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a b s t r a c t

Many engineering design optimization problems containmultiple objective functions all of
which are desired to be minimized, say. This paper proposes a method for identifying the
Pareto Front and the Pareto Set of the objective functions when these functions are evalu-
ated by expensive-to-evaluate deterministic computer simulators. The method replaces the
expensive function evaluations by a rapidly computable approximator based on a Gaus-
sian process (GP) interpolator. It sequentially selects new input sites guided by values of
an ‘‘improvement function’’ given the current data. The method introduced in this paper
provides two advances in the interpolator/improvement framework. First, it proposes an
improvement function based on the ‘‘modified maximin fitness function’’ which is known
to identify well-spaced non-dominated outputs when used in multiobjective evolutionary
algorithms. Second, it uses a family of GPmodels that allows for dependence among output
function values but which permits zero covariance should the data be consistent with this
model. A closed-form expression is derived for the improvement function when there are
two objective functions; simulation is used to evaluate it when there are three or more ob-
jectives. Examples from the multiobjective optimization literature are presented to show
that the proposed procedure can improve substantially previously proposed statistical im-
provement criteria for the computationally intensive multiobjective optimization setting.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper proposes an algorithm for sequentially designing a sequence of inputs at which to run a set of expensive-
to-evaluate functions so as to identify the Pareto Front of function values and the Pareto Set of inputs. Throughout, let
y(x) = (y1(x), . . . , ym(x)) denote the m functions of interest, d the number of inputs, and x = (x1, . . . , xd) a generic input.
The input space for x is denoted by X ⊂ Rd and the function values y(x), x ∈ X, form the objective space.

The goal of this paper is to find the complement of the set inputs x ∈ X that are dominated by one or more inputs in X.
An input x1 ∈ X weakly dominates x2 ∈ X (x1 ≽ x2) if yi(x1) ≤ yi(x2) for all i = 1, . . . ,m. If at least one inequality is strict,
then x1 is said to dominate x2 (x1 ≻ x2). Equivalently, an input x1 does not dominate x2 (x1 ⊁ x2) if there exists any i such
that yi(x1) > yi(x2). Geometrically, x1 ≻ x2 if y(x1) is strictly to the ‘‘southwest’’ of y(x2).

In an analogous fashion, for y(x1) and y(x2) in the objective space, y(x1) is said toweakly dominate y(x2) (y(x1) ≽ y(x2))
if yi(x1) ≤ yi(x2) for all i = 1, . . . ,m. If at least one inequality is strict, then y(x1) is said to dominate y(x2) (y(x1) ≻ y(x2)).
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An output y(x1) does not dominate output y(x2) (y(x1) ⊁ y(x2)) if there exists any i such that yi(x1) > yi(x2). An input
vector x ∈ X is Pareto optimal if and only if there is no x′

∈ X such that x ≺ x′. (Such x are also referred to as nondominated
inputs. The image y(x) of a nondominated input is sometimes referred to as a nondominated output.)

Thus the goal can be restated as that of finding the set of all x ∈ X which are not dominated by any other input in X;
the set of nondominated inputs is called the Pareto Set. The set of (y1(x), . . . , ym(x)) corresponding to x in the Pareto Set is
termed the Pareto Front. This paper proposes an algorithm that uses previous y(x) evaluations to determine a sequence of
inputs x to identify the Pareto Set and the associated Pareto Front.

In most real-world applications, the Pareto Front is an uncountable set and cannot be found analytically. Therefore this
paper, as do virtually all papers that identify Pareto Fronts/Sets, finds a discrete approximation to the Pareto Front. In
addition, many current methodologies for approximating Pareto Fronts and Pareto Sets, such as the weighted summethod,
the ϵ-constrained method, multiobjective evolutionary algorithms (see Coello et al., 2006), and the MULTIMADS algorithm
introduced inAudet et al. (2010) have beendesigned for applicationswheremany (hundreds, possibly thousands) of function
evaluations are feasible. Under these conditions, the algorithms above have proven to be very effective at identifying these
two Pareto Sets. However, in multiobjective settings where one is running a detailed deterministic computer simulator that
is expensive-to-evaluate, only a few dozen function evaluationsmay be available. This paper proposesmethodology for such
cases.

In overview, the proposedmethodology builds a rapidly-computable surrogate for y(x), which is used to guide the search
for nondominated points. The y(x) surrogate that the authors employ is an interpolator of the training data based on a Gaus-
sian process (GP) stochastic model (see Santner et al., 2003). The search selects the x ∈ X which maximizes a heuristically
selected ‘‘expected improvement’’ criterion. The methodology proposed in this paper provides two key improvements over
other interpolator/expected improvement schemes that have been considered in the literature (Schonlau, 1997; Jones et al.,
1998; Keane, 2006; Emmerich et al., 2006; Knowles, 2006), First, it is the only proposed multiobjective expected improve-
ment approach that considers stochastic prediction models which allow for dependence among the components of y(x);
procedures that have used dependence models in other applications can lead to improved procedure performance (Ver
Hoef and Cressie, 1993; Williams et al., 2010; Fricker et al., 2013). Second, the improvement criterion is based on the max-
imin fitness function (see Balling, 2003) from the multiobjective evolutionary algorithm (MOEA) literature. This metric of
distance quantifies how much better a given output vector is than the current best estimate of the Pareto front and directs
MOEAs towards well-spaced designs that are close to the true Pareto front.

The remainder of this paper is organized as follows. To provide context, Section 2 reviews the expected improvement
approach proposed in Schonlau (1997) and Jones et al. (1998) for single-objective functions. Section 3 describes the
multivariateGaussian processmodel that forms the basis for the proposed objective function emulators. Section 4 introduces
the proposed improvement criterion and describes its implementation. Section 5 presents the sequential algorithm used to
approximate Pareto Front and Pareto Set. Section 6 presents two examples that contrasts the new method with previous
proposals from Keane (2006). Finally, Section 7 contains recommendations as to which methods should be used in practice,
compares the proposed approach to the hypervolume-basedmethod of Emmerich et al. (2006), anddiscusses future research
regarding the expected improvement approach to multiobjective optimization.

2. Optimization of a single black-box function

To facilitate understanding the multivariate optimization proposal given in this paper, this section introduces the
key ideas for the simpler problem of minimizing a single (expensive-to-evaluate) real-valued function y(x) defined on a
d-dimensional input spaceX. Themethod described is due to Schonlau (1997), Jones et al. (1998)who introduced amethods
for minimizing y(·) based on a GP model which they called the ‘‘efficient global optimization’’ (EGO) algorithm. The EGO
algorithm uses a probabilistic assessment of y(x) given the current data that is provided by the GP model. Specifically,
these authors determine the information about the global minimum of y(·) that is in each potential x by the (conditional)
expectation of a heuristically selected improvement function.

Suppose that y(·) has been evaluated at each input in the ‘‘design’’ Dn = {x1, . . . , xn} ⊂ X. Let yn
= (y(x1), . . . , y(xn))T

denote the corresponding vector of outputs. The deterministic output y(x) is regarded as a draw from a stationary GP, Y (x),
with mean β , variance σ 2, and correlation function

Cov

Y (x), Y (x⋆)


= R


x − x⋆

| θ


= exp


−

d
i=1

θi

xi − x⋆

i

2
, (1)

where θ = (θ1, . . . , θd) . The parameters (β, σ 2, θ) are unknown and must be estimated to complete specification of the
GP model.

The GP provides the basis for interpolation of y(·) and uncertainty assessment of the predicted values. When

σ 2, θ


is

known, the best linear unbiased predictor (BLUP) of y(x0) is

y(x0) = β + r⊤(x0)R−1 
yn

− 1β
, (2)
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Sacks et al. (1989). Here R = (Rij) is the n × n matrix with Rij = R

xi − xj | θ


, r(x0) = (ri(x0)) is the n × 1 vector with

ri(x0) = R (x0 − xi | θ), andβ =

1⊤R−1yn /


1⊤R−11


. (3)

Alternatively,y(x0) is the mean of Y (x0) conditional on Y n
= (Y (x1), . . . , Y (xn)) = yn when β has a diffuse prior and other

parameters are given. Indeed, conditional on yn, Y (x0) is normally distributed with meany(x0) and variance

s2(x0) ≡ E{(Y (x0) −y(x0))2|yn
} = σ 2


1 − r⊤(x0)R−1r(x0) +


1 − 1⊤R−11

2
1⊤R−11


. (4)

The quantity s2(x0) is the mean square prediction error (MSPE) ofy(x0) is thus used to quantify the uncertainty of this
predictor.

In practice,

σ 2, θ


is unknown. The frequentist approach to modifying (2) is to estimate


σ 2, θ


by, say, maximum

likelihood and apply (2) and (4) yielding an ‘‘empirical’’ BLUP,y(x0), and estimated MSPE, s2(x0). An alternative approach
to modifying (2) when


σ 2, θ


is unknown is the Bayesian paradigm in which priors are identified that embody knowledge

about

σ 2, θ


. While both approaches can be applied below, this paper will follow Schonlau (1997) and Jones et al. (1998)

by using estimated parameters in the BLUP and MSPE formulas.
The EGO algorithm is based on a heuristically selected improvement function defined for each new potential input x.

Schonlau (1997) proposed using the theoretical improvement function

I(y(x)) =

ynmin − y(x)


1[ynmin>y(x)], (5)

where ynmin is the smallest element in yn and 1E is 1 if E is true and is 0 if E is false (see also Jones et al., 1998; Huang et al.,
2006). Of course, I(y(x)) is unknown but a probabilistic assessment can be made of its possible values by substituting Y (x)
for y(x). The expected improvement is defined to be conditional expectation of I(Y (x)) given yn, i.e., EI(x) = E {I(Y (x))|yn}.
This quantity can be shown to be approximately

EI(x) =


(ynmin −y(x))Φ 

ynmin −y(x)
s(x)


+ s(x)φ


ynmin −y(x)

s(x)


1[s(x)>0] (6)

where Φ(·) is the standard normal cumulative distribution function and φ(·) is the associated density function. The value
of EI(x) will be large if either the predicted valuey(x) is much smaller than ynmin or s(x) is large (the latter means there is a
large amount of uncertainty in the estimated y(x)). The steps of the EGO algorithm are

1. Evaluate y(·) at an initial space-filling design Dn = {x1, . . . , xn}, such as a maximin Latin hypercube.
2. Estimate the stochastic process parameters β, σ 2, and θ based on yn.
3. Find xn+1

∈ argmax EI(x).
4. Evaluate y(xn+1), increment n, and go to Step 2 unless a stopping criterion has been met.

This paper will generalize the philosophy of the EGO algorithm to construct a finite approximation to the Pareto Set and the
Pareto Front.

3. Modeling multiple outputs using multivariate Gaussian processes

Now let y(x) = (y1(x), . . . , ym(x)) denote an m-dimensional computer simulator output where x in X. This paper
assumes that y(x) can be modeled as a draw from anm-variate Gaussian process of the form

Y (x) = (Y1(x), . . . , Ym(x))⊤ = β + AZ(x) (7)

where A = (aij) is a symmetricm × m positive-definite matrix,

β = (β1 · · · βm)⊤ , (8)

and Z(x) = (Z1(x), . . . , Zm(x))T is an m × 1 vector of mutually independent stationary Gaussian processes each with zero
mean and unit variance, and Zi(·) has correlation function of the form

R(x − x⋆
| θi) = exp


d

j=1

θi,j

xi − x⋆

i

2
. (9)

Here, x and x⋆ are assumed to be any arbitrary inputs in X. It is straightforward to show that Yi(·) has mean βi and

Cov(Y (x), Y (x⋆)) = A diag

R(x − x⋆

| θ1), . . . , R(x − x⋆
| θm)


A⊤, (10)
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where diag (v) of the n × 1 vector v denotes the n × n diagonal matrix with elements v. Taking x = x⋆ in (10) gives the
variance–covariance matrix of Y (x),

Cov(Y (x), Y (x)) = AA⊤
= AA ≡ Σ0. (11)

Thus model (7) states that each component Yi(x) is stationary with component specific mean, variance
m

j=1 a
2
ij while the

variance–covariance matrix of Y (x) is independent of x. When A is diagonal, Y1(x), . . . , Ym(x) are mutually independent.
Suppose that y(·) has been evaluated at the n inputs in Dn = (x1, . . . , xn) ⊂ X. Let ymn

= (y⊤(x1), . . . , y⊤(xn))⊤
denote the associated mn × 1 vector of stacked y⊤(xi) outputs and Ymn the corresponding process values. Let Σmn denote
themn × mn variance–covariance matrix of Ymn; it is easy to compute that Σmn is

Σ0 Cov(Y (x1), Y (x2)) · · · Cov(Y (x1), Y (xn))
Cov(Y (x1), Y (x2)) Σ0 · · · Cov(Y (x2), Y (xn))

...
...

. . .
...

Cov(Y (x1), Y (xn)) Cov(Y (x2), Y (xn)) · · · Σ0

 . (12)

For any given input x0, the m × mn covariance of Y (x0) and Ymn is denoted by

Σ0,mn = (Cov(Y (x0), Y (x1)), . . . , Cov(Y (x0), Y (xn))) . (13)

This paper considers two choices of model forms for A. The first model form assumes that A is a diagonal with positive
entries; as noted above, this assumption fits independent GPs to each yi(·), 1 ≤ i ≤ m and is termed the Independence
model. The second model form assumes A is a symmetric, positive-definite matrix. This model permits dependence among
the various outputs; it is termed the Nonseparable Dependencemodel. The matrix A in the nonseparable dependence model
can be thought of as the unique matrix square root of Σ0 which can be calculated via eigendecomposition. While some
geostatistics literature proposes treating A as the lower triangular Cholesky decomposition of Σ0 (see Gelfand et al., 2004;
Banerjee et al., 2008), Fricker et al. (2013) shows that such a specification induces artificial asymmetry into the covariance
structure and therefore argues that the eigendecomposition is more appropriate for modeling functions having no a priori
hierarchy of dependence.

When β,A, and θ = (θ1, . . . , θm) are known, the Gaussian assumption gives that
Y (x0)
Ymn

 β
∼ N


Im
F


β,


Σ0 Σ0,mn

Σ⊤

0,mn Σmn


, (14)

where F = 1n ⊗ Im. Therefore, standard multivariate normal results yield
Y (x0)|Ymn

= ymn, β


∼ N

β + Σ0,mnΣmn(ymn

− F β), Σ0 − Σ0,mnΣ
−1
mn Σ⊤

0,mn


. (15)

Integrating out β in (15) with respect to the non-informative prior [β] ∝ 1 yields
Y (x0)|Ymn

= ymn
∼ N (y(x0), S(x0)) , (16)

wherey(x0) = βGLS + Σ0,mnΣ
−1
mn (ymn

− FβGLS), with (17)βGLS = (F ⊤Σ−1
mn F )−1F ⊤Σ−1

mn y
mn, (18)

and estimated prediction uncertainty

S(x0) = Σ0 − Σ0,mnΣ
−1
mn Σ⊤

0,mn + (Im − Σ0,mnΣ
−1
mn F ) × (F ⊤Σ−1

mn F )−1
× (Im − Σ0,mnΣ

−1
mn F )⊤. (19)

When A and θ are unknown, this paper plugs restricted maximum likelihood (REML) estimatesA,θ ∈ argmax

−

1
2
log (|Σmn|) −

1
2
log


|F ⊤Σ−1

mn F |

−

1
2


ymn

− FβGLS

⊤

Σ−1
mn


ymn

− FβGLS


. (20)

into (17)–(19) to provide y(x0) estimates and uncertainty quantifications.
The most obvious advantage of the nonseparable dependence model is it allows one to incorporate more realistic as-

sumptions regarding the between-output relationship into the Gaussian process model. Consider the hypothetical example
where a computer simulator’s inputs x are various design parameters for an automobile and the outputs y1(x) and y2(x)
measure the fuel efficiency and acceleration of the automobile. The assumption that these outputs are negatively corre-
lated is reasonable and consistent with real-world experience. The nonseparable dependence model allows one to capture
this correlation in the output vectors, while the independence model assumes that these outputs vary independently. The
most obvious disadvantage of the nonseparable dependence model is in the estimation of the covariance parameters. In the
independence model, the off-diagonal elements of A are fixed at 0. Therefore, there are m(m − 1)/2 fewer parameters to



254 J. Svenson, T. Santner / Computational Statistics and Data Analysis 94 (2016) 250–264

estimate when compared to the nonseparable dependence model, making the maximization of the likelihood function a
simpler optimization problem.

An extensive study of the advantages and disadvantages of the nonseparable dependencemodelwith plug-in estimates of
covariance parameters on someactualmultiple-output computer simulators canbe found in Fricker et al. (2013). The authors
compared a simpler independence model to a variety of covariance structures, including the nonseparable covariance
structure described previously in this section (referred in their paper as the nonseparable linear model of coregionalization or
LMC) using two real-world case studies. Here is a summary of their key findings. The main advantage of the nonseparable
dependencemodelwas in its approximation of the distribution of scalar functions of simulator outputs. For both case studies,
a domain-specific non-linear scalar function of the simulator output was introduced. The posterior distribution of a scalar
function can be approximated by drawing samples from (16) and applying the function to these samples. The metric Dα ,
defined as the proportion of 100α% posterior credible intervals that contain the actual output of the scalar function, was
computed for both the independencemodel and the nonseparable LMC. This value was then plotted against α for α ∈ [0, 1].
A plot with large deviations from a straight line through the origin with unit slope indicates a lack of fit. For both examples’
domain-specific scalar functions, the nonseparable LMChadDα vs.α plotswith only slight deviations from the reference line.
However, the independencemodel hadDα vs. α plots with rather large deviations from the reference line. This suggests that
the nonseparable LMCbetter quantifies the uncertainty in scalar functions of themultiple outputs of the computer simulator.
The main drawback of the nonseparable LMC relative to the independence model discovered in these case studies was in
regards to marginal output prediction. In both case studies, the prediction of individual outputs was shown to have roughly
equal or much lower root mean square prediction error (RMSE) when using the independence model.

4. The expected maximin fitness improvement function

This section proposes an improvement function tailored to the Pareto optimization problem. Let P n
Y denote the set of

nondominated outputs among the first n computed output vectors, and P n
X the associated set of x inputs; thus P n

X =
x∗

1, . . . , x
∗
p


with p ≤ n and P n

Y =

y(x∗

1), . . . , y(x
∗
p)


.

This paper proposes use of the truncated maximin fitness function

IM (y(x)) ≡ − max
xi∈P n

X

min
j=1,...,m


yj(x) − yj(xi)


× 1− max

xi∈Pn
X

min
j=1,...,m

(yj(x)−yj(xi))>0

 (21)

as the (theoretical) improvement that y(x) makes to the current Pareto Front where the indicator function 1E is 1 or 0
according as the event E is true or not. The effectiveness of the maximin fitness function to identify promising new inputs x
depends on scales of y1(·), . . . , ym(·) being comparable. In the algorithm below, each yi(·), for i = 1, . . . ,m, is empirically
scaled using the initial set of training data to have a maximum of 1 and minimum of 0, i.e., min {yi(x1), . . . , yi(xn)} = 0 and
max {yi(x1), . . . , yi(xn)} = 1.

A non-truncated version of (21) was introduced in Bautista (2009). The source of both versions was the ‘‘modified
maximin fitness function’’

max
xi∈P n

X

min
j=1,...,m


yj(x) − yj(xi)


(22)

introduced in Balling (2003) as a component of a multiobjective evolutionary algorithm. As will be shown below, the
truncated maximin fitness function can also be motivated in terms of the additive binary-ϵ measure.

Four properties of IM (y(x)) will be described that motivate its use as an improvement function. First, when m = 1,
it is straightforward to show that IM(y(x)) = I(y(x)), the theoretical EGO improvement function, so that single-objective
improvement is a special case of multiobjective improvement. Second, it is easy to show that for a (candidate) y(x) ∉

P n
Y, IM (y(x)) > 0 if and only if y(x) is not dominated by any vector in P n

Y , and IM (y(x)) = 0 if and only if y(x) is domi-
nated by a vector inP n

Y . (If y(x) ∈ P n
Y then IM (y(x)) = 0 Balling, 2003.) Third, IM (y(x)) is monotonic with respect to Pareto

dominance, in the sense that IM (y(x)) ≥ IM (y(x⋆)) provided that y(x) ≽ y(x⋆). Fourth, and last, IM(y(x)) is equivalent
to the additive binary-ϵ indicator of an appropriately selected comparison of Pareto Front approximations. To describe the
equivalence, start with definition of the additive binary-ϵ indicator, which is a popular Pareto set approximation quality
indicator introduced in Zitzler et al. (2003) that allows one to compare two Pareto Front approximations B and C in the ob-
jective space. Specifically, the additive binary-ϵ indicator of C relative to B is the smallest real number (positive or negative)
that must be added to all vectors in C (thus ‘‘worsening’’ C if ϵ > 0) so that the set B dominates the degraded set C , i.e.,

Iϵ+ (B, C) = inf
ϵ∈R


∀ yc

∈ C ∃ yb
∈ B : ybi ≤ ϵ + yci ∀ i = 1, . . . ,m


. (23)

In words, the additive binary-ϵ indicator of C relative to B measures how much ‘‘better’’ C is than B in terms of dominance.
To describe the relationship between the maximin fitness function and the additive binary-ϵ indicator, let P n+1

Y (x) be

the updated Pareto front if ymn is augmented by y(x). Then, one can regard Iϵ+


P n

Y, P n+1
Y (x)


as quantifying how much

y(x) improves upon the current Pareto front approximation P n
Y . It is reasonable, then, to use Iϵ+


P n

Y, P n+1
Y (x)


as an
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improvement function. The following theorem shows that this approach is equivalent to using themaximin fitness function
to measure improvement.

Theorem 4.1. Let P n+1
Y (x) be the set of nondominated points in the set P n

Y ∪ {y(x)}. Then, Iϵ+


P n

Y, P n+1
Y (x)


= IM (y(x)).

The proof of Theorem 4.1 is given in the Appendix A.
Note that the inclusion of the indicator function in (21) (the truncation) is a critical piece of three of the desirable

properties described above. Without it, the truncated maximin fitness function is not a generalization of the EGO
improvement function because it is not equal to zero when y(x) is dominated by a vector in P n

Y . Moreover, the equality

between IM (y(x)) and Iϵ+


P n

Y, P n+1
Y (x)


no longer holds.

4.1. Expected maximin fitness improvement

While IM (y(x)) is not known, one can replace y(x) by Y (x) and use the conditional distribution of IM (Y (x)) given the
current training data to assess the improvement that x adds to the current data. In particular, the conditional expectedmean
of IM (Y (x)) is used below to assess the improvement possible at x.

The expected maximin fitness (EMmI) function is defined to be

EIM(x) = E{IM (Y (x))|Ymn
= ymn

}. (24)

The EMmI function is used to control the search for the Pareto Front. Equivalently, the previous subsection shows that EIM(x)
is the same as

E

Iϵ+


P n

Y, P n+1
Y (x)


|Ymn

= ymn


(25)

where y(x) in Iϵ+


P n

Y, P n+1
Y (x)


is replaced by Y (x).

There are two cases that will be considered in describing the calculation of EIM(x). The first case ism = 2 where a nearly
a closed-form expression for EIM(x) is derived and implemented in code. In the second case is m ≥ 3 where a Monte Carlo
method is used to estimate EIM(x); details of our implementation are given in the next section.

Whenm = 2, Y (x) = (Y1(x), Y2(x)) has conditional mean and covariance

y(x) =

y1(x)y2(x)


(26)

and

S(x) =


s21(x) ρ(x)s1(x)s2(x)

ρ(x)s1(x)s2(x) s22(x)


, say, (27)

respectively, where ρ(x) is the correlation between the two outputs.
Without loss of generality, assume that the points are labeled so that y1(x∗

1) ≤ · · · ≤ y1(x∗
p). As a consequence of the fact

that P n
Y cannot contain any dominated points, it must be the case that y2(x∗

1) ≥ · · · ≥ y2(x∗
p). For notational convenience,

let y1(x∗

p+1) = y2(x∗

0) = ∞, k(1) = 2, k(2) = 1, h(1, j) = j − 1, and h(2, j) = j + 1. It is straightforward to prove that
IM(y(x)) partitions R2 into 2p + 1 regions R1,1, . . . , R1,p, R2,1, . . . , R2,p and RD, where, for i = 1, 2 and j = 1, . . . , p, Ri,j is
given by

yi, yk(i)


: yi ≤ yi(x∗

j ), yk(i)(x
∗

j ) − yi(x∗

j ) + yi ≤ yk(i) ≤ yk(i)(x∗

h(i,j)) − yi(x∗

j ) + yi


(28)

and

RD =


(y1, y2) : {(y1, y2)} ≺ P n

Y


. (29)

Fig. 1 illustrates this decomposition for a Pareto Front containing three points. It can be seen that IM(y(x)) is equal to
yi(x∗

j ) − yi for x ∈ Ri,j, for i = 1, 2, j = 1, . . . , p, while IM(y(x)) is equal to 0 for x ∈ RD. Therefore, letting

Inti,j =

 yi(x∗j )

−∞

 yk(i)(x∗h(i,j))−yi(x∗j )+yi

yk(i)(x∗j )−yi(x∗j )+yi


yi(x∗

j ) − yi

f (y1, y2)dyk(i)dyi (30)

where i = 1, 2, j = 1, . . . , p, and f (y1, y2) is the bivariate conditional normal probability density function with mean (26)
and covariance (27), gives

EIM(x) =

2
i

p
j

Inti,j. (31)

Finally, accounting for the different upper and lower bounds for each Inti,j, we arrive at the following formula for EIM(x).



256 J. Svenson, T. Santner / Computational Statistics and Data Analysis 94 (2016) 250–264

Fig. 1. Regions of integration R1,1, . . . , R1,p, R2,1, . . . , R2,p and RD for a p = 3 point Pareto Front.

Theorem 4.2. When m = 2,

EIM(x) =

2
i=1

p
j=1


Int1i,j(x) + Int2i,j(x) + Int3i,j(x)


(32)

where

Int1i,j(x) = si(x)φ

d(i, j)
si(x)


×

Φ

−d(k(i), j) + ρ(x)sk(i)(x)d(i, j)/si(x)
(1 − ρ2(x))s2k(i)(x)


− Φ

−d(k(i), h(i, j)) + ρ(x)sk(i)(x)d(i, j)/si(x)
(1 − ρ2(x))s2k(i)(x)

 ,

Int2i,j(x) =


q(i, j)

si(x) − sk(i)(x)ρ(x)
2π(1 − ρ2(x))s2k(i)(x)

×

exp

−
1
2

y2i (x)
s2i (x)

+


yi(x∗

j ) − d(k(i), j) + ρ(x)sk(i)(x)yi(x)/si(x)2
(1 − ρ2(x))s2k(i)(x)


× exp


1
2
q(i, j)v2(i, j)


Φ

yi(x∗

j ) − q(i, j)v(i, j)
√
q(i, j)


− exp

−
1
2

y2i (x)
s2i (x)

+


yi(x∗

j ) − d(k(i), h(i, j)) + ρ(x)sk(i)(x)yi(x)/si(x)2
(1 − ρ2(x))s2k(i)(x)


× exp


1
2
q(i, j)v2(i, h(i, j))


Φ

yi(x∗

j ) − q(i, j)v(i, h(i, j))
√
q(i, j)


and

Int3i,j(x) =

yi(x∗

j ) −yi(x) ×

 u(i,j)

0
Φ

d(i, j) − d(k(i), j) + (sk(i)(x)ρ(x) − si(x))Φ−1(w)
(1 − ρ2(x))s2k(i)(x)

 dw

−

 u(i,j)

0
Φ

d(i, j) − d(k(i), h(i, j)) + (sk(i)(x)ρ(x) − si(x))Φ−1(w)
(1 − ρ2(x))s2k(i)(x)

 dw


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with constants

u(i, j) = Φ


d(i, j)
si(x)


v(i, j) =

yi(x)
s2i (x)

+
y2(x∗

j ) − d(k(i), j) + ρ(x)sk(i)(x)yi(x)/si(x)
(1 − ρ2(x))s2k(i)(x)

q(i, j) =
(1 − ρ2(x))s2k(i)(x)s

2
i (x)

s2i (x) + s2k(i)(x) − 2ρ(x)si(x)sk(i)(x)

d(i, j) = yi(x∗

j ) −yi(x).
The Supplementary material provides details of this formula by showing that Inti,j = Int1i,j + Int2i,j + Int3i,j, for i = 1, 2, j =

1, . . . , p (see Appendix B).

5. The EMmI algorithm for approximating the Pareto front and set

First, an outline of the proposed multiobjective EMmI optimization algorithm based on the expected maximin fitness
function will be stated. Then some of the computational details required to implement the procedure will be discussed.

1. Evaluate y(·) at an initial space-filling design Dn = (x1, . . . , xn) ⊂ X. Let ymn
= (y⊤(x1), . . . , y⊤(xn))⊤. Empirically

scale the outputs so that min {yi(x1), . . . , yi(xn)} = 0 and max {yi(x1), . . . , yi(xn)} = 1.
2. Estimate θ and A using REML based on the ymn (or another method such as maximum likelihood).
3. Calculate the current Pareto Set P n

X and Pareto Front P n
Y .

4. Find xn+1
∈ argmax EIM (x).

5. Evaluate y(xn+1). Repeat Steps 2–5 with output data

ym(n+1)
= (y⊤(x1), . . . , y⊤(xn), y⊤(xn+1))

⊤ (33)

until the computational budget has been exhausted or other stopping criteria met.

While the computational budget will often be the reason for stopping output evaluations, there are other possible
stopping criteria. Perhaps the most obvious criterion is to determine the maximum expected improvement, max EIM (x)
and terminate sampling if this quantity is sufficiently small (see Schonlau, 1997). Alternatively, because the correlation
parameters are re-estimated after each new run, the sequence of maximum expected improvements need not bemonotone
decreasing; hence a stopping criterion based on having a sufficiently small maximum expected improvement after a
sequence of, say 5, addition inputs are specified, is often used as a more cautious stopping criterion (Williams et al., 2000).

Four implementation choices required to implement the EMmI algorithm in the examples belowwill be described. First,
the initial space-filling design was taken to be a maximin LHD. For many cases, users can find a mathematically provable
maximin LHD from the on-line collection found at http://www.spacefillingdesigns.nl/.We used approximatemaximin LHDs
obtained from applying the genetic algorithm bestlh available in on-line supplementarymaterial for Forrester et al. (2008)
(see Appendix B).

Second, for the case of the independence model, REML estimates of θ and the process variances were obtained using
MATLAB function mperk, which can be obtained by contacting the second author. For the nonseparable dependence model,
the MATLAB function ga, also available as a component of the on-line supplementary material to Forrester et al. (2008)
(see Appendix B), was used to obtain the initial estimates of θ and A; these values were taken to be the starting points in
an application of the MATLAB function fmincon to produce the final estimates of θ and A. In both models, the estimated
model parameters were used to calculate y(x), and S(x).

Third, the MATLAB function paretoset.m (written by Y. Cao and available at http://www.mathworks.com/matlab
central/fileexchange/15181-pareto-set) was used to calculate P n

X and P n
Y .

Fourth, the MATLAB function NOMADm, Mark Abramson’s MATLAB implementation of a mesh adaptive direct search
(MADS) algorithm, was used to optimize EIM (x) (see Audet and Dennis, 2006 and the URL http://www.gerad.ca/NOMAD/
Abramson/nomadm.html). To maximize EIM (x) when m = 2, formula 4.2 for EIM (x) was optimized using NOMADm. When
m ≥ 3, EIM (x) was optimized via sample average approximation (SAA, described in Shapiro (2003)). The idea of SSA is to
construct an approximation to EIM (x) based on a random sample from the conditional distribution of Y (x) given the current
data; then this easy-to-calculate approximation is optimized. In detail, first an independent, identically distributed sample
Z1, . . . , ZS were generated from a N(1m, Im) distribution. For any given x, letting C(x) be the Cholesky decomposition of
S(x); each Z i is transformed into a random variable Y i(x) = C(X)Z i

+y(x) ∼ N(y(x), S(x)). Thus, Y 1(x), . . . , Y S(X) is a
sample from the conditional distribution of Y (x) given the data. The sample average function EIM (x) =

1
S

S
s=1 I

s
M(x) is a

http://www.spacefillingdesigns.nl/
http://www.mathworks.com/matlabcentral/fileexchange/15181-pareto-set
http://www.mathworks.com/matlabcentral/fileexchange/15181-pareto-set
http://www.gerad.ca/NOMAD/Abramson/nomadm.html
http://www.gerad.ca/NOMAD/Abramson/nomadm.html
http://www.gerad.ca/NOMAD/Abramson/nomadm.html
http://www.gerad.ca/NOMAD/Abramson/nomadm.html
http://www.gerad.ca/NOMAD/Abramson/nomadm.html
http://www.gerad.ca/NOMAD/Abramson/nomadm.html
http://www.gerad.ca/NOMAD/Abramson/nomadm.html
http://www.gerad.ca/NOMAD/Abramson/nomadm.html
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deterministic function for a particular realization of the random sample Z1, . . . , ZS) where

IsM (x) = − max
xi∈P n

X

min
j=1,...,m


Y s
j (x) − yj(xi)


× 1− max

xi∈Pn
X

min
j=1,...,m


Y s
j (x)−yj(xi)


>0

. (34)

The next input is found by calculating xn+1
∈ arg max EIM (x) via the NOMADm algorithm.

6. Examples

The performance of the EMmI algorithm will be compared with that of three algorithms that replace Step 4 of the EMmI
algorithm by competing improvement criterion. The first competing criterion, fromKeane (2006), chooses xn+1 tomaximize
the conditional probability that Y (x) is not dominated by the current Pareto front estimate, given the first n evaluations of
y(·), i.e., to maximize

IPI(x) = P

Y (x) ⋡ y for all y ∈ P n

Y|Ymn
= ymn


. (35)

Eq. (35) is termed the probability improvement (PI). The advantage of this criterion is that it is not dependent on the scaling
of the output. Notice that (35) can also be viewed as the conditional expectation of the indicator function

1
y(x)⋡y for all y∈P n

Y

. (36)

Similar to IM (y(x)), (36) is monotonic with respect to Pareto dominance, and it is a non-negative function that is only
positive for y(x) not dominated by P n

Y . Unlike IM (y(x)), (36) is not equivalent to I(y(x)) whenm = 1.
A second criterion, also proposed in Keane (2006) and advocated in Forrester et al. (2008), chooses xn+1 to maximize a

centroid weighted version of the PI criterion (35), i.e., to maximize

ICWPI(x) = P

Y (x) ⋡ y for all y ∈ P n

Y|Ymn
= ymn


× min

xi∈P n
X

 m
k=1


Y k(x) − yk(xi)

2
(37)

where Y (x) is the centroid of the n outputs; Y (x) is defined to be the ratio

Y (x) =

E

Y (x)1

Y (x)⋡y for all y∈P n
Y

|Ymn
= ymn


P


Y (x) ⋡ y for all y ∈ P n

Y|Ymn = ymn
 .

Maximizing ICWPI(x) is called the CWPI criterion. As for the EMmI criterion, relative scaling of the various objectives must be
performed when implementing the CWPI criterion. Also, the use of the CWPI criterion can be shown to be a generalization
of the single-objective EGO expected improvement function. This generalization appears to be the main motivation behind
the CWPI criterion.

The third criterion has already been discussed in 4. It removes the indicator function from (21). So, the improvement
criteria becomes

EIP (y(x)) ≡ E{− max
xi∈P n

X

min
j=1,...,m


yj(x) − yj(xi)


|Ymn

= ymn
}. (38)

An algorithm using this improvement criteria was proposed in Bautista (2009) and was referred to as the EmaX algorithm.
In addition to their visual fit, this section will use two real-valued quantities to summarize the quality of the Pareto Front

produced by the competing criterion. The two methods are the additive binary-ϵ indicator and the hypervolume indicator.
The former was described in Section 4. The following paragraph gives a brief description of the latter (see Emmerich et al.,
2006 for a more complete description). Zitzler et al. (2008) gives an in-depth discussion of Pareto set approximation quality
indicators.

The hypervolume indicator of a Pareto Front approximation is the area (or volume) of the region dominated by the
approximation relative to a fixed reference point. The hypervolume indicator of a finite set B which is a Pareto Front
approximation relative to the reference point r is defined to be

IH (B, r) =


Rm

1{y|y ≽ r, B ≽ {y}}dy. (39)

In words, IH (B, r) is the volume of the set of points y in the objective space that dominate r and which are dominated by
one ormore points in B so that the larger IH (B, r), the better the approximating set B. Fig. 2 illustrates IH (B, r) as the shaded
area for an m = 2 dimensional example with a five point Bwhere r is the upper right-hand corner of the shaded area.
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Fig. 2. The filled circles are five-point set B, the filled square is the reference point r , and the shaded region is IH (B, r).

6.1. The MOP2 problem

The MOP2 test problem was first described in Fonseca and Fleming (1995). MOP2 has a d = 2-dimensional input space
X = [−2, 2]2, and m = 2 objective functions which are

y1(x) = 1 − exp


−

2
i=1


xi −

1
√
2

2


and (40)

y2(x) = 1 − exp


−

2
i=1


xi +

1
√
2

2


. (41)

The Pareto set is known to be the line segment

PX =


x : x1 = x2 and −

1
√
2

≤ x1 ≤
1

√
2
, −

1
√
2

≤ x2 ≤
1

√
2


. (42)

A discrete approximation to PY was determined by evaluating (y1(x), y2(x)) at 201 x points uniformly spread in PX. This
close approximation to PY served as the basis for comparing the various Pareto Front approximations constructed for this
example.

An initial 10 point (5 per input dimension) maximin Latin hypercube design was determined using the MATLAB function
bestlh from Forrester et al. (2008). The initial design was augmented sequentially with 10 new inputs using EMmI and the
two competing methods sketched above. Thus a total budget of 20 runs was used for this problem.

In all four cases both the independence GP model and the nonseparable dependence GP model (introduced in Section 3)
were used in the conditional probability calculation. While CWPI and PI methods can be implemented using the code
provided in Forrester et al. (2008), this example utilizes code written by the authors because it provides better results for PI
and CWPI in terms of the hypervolume and additive binary-ϵ indicators.

To compare the Pareto Front approximations, both graphical and the Pareto set approximation quality indicators were
employed. The true Pareto Front and competing Pareto Front approximations were plotted to allow visual inspection of
the approximations; the spread of the approximation and its closeness to the true front were examined. The value of
Iϵ+(PY, P 20

Y ) was calculated for each approximation, where P 20
Y denotes the Pareto Front based on all 20 observations.

Smaller values represent better approximations to the true Pareto Front. The hypervolume indicator of the various
approximationswas computed using r = (1, 1) as the reference point; larger values of the hypervolume indicator represent
better approximations. While all of the expected improvement algorithms are deterministic, in principal, they all use
maximization algorithms with stochastic search components. Therefore, these quality indicators are random variables
in practice. Hence each algorithm was run five times and the mean, range, and standard deviations of the Pareto set
approximation quality indicators were computed.

Table 1 shows that EMmI and EmaX, calculated using either the independence or dependenceGPmodel for (Y1(x), Y2(x)),
performed significantly better than either the CWPI and PI implementations, again using either the dependent or
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Table 1
Summary of quality indicators in five runs of each algorithm for theMOP2 problem.

Method Iϵ+ (PY, P 10
Y ) IH (P 10

Y )

Mean Range Std Dev Mean Range Std Dev

EMmI/Ind 0.0706 0.0705–0.0707 0.0001 0.2886 0.2883–0.2890 0.0002
Emax/Ind 0.0721 0.0680–0.0788 0.0043 0.2884 0.2862–0.2895 0.0013
PI/Ind 0.1368 0.0937–0.2334 0.0552 0.2531 0.2420–0.2638 0.0096
CWPI/Ind 0.0862 0.0668–0.0927 0.0112 0.2710 0.2649–0.2789 0.0060

EMmI/Dep 0.0770 0.0715–0.0882 0.0067 0.2851 0.2811–0.2889 0.0037
Emax/Dep 0.0740 0.0689–0.0797 0.0041 0.2860 0.2792–0.2894 0.0041
PI/Dep 0.1229 0.0978–0.1608 0.0256 0.2529 0.2306–0.2772 0.0226
CWPI/Dep 0.0937 0.0879–0.0977 0.0041 0.2609 0.2570–0.2647 0.0028

Fig. 3. Sequentially added points using an independence model (left) and dependence model (right) with EMmI (stars), EmaX(plus signs), PI (circles), and
CWPI (diamonds). The initial 10 outputs are denoted by x’s. The smooth curve running from the top left to the bottom right of each plot is the true Pareto
front.

independence GP model. The area of the dominated hypervolume when using EMmI and EmaX is above 0.28 on average
using both the independence and dependence models, while CWPI and PI are below 0.28 and 0.26 on average, respectively.
The additive binary-ϵ indicator is, on average, larger for CWPI and PI than for EMmI and EmaX when using either the
independence and dependence model. It should also be noted that CWPI appears to outperform PI, regardless of the
dependence model assumed, which is consistent with the results in Keane (2006). The plots in Fig. 3 show the results for
one of the five runs; the spread and uniformity of these points support the superiority of EMmI and EmaX as well as the
numerical measures. There is very little difference in performance between EMmI and EmaX. EMmI has a slight edge in the
independence case (slightly lower additive binary-ϵ indicator and slightly higher hypervolume indicator), while EmaX has
a slight edge in the dependence case. These differences are quite small, and neither visualization of the estimated Pareto
fronts appears to bemore desirable than the other. While CWPI and PI do not perform poorly, they do not appear as efficient
as EMmI and EmaX because bothmethods have sequentially added points that are not on but only near the true Pareto front.
The PI criterion appears to suffer from some clustering issues, because under both the independence and dependence GP
models it has a tendency to sequentially add inputs with similar outputs, while CWPI criterion appears to be more effective
at spreading out the sequentially added evaluations of the objective function.

A somewhat surprising result is that the dependence GP model appears to offer little advantage over the (less com-
putationally demanding) independence model. On average, the dependence model performed slightly worse for almost all
improvement criteria, with the single exception of the binary-ϵ indicator for the PI criterion, where slightly smaller binary-ϵ
values are produced using the dependence model. One possible explanation is that the selected dependence GP model does
not model pair this particular pair of functions. Other possible explanations for the inferior performance of the dependence
model is that, while it is appropriate, there is too little data to reliably estimate the seven covariance parameters of the
model or the maximization algorithm of the restricted likelihood function did not yield the global maximum. In contrast,
the independence model requires maximization of two separate restricted likelihood functions, each of which depends on
two parameters. In examples where the data was constructed to satisfy the nonseparable dependence model (see the Sup-
plementary material, Appendix B), use of the EMmI algorithm with the dependence model produced larger hypervolume
indicator and smaller binary-ϵ comparisons with the true Pareto Front than when the EMmI algorithm is used with the
independence model.
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Table 2
Summary of the quality indicators for five runs of each algorithm for the DTLZ2 problem.

Method Iϵ+ (PY, P 40
Y ) IH (P 40

Y )

Mean Range Std Dev Mean Range Std Dev

EMmI/Ind 0.2436 0.2329–0.2519 0.0077 0.7381 0.7308–0.7447 0.0059
EmaX/Ind 0.2402 0.2347–0.2442 0.0040 0.7300 0.7265–0.7344 0.0035
CWPI/Ind 0.3023 0.2557–0.3324 0.0317 0.6684 0.6323–0.7120 0.0292
PI/Ind 0.4294 0.3675–0.4476 0.0345 0.5968 0.5738–0.6261 0.0215

EMMI/Dep 0.3044 0.2925–0.3221 0.0117 0.6960 0.6684–0.7130 0.0173
EmaX/Dep 0.2853 0.2743–0.2995 0.0094 0.7106 0.7001–0.7239 0.0105
CWPI/Dep 0.2980 0.2762–0.3192 0.0178 0.6894 0.6445–0.7193 0.0278
PI/Dep 0.3926 0.2838–0.4435 0.0681 0.6273 0.5887–0.6563 0.0272

6.2. DTLZ2 function

This example evaluates the performance of the various methods in a higher-dimensional case. To do so, the DTLZ2 test
function, described in Deb et al. (2005), is used. DTLZ2was designed to be scalable in both the number of inputs and outputs.
This example considers the casewhere there arem = 4outputs and d = 4 inputs. The input space isX = [0, 1]4. The outputs
are

y1(x) = (1 + g(x4)) cos
πx1

2


cos

πx2
2


cos

πx3
2


(43)

y2(x) = (1 + g(x4)) sin
πx3

2


cos

πx1
2


cos

πx2
2


(44)

y3(x) = (1 + g(x4)) sin
πx2

2


cos

πx1
2


(45)

y4(x) = (1 + g(x4)) sin
πx1

2


(46)

where

g(x4) = (x4 − 0.5)2 . (47)
The Pareto set is PX = {x : x4 = 0.5} and PY is the concave set where g(x4) = 0. A discrete approximation to PY was
created by evaluating DTLZ2 at 20,000 points uniformly spread in PX.

Proceeding in a similar fashion as theMOP2 example, an initial 20 pointmaximin LHDwas constructed using theMATLAB
function bestlh from Forrester et al. (2008). Then the original design was augmented sequentially with 20 new points
chosen by the EMmI, CWPI, and PI algorithms using both the independence and dependence GPmodels. Thus a total budget
of 40 evaluations of each objective function was used for this problem.

In thism = 4 example, graphicalmethods are problematic to interpret; thus only the hypervolume indicator IH(P 40
Y ) and

the additive binary-ϵ indicator Iϵ+(PY, P 40
Y ) will be used here to compare the algorithms. As in the previous example, each

algorithm/process model was run five times and the mean, range, and standard deviation of the two comparison measures
are reported in Table 2.

The DTLZ2 results based on the independence GP model were similar to the MOP2 results. In every run, EMmI/Ind
and EmaX/Ind outperformed CWPI/Ind and CWPI/Ind outperformed PI–Ind in terms of both the binary-ϵ indicator and
hypervolume. These quality indicators were nearly identical, on average, for EMmI/Ind and EmaX/Ind. For the dependence
GP model, the results differed from those of the MOP2 example. EmaX/Dep was the clear winner among the dependence
models, as it had the smallest average binary-ϵ indicator and largest average hypervolume. EMmI/Dep had a slightly larger
hypervolume indicator than CWPI/Dep on average, but CWPI/Dep had a slightly smaller binary-ϵ indicator than EMmI/Dep
on average. The range of both performance measures showed considerable overlap between the two improvement criteria.
PI/Dep is still performed considerably worse than both EMmI/Dep and CWPI/Dep. and CWPI outperforms PI in terms of both
performance measures.

The higher dimensional DTLZ2 example provided some evidence of the usefulness of the nonseparable dependence GP
model.While EMmI/Dep and EmaX/Dep perform considerably poorerwith the dependencemodel in terms of the two Pareto
set quality measures, both CWPI/Dep and PI/Dep did seem to have, on average, slightly better performance when using the
dependence model. The major downside of the dependence model in this example was that it depends on 26 parameters
which must be estimated. This is much more difficult than the optimization problem posed by the independence model,
which only requiresmaximization of four separate restricted likelihood functions, each ofwhich depends on five parameters.

7. Conclusions and discussion

This paper introduces a sequential design for a computer experiment involving m ≥ 2 expensive-to-evaluate computer
simulators to approximate their Pareto Front and Pareto Set. The design uses an expected improvement algorithm based on
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an interpolating stochastic process. Two versions of the algorithm are implemented: the first uses independent processes
to model each output and the second uses a multivariate process that allows dependence among the outputs. The latter was
considered to potentially provide additional predictive accuracy in applications where knowledge of the value of one output
at the current set of input data provides information about the value of a different output at ‘‘nearby’’ inputs.

A closed-form expression is given for the proposed expected improvement function when m = 2; a Monte-Carlo
approximation to the expected improvement function is presented when m ≥ 3. Several desirable properties of the
proposed improvement function are shown. Based on the examples presented in the paper and additional ones that are
given in the Supplementary material (see Appendix B), the authors recommend using the expected maximin improvement
computed using independent Gaussian process models (EMmI/Ind), particularly for problems where it is not possible to
supply information concerning possible dependences among the output functions and where scaling of the objectives can
be roughly determined. This combination of improvement function and dependence structure outperformed PI and CWPI
in both the independence and dependence case. While the performance of EmaX/Ind is nearly identical to EMmI/Ind on
the test problems, one can argue that EMmI/Ind is preferable because it is a proper generalization of the Efficient Global
Optimization (EGO) algorithm and because of its equivalence to an improvement function based on the additive binary-ϵ
indicator.

Another advantage of the independence model is that it can more easily handle cases where m is large. Not only
are there fewer parameters to estimate, but the optimization of the likelihood function can be done separately for each
output rather than jointly. Meanwhile, for larger m, optimization of the full nonseparable dependence model can become
cumbersome and numerical issues can arise. Therefore, for large m, it is recommended that the independence model be
used.

We mention one alternative criterion to EMmI/Ind that has attractive performance although it is more difficult to
implement than EMmI/Ind. This criterion is based on the hypervolume indicator defined in (39). To describe a ‘‘hypervolume
improvement function’’ in the spirit of Section 5, fix an upper bound r for the vector of output functions and define

IH (y(x)) =


0, if y(x) ≼ P n

Y or y(x) ⋡ r

IH

{y(x)} ∪ P n

Y, r


− IH

P n

Y, r


, otherwise. (48)

The corresponding update function selects xn+1 to maximize the expected hypervolume improvement

EIH (x) = E

IH (Y(x)) |Ym,n

= ym,n . (49)

While the authors have found that when EIH (x) can be implemented, it produces Pareto Front approximations that are
competitive with those created using EIM(x). However, the implementation of EIH (x) can be difficult for two reasons. First, it
is well-known in themultiobjective function literature that IH(·, ·), and thus IH (y(x)), requires considerable computational
overhead, even formoderately sizedm. Therefore, applying the sample average approximationmethod of Section 4 based on
a sample of size S would require S expensive hypervolume calculations. Second, EIH (x) requires the additional specification
of the dominated point r to carry out thismethod. If the objective functions are truly black box functions, r can be difficult to
identify. Furthermore, even if one can specify upper bounds for all objectives, the value of EIH (x) will depend on particular
choice of the upper bound.

Based on the performance in the examples presented in Section 6 and in other examples that are described in the
Supplementary material (see Appendix B), both the expected maximin improvement and the expected hypervolume
improvement criteria are highly effective in approximating Pareto Fronts (and Pareto Sets). However, the authors
recommend the EMmI/Ind procedure because it is simpler to implement, and requires considerably less computational
overhead.

All of EIM(x), ICWPI(x), EIP (x) and EIH (x) require scaling each output. In the case of EIM(x), Step 1 of our EMmI Algorithm
uses an empirical scaling of each output based on the initial training data; this strategy performed well in all the examples
we investigated. However, if one requires a truly scale invariant improvement criterion, the probability of improvement is a
possible alternative. Additionally, if one uses the probability of improvement or the centroid-based expected improvement
criteria, then the dependence GP model shows some promise.

We conclude by summarizing the several additional research topics identified above that appear to be potentially fruitful,
depending on ones’ application needs. These include the development of improved prediction models for multiple-output
functions, updating strategies that add points in batches rather than one-at-a-time, and the investigation of alternative scale
invariant improvement criteria.
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Appendix A. Proof of Theorem 4.1

To organize the proof, first some known (or easily proved) facts used in the proof are stated. To reiterate notation, suppose
A and B are subsets of the same Euclidean space; then A ≺ B (A ≼ B) provided every a ∈ A is (weakly) dominated by at
least one b ∈ B.

1. P n
Y ≼ P n+1

Y (x) since adding any point from the objective space will, at worst, leave the set of nondominated points
unchanged. As a consequence,

Iϵ+


P n

Y, P n+1
Y (x)


≥ 0,

(Zitzler et al., 2003).
2. Suppose that y(x) is dominated by at least one point in P n

Y . Then, IM(y(x)) = 0 and P n
Y = P n+1

Y (x).
3. Suppose that y(x) is not dominated by any points in P n

Y . Then, P
n+1
Y (x) = {y(x)} ∪ GY where

GY ≡


y ∈ P n

Y : y(x) ⊁ y


=


y ∈ P n

Y : max
1≤k≤m

(yk(x) − yk) > 0


, (50)

here GY can be empty.
4. Suppose that A and B are each subsets of Rm. Then

Iϵ+ (A, B) = max
y(j)∈A

min
z(i)∈B

max
1≤k≤m


z(i)
k − y(j)

k


(Zitzler et al., 2003).

5. From Balling (2003):
• If fitness (y(x)) > 0 then y(x) is dominated by a vector in P n

Y .
• If fitness (y(x)) < 0 then y(x) is not dominated by any vector in P n

Y.

• fitness (y(x)) = 0 if and only if y(x) ∈ P n
Y or y(x) is dominated by some element of P n

Y.

Two cases must be considered to prove Theorem 4.1
Case 1 Suppose y(x) is dominated by some vector in P n

Y or that y(x) ∈ P n
Y .

Then,

P n
Y = P n+1

Y (x) ,

so that

Iϵ+


P n

Y, P n+1
Y (x)


= Iϵ+


P n

Y, P n
Y


= 0.

Also, IM(x) = 0, so equality holds.
Case 2 Suppose y(x) is not dominated by any vector in P n

Y and y(x) ∉ P n
Y .

Using P n+1
Y (x) = {y(x)} ∪ GY where GY is defined by (50),

Iϵ+


P n

Y, P n+1
Y (x)


= max

y(j)∈P n+1
Y (x)

min
z(i)∈P n

Y

max
1≤k≤m


z(i)
k − y(j)

k


.

If y(j)
∈ GY , then

min
z(i)∈P n

Y

max
1≤k≤m


z(i)
k − y(j)

k


. = − max

z(i)∈P n
Y

min
1≤k≤m


y(j)
k − z(i)

k


= −fitness(y(j))

= 0

because GY ⊂ P n
Y so that y(j)

∈ P n
Y . For y(x), we have

min
z(i)∈P n

Y

max
1≤k≤m


z(i)
k − yk(x)


. = − max

z(i)∈P n
Y

min
1≤k≤m


yk(x) − z(i)

k


= −fitness (y(x))
≥ 0
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as y(x) is nondominated by P n
Y . Therefore,

min
z(i)∈P n

Y

max
1≤k≤m


z(i)
k − y(j)

k


is maximized when y(j)

= y(x). Therefore, we have

Iϵ+


P n

Y, P n+1
Y (x)


= max

y(j)∈P n+1
Y (x)

min
z(i)∈P n

Y

max
1≤k≤m


z(i)
k − y(j)

k


= − max

z(i)∈P n
Y

min
1≤k≤m


yk(x) − z(i)

k


= − max

z(i)∈P n
Y

min
1≤k≤m


yk(x) − z(i)

k


× 1− max

z(i)∈Pn
Y

min
1≤k≤m


yk(x)−z(i)k


>0


= IM (y(x)) .

Note that the indicator function in the formula for IM (y(x)) must equal 1 because −fitness (y(x)) > 0, since y(x) is
nondominated and not an element of P n

Y. �

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2015.08.011.
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