l/2.

(16)

Let W (x, t) = V (x) + Z(x, t). By Equation (8), η(x, t) is a
realization of W (x, t). Since V and Z are mutually independent,
the covariance function of W equals the sum of the covariance
functions of V and Z. For example, if we choose the Brownian
motion type covariance function (15), the covariance function
of W has the form

cov(W (x1, t1),W (x2, t2))

= cov(V (x1), V (x2)) + cov(Z(x1, t1), Z(x2, t2))

= σ 2
1 Kφ1 (x1, x2) + σ 2

2 Kφ2 (x1, x2) min(t1, t2)l . (17)

The second model given by Equation (16) can be treated simi-
larly.

For inference, we adopt a fully Bayesian approach. The pos-
terior density for each parameter can be drawn via a Markov
chain Monte Carlo (MCMC) algorithm (Liu 2001). Bayesian
prediction for Gaussian process models is discussed in Baner-
jee, Carlin, and Gelfand (2004) and Qian and Wu (2008). In
our model, the interest lies in predicting the exact solution
ϕ rather than the computer output η. The predictive distribu-
tion of ϕ can be obtained along with the MCMC iterations.
Bayesian inference for Gaussian process models is discussed in
details in Santner, Williams, and Notz (2003) and Banerjee, Car-
lin, and Gelfand (2004). The reparameterization-based MCMC
approaches (Cowles, Yan, and Smithet 2009) are helpful in sam-
pling from the posterior. To save space, details on the Bayesian
computation are given in the supplementary material (available
online).

4. NUMERICAL STUDIES

In this section, we use three examples to study the behavior
of the predictive mean of the proposed method. In each of the
first two examples, we choose an explicit function for the exact
solution and another explicit function for the error. In Example
3, the exact solution is obtained by solving a PDE.

4.1 Example 1

Suppose the true function of concern is y(x) =
exp(−1.4x) cos(3.5πx) (Santner, Williams, and Notz 2003, pp.
56–57), where seven points are selected as the training data. The
first point is drawn randomly from [0, 1/7]. Each of the remain-
ing six points is the previous one plus 1/7. In our context, the
response is the true function plus a high-frequency noise func-
tion. We assume this noise is e(x, t) = t2 sin(40x)/10, which is a
quadratic function of the tuning parameter t for fixed x. Here, we
consider a three resolution experiment, by assigning a different
resolution parameter to each design point in Santner, Williams,
and Notz (2003). The highest resolution with t = 1 consists
of x1 = 0.2152 and x2 = 0.7866. The second resolution with
t = 2 consists of x3 = 0.0723, x4 = 0.5009, and x5 = 0.9294.
The lowest resolution with t = 3 consists of x6 = 0.3580 and
x7 = 0.6437. This particular arrangement of the resolution pa-
rameters is for illustration only.

We compare the proposed method with the stationary model
which ignores t. Fully Bayesian analysis is implemented for
both models. For the stationary model and the stationary
part of the proposed model, we consider the ordinary krig-
ing, that is, kriging model with an unknown constant mean,
which is the same as that in the example of Santner, Williams,
and Notz (2003). The proposed model assumes the Brown-
ian motion type covariance structure. The priors for both mod-
els are 1/σ 2

1 ∼ Gamma(2, 1), 1/σ 2
2 ∼ Gamma(2, 40), φ1, φ2 ∼

Gamma(2, 0.1), where σ 2
2 and φ2 only appear in the nonstation-

ary model (see Equation (17)). We run MCMC to compute the
predictive curves. After 5000 burn-in runs, 10,000 samples are
drawn for inference.

Figure 1 gives the true function and predictive curves from
using the two methods. The seven observations are marked in
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Figure 1. True and predictive curves for Example 1. TF = true
function, SM = stationary model, NSM = nonstationary model,
QQ = model with both qualitative and quantitative factors. The seven
observations are marked by • (for t = 1), � (for t = 2), and × (for
t = 3).

Figure 1 by three symbols (•,�,×) according to their t values.
It is easily seen that those with the highest resolution (t = 1) are
closest to the true functions, and those with the lowest resolution
(t = 3) are farthest to the true function. The predictive curve of
the stationary model should interpolate these points. But due to
the numerical error of kriging modeling, there is a small distance
between the points and the curve. Clearly, the prediction based
on the proposed method tracks the true curve more closely than
that based on the stationary model except near 0 or 1, which
are outside the range of data. Figure 1 also shows the predictive
result given by the Gaussian process model with both qualitative
and quantitative factors proposed by Qian, Wu, and Wu (2008)
(see also Zhou, Qian, and Zhou 2011). In the figure, it is referred
to as the QQ model. It can be seen that this method has the worst
performance. While the predictive curve interpolates at the two
high-fidelity points x1 and x2, it is far away from the true curve
at all the low-fidelity points (i.e., x3 to x7). This result suggests
that the QQ model can behave poorly when the true function
(i.e., the exact solution) is nonlinear and oscillatory.

4.2 Example 2

In this example, we simulate 1000 different realizations of a
random function to examine the overall performance of the pro-
posed method. Suppose the design region is (u, v, t) ∈ [0, 1] ×
[0, 1] × [0.5, 1.5], where u, v are the model parameters and t
is the tuning parameter. The true function f and the error e are
chosen to be f (u, v) = ∑10

i=1 w1i sin(w2iu + w3iv + w4iuv +
w5i) and e(u, v, t) = w′

1t
2 sin(w′

2u + w′
3v + w′

4uv + w′
5), re-

spectively, where w1,1, . . . , w5,10, w
′
1, . . . , w

′
5 are independent

samples from the uniform distribution over [−1, 1], denoted
as U (−1, 1). We use a maximin Latin-hypercube of 30 points

Table 1. Comparison between nonstationary and stationary models
using random functions

NSM SM0 SM0.5

Averaged ISE 0.1236 0.2680 0.2018
Frequency of best performance 951 2 47

as the design for (u, v) and for each design point we sample
t ∼ U (0.5, 1.5) independently.

Recall that the proposed model is nonstationary with re-
spect to t. To demonstrate the effect of nonstationarity, we
compare the proposed method with the stationary model with
the Gaussian correlation function K(u, v, t) = exp{−φ1u

2 −
φ2v

2 − φ3t
2} (see Equation (5)). The proposed model assumes

the Brownian motion covariance structure in Equation (15). Let
F (u, v, t) = f (u, v) + e(u, v, t) be the approximate solution.
For the stationary model, we consider two prediction methods.
They share the same stationary model but predict for different
values of t. In the first method, similar to the proposed method,
we predict for points with t = 0, which give values for the exact
solution according to Equation (8). This is referred to as SM0 in
Table 1. Note that this method involves extrapolation because
the experimental region for t is [0.5, 1.5]. Noting the fact that
a stationary Gaussian process model usually performs poorly
in extrapolation, we also consider another method, referred
to as SM0.5. In this method, we predict for F (u, v, 0.5) with
(u, v) ∈ [0, 1] × [0, 1], which has the highest accuracy since
t = 0.5 is the smallest value in the region [0.5, 1.5]. To take
advantage of a possible trend effect in t, we let each of the three
models contain a linear term βt .

For the Bayesian analysis, the same priors as in Example
1 are used. In each simulation, MCMC is used to obtain the
posterior distribution. After 5000 burn-in runs, 5000 samples
are drawn for inference. The simulation results are summarized
in Table 1. First, we compare them in terms of the integrated
squared error (ISE). We define ISE as

∫
[0,1]×[0,1](f − f̂ )2, where

f̂ is the predictive curve given by each of the three methods.
The second row gives the averaged value of the ISE over 1000
simulations for each method. It is seen that the proposed method
reduces the ISE by 53.9% and 38.8%, respectively, over the
two stationary methods. The third row gives the frequency for
each method with the smallest ISE. The proposed method beats
the two stationary methods 951 out of 1000 times. Again, the
nonstationary model outperforms the stationary model. We also
observe that SM0 behaves worse than SM0.5. This is mostly
due to the extrapolation effect, that is, SM0 predicts for F with
t = 0 while the training data have t ≥ 0.5.

4.3 Example 3

Here, we choose a PDE with an analytical solution so that
the behavior of the proposed method can be easily examined.
Consider the following Poisson’s equation:

⎧⎪⎨
⎪⎩

�u = (a2 − 2π2)eax sin(πx) sin(πy) on D,

+ 2aπeax cos(πx) sin(πy),

u = 0, on ∂D,
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Table 2. Numerical solutions of Poisson’s equation

Run # a h Exact CPU time Error �NSM �ARM

1 −1 0.005 0.252 30.767 −0.006 0.001 −0.006
2 −0.8 0.01 0.276 2.304 −0.010 0.015 0.002
3 −0.6 0.008 0.303 5.469 −0.009 0.008 −0.007
4 −0.4 0.008 0.333 5.517 −0.009 0.008 −0.012
5 −0.2 0.01 0.367 2.400 −0.011 0.014 −0.023
6 0 0.005 0.405 33.111 −0.006 0.000 −0.006
7 0.2 0.01 0.448 2.434 −0.012 0.013 −0.026
8 0.4 0.008 0.497 5.785 −0.011 0.006 −0.016
9 0.6 0.008 0.552 5.783 −0.012 0.005 −0.011

10 0.8 0.01 0.614 2.592 −0.015 0.010 −0.003
11 1 0.005 0.684 35.886 −0.008 −0.002 −0.008

NOTE: Columns 4–6 are the exact results, the CPU time (in seconds), and the numerical
errors, respectively. The last two columns give the difference between the exact solution
and the predictive results given by the proposed nonstationary model (NSM) and the
autoregressive model (ARM) of Kennedy and O’Hagan (2000).

where � = ∂2

∂x2 + ∂2

∂y2 , D = [0, 1] × [0, 1] and a is an input vari-
able. It is easy to verify that the exact solution given a is

ua(x, y) = eax sin(πx) sin(πy).

Suppose our interest lies in computing the integral I (a) =∫
D

ua(x, y), which has an analytical form I (a) = 2(ea+1)
a2+π2 .

We implement a finite-difference method (Kincaid and Ch-
eney 2002) to solve this equation numerically. Denote the step
length by h, which is a tuning parameter of the finite-difference
method. Similar to Equation (3), the L2 norm of the numerical
error can be controlled by a quadratic function of h. Here, h
plays the role of the tuning parameter t.

We choose a design with 11 points for a and three levels for h.
The design, the exact results, the CPU time, and the numerical
results are concluded in Table 2. For convenience, we give the
numerical errors in the column “Error” rather than the actual
values of the numerical output. Note that the numerical error
is the δ term in Equation (8), that is, the difference between
the numerical output and the exact solution. The simulation is
carried out on a 2.7-GHz PC. The CPU time has a small variation
if we repeat running the code, but the trend with respect to the
step length h is clear. From Table 2, we can see that the CPU
time grows rapidly as h decreases.

We assume the regression function defined by Equation
(9) has the form β0 + aβ1 + f (h)β2. Without loss of gener-
ality, we can assume f (0) = 0. The regression term should also
satisfy the numerical error bound given by Equation (3). This
implies that |f (h)β2| ≤ Ch2 for some constant C. Following
the idea similar to that in establishing Equation (11), we can
also ignore the high-order terms and assume f (h) = h2. For the
Bayesian analysis of the proposed method, the same priors as
in Example 1 are used. MCMC is used to obtain the posterior
distribution. After 5000 burn-in runs, 10,000 samples are drawn
for inference.

We compare the proposed method with the autoregressive
model proposed by Kennedy and O’Hagan (2000). The results
are given in the last two columns of Table 2. Similar to the
“Error” column, we give the difference between the predictive
result and the exact solution in columns 7 and 8 for the non-
stationary model (NSM) and the autoregressive model (ARM),

respectively. We also consider an overall comparison, based
on the mean square error (MSE) for the 11 runs. For the pro-
posed model, it is 8.33 × 10−5, which is much smaller than
1.77 × 10−4 for the autoregressive model. If we use the numeri-
cal results directly as predictor of the exact solution, the MSE is
1.03 × 10−4, which is smaller than 1.77 × 10−4 for the ARM.
Thus, only the proposed method achieves an improvement over
the numerical results. This improvement is mainly due to the
use of the regression trend term h2β2. An important side obser-
vation is that, if we use hβ2 instead of h2β2, the performance
would not be satisfactory. The MSE would be 5.54 × 10−4,
much worse than the other three. Noting that hβ2 is not a cor-
rect error bound according to the results of numerical analysis
(see end of Section 2), this example shows the importance of im-
porting correct knowledge from applied mathematics in building
statistical models. We also consider the stationary model, which
is included in Example 2. Under the same trend term h2β2, this
model gives an MSE value of 6.45 × 10−3, which is much worse
than the proposed method and the autoregressive model.

To show the overall performance of the proposed method, we
plot in Figure 2 the curves of posterior mean and 95% limits
of Bayesian credible intervals given by the proposed method.
As in ordinary kriging, the credible interval should shrink near
the design points. However, the length of the credible interval
does not go to 0 because we do not observe an exact solu-
tion. The length of the credible interval on each design point
also depends on the accuracy of the corresponding computer
run. For example, we have high-accuracy runs on a = −1, 0, 1.
Therefore, the lengths of the credible intervals on those points
are the smallest. The credible intervals also shrink slightly on
a = −0.6,−0.4, 0.4, 0.6, because on those points the computed
outputs have the second-best accuracy. For the low accuracy data
on a = −0.8,−0.2, 0.2, 0.8, the shrinkage of the credible in-
terval is hard to discern from the figure. The overall picture
suggests that the proposed method captures the prediction un-
certainty faithfully.

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

a

I(
a)

Predictive Mean
95% Credible Limits
True Curve

Figure 2. 95% limits of Bayesian credible intervals given by the
proposed method for Example 3.
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5. CASTING PROCESS SIMULATION

In this section, we examine a computer experiment problem
in casting to illustrate the proposed methodology.

Shrinkage defects appear frequently in casting operations.
They occur when feed metal is not available to compensate for
shrinkage as the metal solidifies. Casting strength is low in the
region where shrinkage defects occur. Even a slight shrinkage
defect can reduce the quality of the casting. Therefore, we hope
to eliminate serious shrinkage defects from the casting pro-
cess. See Stefanescu (2008) for a detailed discussion. We want
to study the relationship between shrinkage defect and a con-
trol variable for a specific casting problem through a computer
experiment. Through the Niyama criterion proposed by Niyama
et al. (1982), we can infer the possible shrinkage defects in
the casting product. The Niyama criterion is a local thermal
parameter defined as

Ny = G/
√

Ṫ , (18)

where G is the temperature gradient and Ṫ is the cooling
rate. In the region where the Niyama value is low, serious
shrinkage defect is likely to occur. To compute the Niyama
function, the flow and temperature fields are needed. The
simulator we use is a commercial software called InteCAST
(website: http://www.intecast.com/En/e-cae.asp). This simula-
tor computes the flow and temperature fields via a finite-element
method.

The response y of interest is the volume of the region where
the Niyama value is below a critical value of 200, which was
recommended to us by a collaborating engineer. We choose
a single control variable (temperature x) and a tuning param-
eter (the mesh size t) as inputs. The experimental region is
[710◦C, 750◦C] × [1.5 mm, 2.5 mm].

For the choice of design points, we adopt the maximum en-
tropy criterion. The definition, justification, and construction
of the maximum entropy designs for nonstationary models are
given in the appendix. In the construction, we use the Brownian
motion model in Equation (15) with σ 2

1 /σ 2
2 = 30, φ1 = φ2 =

0.01, with σ 2
1 , σ 2

2 given in Equation (17). Figure 3 plots the de-
sign points from a 20-run design. We can see that the maximum
entropy design tends to put more points on the low-accuracy
region. This makes sense because low-fidelity runs are cheaper.

Besides these 20 training points, we also compute the value
of y at the point (725, 1.5) as testing data. This point is shown
in Figure 3 by the solid point. The mesh size of the testing data
is chosen to be 1.5 because a mesh size smaller than 1.5 would
give an out-of-memory error and thus 1.5 is the highest accuracy
result which can be obtained by our computer. Table 3 gives the
simulation results for both training and testing data. From Table
3, we can see that the difference between the responses with the
same x but different t values can also be very large.

Here, we assume the mean of the Gaussian process is a con-
stant, that is, β = β0 and f T

V (x) = 0. By Equation (18), the defi-
nition of the Niyama value involves the derivative of the thermal
field. Therefore, the H 1-type error bound is more appropriate
because it measures the discrepancy between the derivatives of
two functions. In this case, by Equations (2), (12), and (14),
we have l = 2. Two models are considered here. Model I is
the Brownian motion model in Equation (15). Model II has the

710 720 730 740 750

1.
6

1.
8

2.
0

2.
2

2.
4

x

t
Figure 3. Design points for the casting experiment are shown by

the circles and the testing point is given by the solid point.

covariance structure in Equation (16). The priors for Model I
are 1/σ 2

1 , 1/σ 2
2 ∼ Gamma(2, 1), φ1, φ2 ∼ Gamma(2, 0.1). The

priors for Model II are φ3 ∼ Gamma(2, 0.1), while the other
priors remain the same as Model I. Note that this choice of
hyperparameters differs from that used in Examples 1–3. From
our experience, some of the hyperparameters need to be cho-
sen carefully to obtain reasonable results. In fact, other krig-
ing methods for multifidelity data (e.g., Kennedy and O’Hagan

Table 3. Casting experiment data

Run # x(◦C) t(mm) y(cm3)

1 710 2.5 189.67
2 739.05 2.5 178.16
3 724.92 2.5 184.05
4 750 2.5 175.42
5 715.74 2.36 149.94
6 746.18 2.36 137.79
7 733.15 2.30 153.91
8 723.80 2.20 160.19
9 710 2.16 197.92

10 743.39 2.12 190.15
11 715.15 2.03 208.49
12 730.82 1.96 137.17
13 750 1.93 149.20
14 718.57 1.85 196.04
15 710 1.74 195.00
16 743.07 1.73 175.31
17 723.33 1.59 161.76
18 710 1.5 172.94
19 735.25 1.5 165.85
20 750 1.5 159.53
21 725 1.5 167.00

NOTE: Runs 1–20 were used to train the model, and run 21 for testing.

TECHNOMETRICS, AUGUST 2014, VOL. 56, NO. 3

D
ow

nl
oa

de
d 

by
 [

O
hi

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
8:

55
 2

6 
Ja

nu
ar

y 
20

16
 

http://www.intecast.com/En/e-cae.asp


SURROGATE MODELING OF COMPUTER EXPERIMENTS WITH DIFFERENT MESH DENSITIES 379

150 160 170 180 190

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Model I

150 160 170 180 190

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Model II

Figure 4. Predictive density, casting experiment.

2000; Qian and Wu 2008) are also sensitive to the choice of
the hyperparameters. Multifidelity data do not generally con-
tain enough information for the kriging modeling. Therefore,
informative priors should be specified to complement this infor-
mation. More discussions on choosing the hyperparameters for
the proposed method are presented in the supplementary mate-
rial (available online). For both models, we want to predict the
high-accuracy output y(725, 1.5).

Through Slice–Gibbs sampling (Agarwal and Gelfand 2005),
we obtain 10,000 production runs for posterior calculations af-
ter 5000 burn-in iterations for each model. Prediction for the
testing data is done simultaneously in each MCMC iteration.
Figure 4 plots the prediction densities obtained by a kernel
density smoother for the two models, where the vertical line in
each plot indicates the true value (= 167) of the high-accuracy
output y(725, 1.5). From the results, both models give appropri-
ate predictions. The predicted result with Model II has a smaller
variance than Model I but is slightly biased if we regard the
testing data y(725, 1.5) as the exact solution.

6. DISCUSSION AND FUTURE WORK

Mesh density in finite-element analysis (FEA) is one of the
most commonly used tuning parameters. Choice of the mesh
density affects the numerical performance and has implications
on the computational cost. In this article, by using the concept
of physical model and exact solution, we state the goal of the
computer experiment as that of finding a good approximation to
the exact solution to the physical model.

To model the exact solution, we propose a new kriging model
based on a nonstationary Gaussian process. The model inte-
grates the computer outputs of different mesh densities and
provides approximation to the exact solution. Concepts and re-
sults in numerical analysis are imported to build and justify this
model. For FEA, we consider the error bounds given by Equa-
tion (1). But in some extreme conditions, Equation (1) may not
be satisfied. Thus, further investigation on extending Equation
(1) and the associated variance structure in Equation (11) will
be of interest. Another important issue is multidimensional tun-
ing parameters. To develop an appropriate statistical model, one

needs to study how these parameters control the accuracy of the
output and the joint effect of the parameters.

Given the variance structure, there are various choices of the
covariance function. We believe that the choice does not matter
much in the prediction performance. In this article, we suggest
two covariance structures, given by Equations (15) and (16).
In practice, we prefer Equation (15) because of the Markovian
property of the Brownian motion. For example, we may obtain
the computer outputs of the same input variable with differ-
ent accuracies, for example, an iterative algorithm returns a
sequence of outputs with increasing accuracies. The common
practice in computing is to use the finest result only. A non-
stationary process with the Markovian property can be used to
justify this practice because the low-accuracy results for the
same input variable are not used or needed for prediction.

APPENDIX

MAXIMUM ENTROPY DESIGNS
FOR NONSTATIONARY MODELS

The design problem for multifidelity computer experiments has re-
ceived considerable attention in the last few years. For two-fidelity
data, Qian and Wu (2008) proposed a nested design constructed by the
maximin distance criterion. Qian, Ai, and Wu (2009), Qian (2009), and
Qian and Wu (2009) proposed nested Latin hypercube designs, which
can be extended to more than two fidelities. The generic strategy for
these designs is to take a large number of lower fidelity observations to
obtain a macroscopic understanding of the response and select a small
subset for higher fidelity runs to supplement some detailed information.
Because a low-fidelity run is much cheaper than a high-fidelity run, the
total cost can still be kept low. Note that, for each level of fidelity, the
designs employed in the aforementioned papers have the space-filling
property.

Space-filling designs (Santner, Williams, and Notz 2003) such
as Latin hypercube designs (McKay et al. 1979), maximin distance
designs (Johnson et al. 1990), and uniform designs (Fang, Li, and
Sudjianto 2006) are widely used in computer experiments. Recall that
in a space-filling design, observations are spread evenly throughout the
experimental region. An explanation or justification for this approach is
that interest lies in the whole experimental region because we have no
knowledge to decide in which part to take more observations. Because
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of the absence of information on the relative importance of each obser-
vation, we assume they are homogeneous. Thus, a stationary Gaussian
process model is adopted. However, observations with different
accuracies should not be assumed to be homogeneous, which is why
nonstationary Gaussian process models are considered in Section 3.2.
Thus, design nonuniformity should follow from model nonstationarity.

Here, we consider the maximum entropy criterion (Shewry and
Wynn 1987), which is based on information-theoretical ideas. It can
facilitate design construction for various statistical models. It works
by finding a design to maximize the expected change in information
after the experiment is run. Sacks et al. (1989) and Santner, Williams,
and Notz (2003) discussed its applications in computer experiments
and showed that for stationary Gaussian process models the maximum
entropy criterion can be reduced to the maximization of det(K), where
K is the correlation matrix.

Here, we extend the usage of maximum entropy designs to non-
stationary Gaussian process models. Through algebraic calculations
similar to Santner, Williams, and Notz (2003, pp. 166–167), the en-
tropy criterion for our nonstationary model can be reduced to

det(cov(y(X, T)), (A.1)

where (x, t) ∈ D = X × T . Here, a design maximizing Equation
(A.1) is called a maximum entropy design.

Exchange algorithms can be applied to maximize Equation (A.1).
For instance, Currin et al. (1991) described an algorithm adopted from
DETMAX (Mitchell 1974) for finding maximum entropy designs.

SUPPLEMENTARY MATERIALS

Bayesian Analysis: Details of the Bayesian analysis of the
model, including discussion of choice of prior hyperparame-
ters. (PDF file)

Code and data: C++ code implementing the model and input
data for Example 3. (zip file)
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