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This article presents a branch-and-bound algorithm that constructs a catalog of all D-optimal 
n-point designs for specified design region, linear model, and number of observations, n. While 
the primary design criterion is D optimality, the algorithm may also be used to find designs 
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D optimality is accepted. Finally, some designs are supplied for a quadratic response surface 
model. 
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1. INTRODUCTION 

We are concerned with the problem of choosing n 
experimental settings or points x(i) (i = 1, ..., n), pos- 
sibly vector-valued and not necessarily distinct, from a 
specified design region X at which to take observations 
Yi) (i = 1, ..., n). In addition, our interest will center 
upon the situation in which observations are expen- 
sive and, hence, n is fixed at a value small enough to 
render the approximate design theory of Kiefer and 
Wolfowitz (1959) inappropriate. We assume the linear 
model 

(i) = f(x(i))TP + E(, i= 1, ...,n, 

where f is a k x 1 vector of given linearly independent 
functions on X (k < n), p is a k x 1 vector of unknown 
parameters, and e(i) is a random variable for error. It is 
further assumed that the errors e (i = 1, ..., n) are 
independently distributed, each with mean zero and 
variance a2. 

Attention will be restricted to cases in which X is a 
design region of r candidate sites xij(j = 1, ..., r), 
thereby excluding continuous regions, since (a) certain 
computational advantages ensue, and (b) the exper- 
imental settings may be qualitative or, if quantitative, 
the experimenter may wish to limit each factor to only 
a few levels. 

Adapting the notation of Kiefer and Wolfowitz, we 
represent an n-point design assigning nj points to site 
xj(j = 1, ... , r; n=j1 nj = n) by an r x 1 vector 

Pn = (P1i ... , p,) where pj = njn 1. For the design pn 
define the k x k matrix M(pn) = Ej= l pjf (xj) f (xj), a 
normalized (for n) version of the familiar XTX matrix. 
Our primary criterion for choosing the design will be 
that of D optimality, proposed by Wald (1943) but 
given the current nomenclature by Kiefer (1958). A 
D-optimal n-point design or, for brevity, Do-optimal 
design, p* satisfies 

p* maximizes det{M(p,)} subject to 

(1) 0 < pj < 1, j= 1, ..., r 

E pj = 1, 
j=l 

pj = nn- 1, nj an integer, j = 1,..., r. (3) 

For designs pn where M(p.) is nonsingular and hence 
the parameters p are estimable, we also need to define 
the quantities 

d(xj, xi,, pn) = f(xj)TM- (pn) f (x,), j, j'= 1, ..., r 

and 

d(x*, Pn) = d(xi, xi, Pn), j = 1,... , r. 

To aid interpretation of these definitions, note that 
a2n-l M-'(p) is the covariance matrix of the least 
squares estimators p for the design p. and a2n- 1 d(xj, 
xi,, p.) represents the covariance between the esti- 
mated responses f(xJ)Tp and f(x~,)Tp at xj and xj, 
(j,j' = 1,... ,r). 
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With n design points and r candidate sites there are 
(r+- ~1) possible designs (though often some will leave 
the parameters inestimable) and, hence, one way to 
construct a Dn-optimal design would be to compute 
and compare all (r+n-1) determinants det{M(p.)}. 
Clearly, though, even for moderate n and r, an exhaus- 
tive search is computationally infeasible. Box and 
Draper (1971) perform such a complete enumeration 
for small factorial experiments, but for larger prob- 
lems they restrict attention to cube and star point 
designs. An integer programming approach for con- 
strained factorial designs is discussed by Neuhardt 
and Bradley (1971). 

If the n-point condition (3) is removed from the 
optimization problem discussed previously, the maxi- 
mization is computationally much easier: the algo- 
rithms of, for example, Wynn (1970) or Fedorov (1972, 
pp. 97-104) may be applied, followed by the "round- 
ing"algorithm of Fedorov (p. 157) to recover an n- 
point design. A Dn-optimal design is not guaranteed, 
however, and for small n (near k) performance may be 
poor. 

The exchange algorithms of Fedorov (1972, pp. 160- 
165), Wynn (1972), and Mitchell (1974) are all sequen- 
tial: a sequence of n-point designs with nondecreasing 
determinants is generated but, while computationally 
inexpensive compared with exhaustive search, conver- 
gence, though assured, may be to a local maximum 
and a Dn-optimal design is again not guaranteed. The 
balanced array method of Mitchell and Bayne (1978) 
for fractions of three-level factorial arrangements may 
also generate local maxima. Cook and Nachtsheim 
(1980) review and compare algorithms for construct- 
ing D,-optimal designs. 

2. A BRANCH-AND-BOUND ALGORITHM 

The concept of branch and bound was popularized 
largely by the algorithm of Little, Murty, Sweeney, 
and Karel (1963) for the traveling salesman problem. 
We now discuss a branch-and-bound algorithm for 
the D,-optimal design problem, with an extension 
considering other criteria in conjunction with D opti- 
mality. 

2.1 The Binary Tree (branching) Structure 
The optimization problem to maximize det{M(p,)} 

subject to (1), (2), and (3) may be generalized if the 
constraint (1) is replaced by 

lj -< pj < Uj,j = 1, ..., r, (4) 

where Ij and uj are specified constants such that 
0<lj < uj <l (j = 1, ..., r). Hereafter, the maxi- 
mization subject to (2), (3), and (4) for specified I and u 
will be called a node and for the original maxi- 
mization, or root node, we merely write lj = 0, uj = 1 
(j = 1, ... , r). Rather than solve the root node direc- 

tly, though, we may solve two subproblems, or de- 
scendant nodes, by choosing the constants I and u of 
each descendant to divide the set of all possible n- 
point designs into two partitions. Comparison of the 
two solutions of the descendants trivially solves the 
root. 

The partitioning or branching process may be con- 
tinued recursively: for every node, including the root, 
one of two conditions holds. Either 

1. the constraints (2), (3), and (4) of the node allow 
one and only one n-point design and the node maxi- 
mization immediately follows, or 

2. the constraints admit more than one n-point de- 
sign, whereupon we select integers jo(l, u) (1 < jo(l, u) 
< r) and no(l, u) and create two descendant nodes. The 
descendants partition the n-point designs allowed by 
the current node into those with at least no design 
points xjo and those with less than no points xjo (we 
omit the dependence of Jo and no on I and u for 
typographical brevity). To effect a division into non- 
empty partitions we require that 

1 + ljon no < ujo n, 

ZE I + non-' < 1, 
j=1 
j*jo 

and 
r 

E uj + (no - 1)n- 1. 
j=1 
j*jo 

Finally, we update the constraints (4): the descendant 
nodes take the values of I and u of the current node, 
except that for the first descendant lIo = no n- and 
for the second ujo = (no - 1)n- . 

Thus, every node has either zero or two descendant 
nodes and a binary tree is generated, with the (r+"- 1) 
n-point designs located at the extremes. Comparison 
of their determinants clearly guarantees a Dn-optimal 
design, but this is essentially an exhaustive search; 
indeed, it is an inefficient method of exhaustive search. 
By introducing bounds, however, much of the tree 
need not be explicitly evaluated and major com- 
putational improvements ensue. 

2.2 Bounds 

Consider a node where the constraints (2), (3), and 
(4) allow more than one n-point design. We now give 
two upper bounds for the node maximization. 

For the first bound, we need to define 

n(a) = n Z l,, 
j=1 

M(, a) = E (j + - f(x)f(x,)T, a > 0 (5) 
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and 

d(xj, 1, ) = f(xj)TM- 1(l, a)f(xj), 

where (5) ensures that the k x k matrix M(1, a) is 
positive definite, following Mitchell (1974). For small 
a > 0, if M(i, 0) is already positive definite, then the 
proportional error in using det{M(l, a)} below, in- 
stead of det{M(I, 0)}, is approximately a. In later com- 
putations a is set at .001. The integer n(a) is the number 
of points assigned by 1; therefore, any design pn sat- 
isfying the node constraints is composed of the n(a) 
assigned points plus any further n - n(a) points al- 
lowed by the constraints. Let these further points be 
x(i) (i = n() + 1, .... n). Now 

det{M(pj)} = det{M(l, 0) + n- FFT} 

< det{M(l, a) + n-lFFT} 

and F is the k x (n - n(a)) matrix [f(x((+)), ...+ 

f(x(n))]. Applying Lemma 2.5.1 of Fedorov (1972, pp. 
99-100) and the Hadamard inequality for positive 
definite matrices, it follows that 

det{M(p,)} < det{M(l, a)}det{/ + n-lFTM-(1, a)F} 

< det{M(l, a)} I {1 + d(x(,), 1, a)n-1} 
i=n(a)+ 1 

< det{M(l, a)}{1 + d(l, a)n-1}n"-(a), 

(6) 

where 

d(l, a) = max d(xj, 1, a) 
j=1, .....r 

lj <Uj 

and I is the (n - n(a)) x (n - n(a)) identity matrix. The 
bound on the maximization provided by the right- 
hand side of (6) is denoted by b1(l, u). Note that if 
terms involving a are neglected, then (6) is an equality 
when n - n(a) = 1 and the node maximization follows. 

The second upper bound on the node maximization 
is obtained by removing the n-point condition (3) and 
so relaxing the optimization problem (the relaxed 
problem cannot yield a lower maximum). The con- 
straints (2) and (4) in isolation define a class of ap- 
proximate designs, approximate in the sense that pj 
(j = 1, ..., r) need not correspond to an integer 
number of observations. Theorem 1 below, an adap- 
tation of Theorem 2.1 of Wynn (1977), suggests a 
computational method for the relaxed maximization. 

Theorem 1. The following two conditions on p* are 
equivalent. (a) p* maximizes det{M(p)} subject to (2) 
and (4). (b) p* satisfies (2) and (4) and for all h such that 
ph < Uh (h = 1, ..., r) and for all i such that p* > li 
(i = 1, ..., r), d(xh, p*) < d(xi, p*). The proof may be 
derived from that of Wynn and is omitted. 

From an arbitrary approximate design p(l) sat- 

isfying (2) and (4) with M(p(')) nonsingular we itera- 
tively generate a sequence of designs p(s) (s = 1, 2, ...). 
At iteration s let h and i satisfy 

d(xh, p(S))= max d(xj, p(s)) 
j= ....,r 

pj(s) < uj 

and 

d(xi, p(s)) = min d(xj, p(s)). 
j= 1..., r 

pj(s) > lj 

Then p(s+ 1) is derived from p(s) as 
p(s) j= 1,..., r;j h, i 

p(S + ) = <pS + (s), j = h 

p() - (s) j = i. 

It may be shown that 

det{M(p(s+ 1))} = (1 + A)det{M(p(s))} 
where 

A = 6(s){d(xh, p()) _ d(xi, p(S))} 

_ (5(s))2{d(xh, p(S)) d(xi, p(S)) - d2(xh, xi, p(s))}. 

By differentiating A with respect to 6(s) and equating 
with zero we find that to maximize det{M(p(s+ ))}/ 
det{M(p(S))} and satisfy the constraints imposed by uh 
and li 

6(s) = min u - p(), pS) - l, 

d(xh, p(S)) - d(xi, p(S)) 

2{d(xh, p(s)) d(xi, p(s)) - d2(xh, xi, ps)) ) 

Clearly, det{M(p(S+ ))} > det{M(p(s))} since equality 
can be achieved if 6(s) = 0. Furthermore, by Theorem 
1, the monotonic nondecreasing sequence of determi- 
nants det{M(p(s))} converges to det{M(p*)}, an upper 
bound on the node maximization also incorporating 
(3), which we denote by b2(1, u). 

For a node in the binary tree where the constraints 
allow more than one n-point design, we seek to avoid 
creating the descendants by employing the bounds 
bI(l, u) and b2(i, u). Let D* represent the maximum 
determinant det{M(pj)} of those n-point designs en- 
countered by the algorithm prior to consideration of 
the current node. If 

min{bl(l, u), b2(1, u)} < D* (7) 

holds, then all n-point designs allowed by the node 
constraints have a determinant inferior to D*. There- 
fore, we need not consider any descendants of the 
current node and do not proceed with the branching 
operation. 

The bound b2(1, u) is computed as the limit of 
a sequence, but in practice we are only concerned 
whether b2(1, u) < D* or b2(i, u) > D* [assume that 
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b1(l, u) > D*]. At iteration s, if det{M(p('~)} > D* then, 
clearly, the second case is true and the sequence is 
terminated. However, if det{M(p(s))} < D* then, rather 
than invoke an arbitrary stopping rule, we employ 
Theorem 2 below, the proof of which closely follows 
Kiefer (1961). 

Theorem 2. For an approximate design p satisfying 
(2) and (4) the inequality 

b2(1, u) < det{M(p)}exp{d*(p) - k} 

holds, where 

r 

d*(p) = max pj d(xj, p). 
pi satisfies (2) and (4) j = 1 

To compute the vector p' providing d*(p), we initially 
set pj + lj (j = 1, ..., r) to satisfy the lower bounds in 
(4). The remaining 1 - E= lj is then assigned by 
increasing the elements pj subject to the upper bounds 
in (4) in order of decreasing d(xj, p) (j = 1, ..., r) until 

J= I Pj = 1. The implication of Theorem 2 is that 
when det{M(p(s))} < D*, if 

det{M(p(S))}exp{d*(p()) - k} < D*, 

then b2(1, u) < D* and the sequence may be termi- 
nated, whereas if 

det{M(p(s))}exp{d*(p(s)) - k} > D*, 

we continue iterating. 

2.3 A Strategy for Branching 
The strategy proposed for choosing jo and no in the 

branching operation is based on empirical studies 
only. We use the heuristics 

d(xjo, i, x) = max d(xj, i, a) (8) 
j=l 1.... r 

lj < uj 

and no = io n + 1 to select jo and no. Thus, we at- 
tempt to branch such that the descendant with in- 
creased lower constraint Ijo is favored relative to the 
descendant with decreased upper constraint ujo; sim- 
ilar strategies have been found effective in integer 
programming (see, for example, Garfinkel and Nem- 
hauser 1972). The rule for selecting no assumes that we 
are interested in design problems in which n - k is 
small. 

If branching takes place, the next node to be evalu- 
ated is always the descendant with increased lower 
constraint ljo, and the other descendant is placed on 
the top of a stack of nodes awaiting attention. Branch- 
ing does not take place if the bound (7) applies or the 
node optimization is solved (and D * is updated if 
necessary), a case arising when one and only one 
n-point design is defined by the node constraints or 
n - n(a) = 1. When nodes with no descendants occur, 
the next node to be processed is removed from the top 
of the stack. The algorithm commences with an empty 
stack, D* is initialized at zero, and the current node of 
interest is the root. Termination occurs when a node 
with no descendants is encountered and the stack is 
empty, and the design or designs associated with D* at 
termination are the Dn-optimal designs. 

2.4 An Example 
Let n = 3 and let the model be E(Y1)) = fI + 

12x(i)(i = 1,2,3) with design region comprising the 
r = 3 candidates x1 = -1, x2 = 0, and x3 = 1. Kiefer 
(1961) shows that the D-optimal three-point designs 
are p*l) = (?, 0, f) and p?) =- (2, 0, 3), but we use this 
simple example to illustrate the branch-and-bound 
procedure. 

The five nodes generated by the algorithm are listed 
in Table 1 in the order of their consideration and 

Table 1. Nodes Generated by the Algorithm for the Example Discussed in Section 2.4 

Node Ancestor Constraints b (, u) b (u) D Action 
node 2 

l -2 L3 ul u. u3 

1 - 0 0 0 1 1 1 .1159E+04 .1000E+01 0 Branch on x3 
2 1 0 0 1 1 1 .1068E+04 .1000E+01 0 Branch on x 

1 1 1 3 2 i 0 ? I 1 1 .8894E+00 .1000E+01 0 D~ replaced by. 8894E+00 

4 2 0 0 - 0 1 1 .6695E+02 .2500E+00 .8894E+00 Terminate this branch 

5 1 0 0 0 1 1 0 .1159E+04 .2500E+00 .8894E+00 Terminate this branch 

a set at 0. 001 
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Figure 1. The Binary Tree Generated by the Algo- 
rithm for the Example Discussed in Section 2.4 

Figure 1 illustrates the binary tree arrangement. We 
set ac at .001 throughout. At node 1, the root, the 
inequality (7) does not hold and the branching oper- 
ation takes place. For this node the heuristic (8) yields 
a tie: d(xj, 1, a) achieves a maximum at x1 and x3 but 
we arbitrarily choose x3 for branching. Hence, node 2 
with 13 = 1/3 is constrained to have at least one design 
point X3, whereas the other descendant, node 5, with 
U3 = 0, allows only those three-point designs with 
zero design points x3. Similarly, branching takes 
place at node 2, but this time the candidate x1 is 
indicated by (8). At node 3, since n - n(a) = 1, if terms 
involving a are neglected we have equality in the 
bound (6) and b1(l, u) may be used to represent the 
maximum determinant of all three-point designs sat- 
isfying the node constraints, with proportional error 
approximately .001. The designs providing the maxi- 
mum for this node immediately follow as d(l, a) in (6) is 
achieved for both xi and x3 and either may be added 
to the two points already assigned by 1, yielding the 
designs p3(1) and p3(2) above. For nodes 4 and 5 the 
inequality (7) holds, D* is never superseded again, and 
the algorithm demonstrates that p3(1) and p3(2) are, in 
fact, the D3-optimal designs. 

2.5 Exploiting Symmetries 
It may be possible to exploit symmetries when 

branching to impose tighter constraints on one of the 
descendant nodes and reduce the size of the binary 
tree. For a given ancestor, if there exist a k x k matrix 
A with {det(A)}2 = 1 and a permutation n(1), ..., n(r) 
of the integers 1, ... , r such that 

f(xj) = Af(x,,(j)), j = 1, ..., r (9) 

j = I(), j = 1,.... , r (10) 

and 

uj = u,(, 

j = 1, 

..., r (11) 

then we say that the ancestor is symmetric with re- 
spect to n. For example, node 1 in Table 1 is sym- 
metric with respect to n(1) = 3, n(2) = 2, n(3) = 1 and 

A=('0 -) 

Consider an n-point design pn satisfying the ances- 
tor node constraints (2), (3), and (4). The design 
P{nf = (Pi(), ..., PN(r)) also satisfies (2), (3), and (4) be- 
cause of (10) and (11), and some simple rearrangment 
and the application of (9) yield the result 

det{M(p) } = det{M(p(`)}. (12) 

When partitioning on xjo to form the two descend- 
ants, suppose that nr(jo) - jo. We may now decrease 
two elements of u rather than just one to create the 
second descendant: ujo and u,(jo) are both reduced to 
(no - 1)n-1. To see that a Dn-optimal design is still 
guaranteed, consider branching on Jo as before (ig- 
noring the symmetry) and then partitioning the 
second descendant by further branching on n(jo). The 
three resulting descendants take the constraints of the 
ancestor with the following adjustments: 

lj increased 

ujo decreased, l,(jo) increased 

Ujo decreased, u,,oj) decreased. 

(D1) 

(D2.1) 

(D2.2) 

Because of the symmetry of increasing the lower con- 
straint at either Jo or n(jo), it may be shown that any 
n-point design permitted by descendant D2.1 is only a 
permutation p(ffof a design Pn in Dl with the same 
determinant by (12). Hence D2.1 may be ignored and 
the algorithm continues with the two descendant 
nodes Dl and D2.2. In general, we may tighten t extra 
constraints on the second descendant if t permu- 
tations 7ri, ..., ;t and t k x k matrices A1, ..., A, exist 
such that {det(A)i)}2 = 1 (i = 1, ..., t), ni and Ai sat- 
isfy (9), (10), and (11) (i = 1, ... , t), andjo, rl(jo), ... 
rt(jo) are distinct. 

2.6 Augmenting Designs 
In the design augmentation problem we wish to add 

a further n(l) point to n(?) points at which observations 
have already been taken, to produce a D-optimal (n(?) 
+ n(1))-point design subject to inclusion of the first n(o? 
points. 

Only the specification of the root node need be 
modified: we now set Ij = n)(n(o) + n(l))-1( = 
1, ..., r), where n}?) observations are allocated to xj by 
the initial n(?) points and proceed recursively as 
before. 

2.7 Multiple Criteria 

While not explicitly stated, the branch-and-bound 
algorithm will not only guarantee a Dn-optimal 
design, but will provide a complete catalog of all 
Dn-optimal designs if ties occur (it is computationally 
simple to recover any optimal designs lost due to 
exploitation of symmetries when the algorithm ter- 
minates). The major criticism, however, must surely be 
that there is over-reliance on a single criterion, D 
optimality. 
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Two further criteria that might be considered in 
conjunction with D optimality when assessing an n- 
point design Pn are the normalized maximum variance 
of prediction 

Vmax(Pn) = max d(xj, Pn,) 
j=l .... r 

and the normalized average variance of prediction 

1 r 
Vave(Pn) = - E d(xj, Pn). r j=l 

To incorporate these criteria, or any others proposed 
by the experimenter, we may change our strategy to 
extend the catalog of Dn-optimal designs to include all 
those that are "nearly" Dn-optimal in some controlled 
way. For example, for fixed y(0 < y < 1) acceptable to 
the experimenter, we could generate all designs Pn with 
det{M(p,)} ? (1 - y) det{M(p*)} by modifying the 
bounding rule (7) to prevent branching ifmin{bl(l, u), 
b2(1, u} < (1 - )D*. It should be emphasized that on 
termination we know exactly how far any "nearly" 
Dn-optimal design is from global optimality and hence 
the algorithm is quite distinct from others not guaran- 
teeing a global maximum. More importantly, though, 
an extensive catalog of all designs acceptable by the 
D-optimality criterion can be produced, which may be 
compared using the other criteria of interest. 

3. DESIGNS FOR THE QUADRATIC RESPONSE 
SURFACE MODEL 

WITH THREE FACTORS ATTHREE LEVELS 
In this section we present some previously un- 

known Dn-optimal designs and illustrate the extension 
of the algorithm to multiple criteria. 

For the design region we assume the 33 factorial 
arrangement where each of the three factors or ex- 
planatory variables may take one of three levels, 
coded as 0, 1, and 2. The quadratic response surface 
model for three factors has 10 parameters and may be 
written as 

3 

E(Y(i) '= o + E (Is X(i)s + Ass X(i)s) 
$=1 

2 3 

+ E fi t X(i)sX(i)t, i= 1 ... n, 
s= 1 t=S+1 

where (x(i1, x(i)2, x(i)3) are the three components of x(i) 
(i = 1, ... , n). Designs for n = 10, ..., 20 will be con- 
sidered. This choice of design region and model yields 
a set of design problems within the computer time 
limitations of the present algorithm, but still of suf- 
ficient computational complexity that the advantages 
are apparent. 

In Table 2 the Dn-optimal designs are compared 
with a compromise design that seeks to improve per- 
formance as measured by the maximum and, to a 

Table 2. Design Properties for the Quadratic Re- 
sponse Surface Model with Three Factors at Three 
Levels 

D -optimal designs Compromise design 
n 

det(M) v v det(M) max ave max ave 

10 1. 33E-04 27.5 13.0 1. 33E-04 27.5 13.0 

1.33E-04 34.4 14.0 

11 3.24E-04 16.5 12.4 

12 3.39E-04 17.9 11.9 3. 39E-04 17.9 11.9 

3.39E-04 18.0 11.8 

13 4. 33E-04 15.4 10.3 

14 4.54E-04 11.2 9.9 

15 4.20E-04 12.9 10.5 4. 10OE-04 11.9 10.3 

16 4.10OE-04 13.5 10.4 3. 85E-04 12.6 10.5 

17 4.13E-04 14.2 10.5 3. 76E-04 13.3 10.7 

18 4. 28E-04 14.7 10.6 4. 18E-04 12.9 10.3 

19 4.54E-04 12.4 10.4 

20 4. 63E-04 12.1 10.2 

As D -optimal design if no properties appear 

lesser extent, average variances of prediction for a 
small loss in D-optimality efficiency. The design points 
are given in Table 3; where other Dn-optimal designs 
exist they differ only by a symmetry such as re- 
labelling of the three factors. 

The Mitchell and Bayne (1976, 1978) catalog of 
designs based on D optimality has recently been im- 
proved by Galil and Kiefer (1980) using a modified 
version of Mitchell's DETMAX algorithm. Compari- 
son of the updated catalog with the designs supplied 
here shows that modified DETMAX has found a 
D.-optimal design in each case, though their opti- 
mality had not previously been proved. Assuming that 
D optimality is not the sole concern of the experimen- 
ter, however, we now look at the case n = 18 in detail. 
The compromise design achieves minimum Vmax(Pi8) 
and minimum Vave(P18) among the class of designs 
such that det{M(pi8)} > .95 det{M(p1'8)} and substan- 
tially reduces the value of vmax achieved by the 
D18-optimal design. The enumeration of this case re- 
quired about 63 seconds of CDC 6600 computer time 
and 2531 nodes were generated for a problem with 
approximately 1.03 x 1012 possible designs. As n and 
r increase so the number of possible designs increases 
exponentially and, while experience suggests that the 
number of nodes requiring evaluation grows more 
slowly than (r+n-I), the execution time rapidly be- 
comes prohibitive. 

4. CONCLUSIONS 
A branch-and-bound algorithm guaranteeing a 

catalog of all Dn-optimal designs was presented, with 
an extension to improve performance by other criteria 
for a small loss in D-optimality efficiency. In the ex- 
tended mode we are in effect using the algorithm to 

TECHNOMETRICS ?, VOL. 24, NO. 1, FEBRUARY 1982 

46 



BRANCH-AND-BOUND SEARCH FOR EXPERIMENTAL DESIGNS 

Table 3. Design Points for the Quadratic Response Surface Model With Three Factors at Three Levels 

n Design Design points 

10 D,C 002 010 021 101 112 200 202 211 220 222 

D 000 002 021 101 110 200 202 211 220 222 

11 D,C 000 002 020 022 110 121 200 202 211 220 222 

12 D,C 000 002 011 020 022 101 110 122 200 202 220 222 

D 000 002 011 020 022 101 110 112 200 202 220 222 

13 D, C 000 002 011 020 022 101 112 120 200 202 210 221 222 

14 D,C 000 002 011 020 0Z2 101 110 112 121 200 202 211 220 222 

15 D 000 002 011 012 020 022 101 110 122 200 202 212 220 221 222 

C 000 000 002 011 020 022 101 110 112 121 200 202 211 220 222 

16 D 000 002 011 020 022 101 110 122 200 201 202 210 212 220 221 222 

C 000 000 002 011 020 020 022 101 110 112 121 200 202 211 220 222 
17 D 000 001 002 010 012 020 022 100 102 110 121 200 202 211 220 222 222 

C 000 002 011 020 020 022 022 101 110 112 121 200 202 211 220 222 222 
18 D 000 002 002 011 020 022 022 100 112 120 121 200 201 202 210 220 221 222 

C 000 001 002 010 012 020 022 100 102 111 121 200 201 202 210 212 220 222 
19 D,C 000 000 002 012 020 021 022 102 111 120 122 200 201 202 210 212 220 221 222 
20 D,C 000 001 002 010 012 020 021 022 100 102 110 121 200 201 202 211 220 220 222 222 

D = D - optimal, C = Compromise. n 

reduce the class of all possible n-point designs to a 
smaller class acceptable by the criterion of D opti- 
mality. Among the reduced class a design may be 
chosen using secondary criteria. For moderate-sized 
problems of computational complexity similar to 
those enumerated herein it appears that advantages 
large enough to be of practical benefit may follow, 
compared with previous methods. Further work 
would be helpful, however, either in improving the 
branching strategy or tightening the bounds, to enable 
efficient enumeration of large problems. 

A FORTRAN listing is available upon request to 
the author. 
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