Owen (1995) shows that the sequence (X)) obtained inherits the equidistribu-
tion property of (A;) and the individual points in it are uniformly distributed on
[0,1)*. Figure 2.4 presents examples of Scrambled Nets on [0,1)? with n = 15 and
25 runs, constructed using the software program provided by Art Owen at www-

stat.stanford.edu/owen.

Figure 2.4: Example of 15 points of a Scrambled (3,0,1,2)-Net in base 5 (left panel),
and 25 points of a Scrambled (0,2,2)-Net in base 5 (right panel).

2.2.3 Sobol Sequences

Sobol” (1967) introduced the construction of quasi-random sequences of points
that have low star discrepancy (see page 15). To introduce the construction of the
Sobol’ Sequence consider working in one-dimension. To generate a sequence of values

1 .2

x', 2% with 0 < 2! < 1, first we need to construct a set of direction numbers vy, vy, ....

Each v; is a binary fraction that can be written v; = Z¢, where m; is an odd integer

such that 0 < m; < 2. To obtain m; the construction starts by choosing a primitive

polynomial in the field Z,, i.e. one may choose P = 24 a4+ agg+ 1
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where each a; is 0 or 1 and P is an arbitrary chosen primitive polynomial of degree

d in Zs. Then, the m;’s can be calculated recurrently as
mi = 2aymi_y B 2%aymi_g © .. B 27 ag_ymi_gpr © 2%mi_g By

where each term is expressed in base 2 and @ denotes a bit-by-bit exclusive-or oper-
ation, 1.e

050=0,001l=1®0=1,161=0.

When using a primitive polynomial of degree d, the initial values mq,...,my can

be arbitrarily chosen provided that each m; is odd and m; < 2°, 1 =1, ..., d.

Y

Example: If we choose the primitive polynomial 2> 4 # + 1 and the initial values

my =1, mgy = 3, m3z =7, m;’s are calculated as follows:
m; = 4m;_o © 8mi_3 O my_s.

Then
my=12E84F1=11005 1000 F 0001 =010l =0 x22+1x224+0x24+1x20=5
ms =283246&3 =11100 ¢ 11000 ¢ 00011 = 00111 =7

me = 20 @ 56 ¢ 7 = 010100 ¢ 111000 ¢ 000111 = 43

and
vy = 5¢ = 2% = 0.1 in binary
vy = 5F = 2% = 0.11 in binary
vy = S = 213 = 0.111 in binary
vy = G = 2% = 0.0101 in binary, and so on.
In order to generate the sequence x', 2%, ..., Sobol’ (1967) proposed using

2" = byvy Dbyva D - -
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and

n+1

X

:xn@vc

where - --b3byby is the binary representation of n and b, is the rightmost zero-bit in

the binary representation of n.

Returning to the previous example, the first few values of x are thus generated as

follows. To start the recurrence, take x° = 0.

Initialization : z°

Step1:

Step2: a?

23

0 in binary so

1

2 D v

0.0 0.1 in binary

0.1 in binary
1

2

1 in binary so

2

z! D vg

0.10 & 0.11 in binary

0.01 in binary
1

4

10 in binary so

1



Step 3 : 22 = 229y
= 0.01 ¢ 0.10 in binary

= 0.11 in binary

3

4
n = 11 in binary so
c = 3

and so on.

To generalize this procedure to s dimensions, Sobol’ shows that in order to obtain
O(log® N)) discrepancy, where N represents the number of points, it suffices to choose
s distinct primitive polynomials, calculate s sets of direction numbers and then gen-
erate each component z} of the quasi-random vector separately. Figure 2.5 presents

graphs of 15 and 25-point Sobol’ sequences in [0, 1).

Figure 2.5: Example of 15-point Sobol” Sequence (left panel), and 25-point Sobol’
Sequence (right panel).
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Several other methods for producing low-discrepancy sequences have been pro-
posed by Halton, Faure, Niederreiter. In our comparisons beginning in Chapter 3, we

have used the Sobol” and Niederreiter Sequences whose description follows.
2.2.4 Niederreiter Sequences

Niederreiter (1988) proposed a new method of generating quasi-Monte Carlo se-
quences. Let A(N) denote N x D}, where Dy is the star discrepancy. It is believed
that the best possible bound for the discrepancy of the first N terms of a sequence of

points in [0, 1)® is of the form
A(N) < Cy(log N)* 4 O((log N)*™1)

for all N > 2. The methods proposed by Niederreiter yield sequences with the lowest
(s currently known. Niederreiter provides a method of constructing (¢, s)-sequences
in any base b with 6 > 2 but the construction of sequences for prime bases is much
simpler to implement. In our comparison, we used Niederreiter sequences with base
b = 2 whose implementation is much faster than for other bases given the binary
nature of the computers and the fact that the construction of such sequences involves
operations in the field I, whose elements are bits 0 or 1.

As in the construction of the Sobol’ sequences, we focus on the one-dimensional
case. To generalize to s dimensions it suffices to choose s distinct primitive polyno-

7’L

7, of the quasi-random vector separately. For

mials and generate each dimension, x
now, our aim is to generate a sequence xy,xs,...,0 < z, < 1, with low-discrepancy
over the unit interval.

To generate z,,, welet n—1 = ap_1ar_s...a1ag be the base-b representation of n—1

(where R represents the maximum number of base-b digits allowed by convention).
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Then z,, will be given as a base b fraction of the form
LTp = OdldeR

In practice, x, is obtained by calculating an integer (),, whose base-b representation
is (), = dids...dg followed by taking x,, = ?—g. The @),’s are recurrently constructed

as

Qn=0aCoBarCy & ...Har-1Cr_y

Qn—l—l = Qn S5 Cr

where @ represents a bit-by-bit exclusive-or operation. To start the recurrence, )¢
is taken to be 0 and C, = ¢y,¢z...cr, (r < R) where the ¢;,’s (1 < j < R) are
constructed using the following algorithm:
(1) Choose a primitive polynomial p(x) with coefficients in F5 of degree e > 1. Set
J0,g+ —1and u < e.
(2) Increment j. If u = e, go to step (3); otherwise, go to step (4).
(3) Increment g and set u 0. Calculate b(z) = p(z)?* = 2™ —b,,_ 12" 1 — - —by, a
polynomial of degree m = e(¢+1), and then calculate the elements v; = BT by vi—
form<i<R4+e—2andv;=0,v,1=1for 0 <1 < R+4+e—2.
(4) For 0 <r < R—1 set ¢j, ¢ Uppy. Increment u. If 5 < R go to step (2); otherwise
stop.

To generalize this procedure to the s dimensional case, it suffices to take different
polynomials for each coordinate and calculate different cér’s, hence different z’s for
each coordinate. Figure 2.6 presents the matrix of 2-dimensional projections of a

31-point Niederreiter sequence with points in [0, 1)°.
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Figure 2.6: Example of 2-dimensional projections of a 6-dimensional 31-point Nieder-
reiter Sequence.

2.2.5 The Good Lattice Point Sets

The Good Lattice Point design is another example of a low-discrepancy point set
introduced in the literature of numerical integration by Korobov (1959). It was moti-
vated by the desire to find good sets of evaluation points for numerical computation
of multi-dimensional integrals.

The experimental domain is taken to be C* =[0,1)*. The construction of Good
Lattice Point sets involves using a generating vector (n;hy, ha, ..., hs) with integral

components satisfying 1 < h; < n, where h; # h; for (i # j),s < n and the greatest
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