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In experiments for response estimation, algorithms developed for constructing D-optimal exact 
(integer replication) designs may be inappropriate when the number of observations is not 
large relative to the number of parameters. This article generalizes Mitchell's DETMAX 
algorithm to an arbitrary design criterion and describes an efficient implementation for mini- 
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the design region. Some examples are given that demonstrate the possible improvements in 
response estimator variances. 
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1. INTRODUCTION 

Although much attention has been given to the 
construction of D-optimal exact (integer replication) 
experiments, criteria concerned with the variance of 
the response estimator, such as G optimality, have 
received scant consideration in the literature. This is 
inappropriate because, in practice, many experiments 
are aimed at estimation of the response over the 
region of interest rather than parameter estimation. 
Moreover, D and G optimality are not necessarily 
equivalent for exact designs. 

For example, the experiments motivating this re- 
search often involve the relationship between the yield 
of uranium leached from an ore and explanatory vari- 
ables such as grind size, reaction time, reagent con- 
centrations, and temperature. The conditions maxi- 
mizing the yield are usually not the most economic, 
and the response should be estimated over the entire 
region of interest. Furthermore, observations tend to 
be expensive, necessitating small experiments. 

In general, suppose the experimenter wishes to esti- 
mate a response y depending on a vector of explana- 
tory variables x over a region X. In defining X we may 
differentiate between two types of explanatory vari- 
ables: those that may be easily set anywhere in a 
specified range and those restricted to a finite set of 
values. The second type includes not only qualitative 
factors but also quantitative variables limited to a few 
levels for experimental convenience. Both kinds may 
occur in an experiment. Mitchell (1974) outlines 
various reasons for restricting attention to explana- 

tory variables with a finite number of levels, and this is 
the approach adopted here. Continuous variables 
may still be approximated by a fine spacing of levels, 
though computational considerations limit the 
number of such factors. The adequacy of the approxi- 
mation is illustrated in Section 3. Hence, X comprises 
r candidate points x1, ..., xr, with the vector Xj repre- 
senting a combination of levels of the explanatory 
variables. 

The design problem is to choose n not necessarily 
distinct points x(1) ..., x(n) from X at which to take 
observations Y(1), ..., Y(n) of the response according to 
an assumed linear model: 

y'i) fT(x() A + ei, i= 1,..., n. 

The k x 1 vectors f and #f are k specified linearly 
independent functions on X and the associated k un- 
known parameters (k < n). The random errors 1, .... 
En are assumed to be uncorrelated, each with mean 
zero and constant variance a2. Typically, for response 
estimation the model will be a first- or second-order 
polynomial. 

It is convenient to represent an n-point design with 
nj replications at Xj in X by an r x 1 vector p, where 
pj = nj/n is the proportion of the total observations at 
Xj (j = 1, ..., r). The D-optimality criterion chooses p 
to maximize the determinant of the information 
matrix 

M(p)= E pjf(xj)f (xj) 
j=l 
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or, equivalently, to minimize the determinant of 
M-l(p), the covariance matrix of the least squares 
estimators ft normalized for n and a2. Throughout we 
shall assume that M(p) is invertible; singularity is 
easily avoided by the adjustment of Mitchell (1974). 

The D-optimality criterion, however, is inappro- 
priate if we are primarily interested in the response 
estimators 

9(xj) = f (xi)[, j = 1,..., r. 

For a design p the normalized variance of (xj) is 

d(xj, p) = f T(xj)M- l(p)f(xj), i = 1, ..., r, 

and we might choose p to minimize the maximum 
variance, 

dmax(p) = max d(xj, p), (1) 
j=l .... r 

or to minimize the average variance, 

dave(p) = r- 1 d(xj, p). (2) 
j=i 

A method of computing the maximum or average 
variance over a grid that approximates one or more 
continuous variables, even if the design is restricted to 
a few convenient levels, is illustrated in Section 3. For 
a weighted average, only minor changes need be 
made. Criterion (1) is commonly called G optimality 
and (2) will be called V optimality, borrowing the 
terminology V from Box and Draper (1959). The 
mean squared error approach of Box and Draper is 
not pursued here, however, since the number of obser- 
vations is assumed to be small and the importance of 
variance relative to bias is assumed to be large (see 
Kiefer 1975 and Galil and Kiefer 1977). Even when 
parameter estimation is the primary objective, pre- 
ferred designs perform well when judged by further 
criteria such as dmax and dave in addition to D opti- 
mality. 

The approximate design theory of Kiefer and Wol- 
fowitz (1960), in which the design is not constrained to 
have integer replications, leads to equivalence of D 
and G optimality. Similarly, Fedorov (1972, Theorem 
2.12.1) gives conditions for equivalence between V 
optimality (Fedorov's Q) and either D optimality or 
minimizing the trace of M-'(p). If n is not large rela- 
tive to k, however, there is no such equivalence over 
the set of exact designs in general. Furthermore, the 
constraint of integer replication leads to considerable 
computational difficulties. For D optimality, the 
DETMAX algorithm of Mitchell (1974), with compu- 
tational improvements by Galil and Kiefer (1980), 
provides designs at least close to optimality. The 
branch-and-bound algorithm of Welch (1982) guaran- 
tees, at greater cost, a catalog of all designs with 
det{M(p)} within a specified small tolerance of the 
optimal design, which can then be compared using 

other criteria of interest. The primary design criterion, 
however, is still D optimality. Computer time would 
also be prohibitively expensive for most of the exam- 
ples attempted here. 

In Section 2, Mitchell's DETMAX algorithm is 
adapted to find G- or V-optimal designs. The two 
series of examples presented in Section 3 illustrate that 
the G and V criteria may produce designs performing 
well by a range of criteria compared with the D- 
optimal design, without excessive execution time. 

2. ALGORITHMS FOR G AND V OPTIMALITY 

2.1 Excursions 

The DETMAX algorithm can be generalized to 
minimize an arbitrary design criterion c(p) over the set 
of exact designs subject to 

(3) 

where lj and Uj are specified constants constraining the 
replication at Xj. For D optimality c(p) = det{M- l(p)} 
and DETMAX is recovered. In an unconstrained- 
replication problem, 

= , uj = 1, j= 1,...,r. 

For design augmentation, though, where nj observa- 
tions have already been taken at Xj, the best n-point 
design subject to inclusion of the previous points is 
found by setting 

lj = nj/n, uj = 1, j= 1 ..., r. 

Alternatively, suppose we wish to minimize dmax in (1) 
or dave in (2), evaluated over a fine grid of points in X, 
but restrict the design to a subset of X representing 
convenient values of the explanatory variables. We 
simply assign uj = 1 for the allowed candidates and 
Uj = 0 otherwise. The augmentation and restriction 
facilities are illustrated in Section 3. 

Like DETMAX, we attempt to improve an initial 
n-point design by a series of excursions. An excursion 
starts by adding or subtracting a point from the cur- 
rent n-point design p(l) and then performs a number of 
additions or subtractions of a single point, eventually 
returning to a possibly new n-point design p(2). If 
c(p(2)) < c(p(l)), then the excursion has succeeded and 
p(2) is used as the start for the next excursion, whereas 
if c(p(2)) > c(p(l)), a failure has occurred and p(l) is 
again the starting design. At each step within an ex- 
cursion, two decisions are made: whether to add or 
subtract a point and which design point to add or 
subtract accordingly. The rules for the first decision 
follow DETMAX and are described by Mitchell 
(1974) and Galil and Kiefer (1980). 

The algorithm to minimize c(p) deviates from 
DETMAX in the choice of a promising point to add 
or subtract as required. If the adjustment involves 
candidate xj, then element pj of the current design is 
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increased or decreased by n- . The obvious gener- 
alization of DETMAX is to add a point xjo, satisfying 

c(p + n- jo) = min c(p + n- '1), (4) 
j:pj<uj 

or when subtracting, select xjo to satisfy 

c(p -- nbjo) = min c(p - n- 1j), (5) 
j:pj > Ij 

where bj is the r x 1 vector with one in position j and 
zero elsewhere. In (4) and (5) we normalize for n 
observations, even though the number of design 
points changes during an excursion. 

In applying this to the G and V optimality criteria, 
we need to define the normalized covariance between 
y(xi) and ?(xj), 

d(xi, xj, p) = f (xi)M - (p)f (xj), (6) 

and use the result (Fedorov 1972, Lemma 3.3.1), 

M-l(p ? n-16j) 

= 
M-l(p) _ M-)f(x)f(Xj)M- l( ) 

d(xj,p)?n 

From (6) and (7), the normalized variance of A(xi), 
after a change at Xj, is 

d(xj, p) ? n (8) 

Accordingly, for G optimality we would compute the 
minimum in (4) or (5) as appropriate using 

c(p + n-l6j) = dmax(p ? n-lbj) 

= max d(xi, p)- d (x, p) 
i= ....r d(xj, p) ? n 

(9) 

whereas for V optimality, 
r 

r-1 d2(xi, xj, p) 
c(p + n- 1j) = c(p)- - (10) 

d(xj, p) ?+ n 

2.2 Some Computational Considerations 
For both G and V optimality, it is necessary to 

maintain M- l(p) and d(xj, p) (j = 1, ..., r). These can 
be efficiently updated when p changes as described by 
Galil and Kiefer (1980). 

The G optimality computation of d(xi, Xj, p) (i = 1, 
..., r) in (9) is similarly facilitated by writing 

d(xi, xj, p) = f T(Xi){M-l(p)f(xj)} 

and computing the vector M-l(p)f(xj) only once. If 
r >> k, the maximization in (9) therefore requires ap- 
proximately rk operations of one multiplication and 
one addition. When adding a design point, if (9) is 
calculated for every candidate xj, a total of r2k oper- 

ations will be required, followed by a further rk oper- 
ations to update d(xi, p) (i = 1, ..., r) for the next step. 
This compares unfavorably with D optimality, where 
the only major computation is the updating process. 

The calculation of (9), however, can be reduced 
further. When adding a point xj, clearly 

(11) d2(i, j, p )). 
d(xj, p) + n 

Similarly, when subtracting a point x;, the inequality 

d(xi, p) - d2(xi, xj, p) d(xi , p (12) 
d(i, P) 

d(xj, p)- n 1 - n- d(xj, p) () 

follows from (a) the relationship 

d2(xi, xj, p) < d(xi, p)d(xj, p) 

between a squared covariance and variances and (b) 
the result d(xj, p) < n (Atwood 1973, Theorem 1). The 
bounds supplied by the right sides of (11) and (12) are 
denoted by b(xi, p ? n- 6j). They are exploited to 
find the new maximum variance in (9) without neces- 
sarily searching through the entire design region. 

First, we need to sort X into the order x<1>, ..., 
x<r>, such that 

d(x<,>, p) >... > d(x<r,> , p). 

The 0 (r log r) sorting time (e.g., see Knuth 1973, Ch. 
5) is trivial compared with up to r2k operations with- 
out bounding. Next, for each candidate Xj, where the 
replication constraints (3) would allow p ? n- 1j, we 
find the new maximum variance in (9) in four steps. 

1. Set MAX = 0. MAX will ultimately hold the 
value of dmax(p + n- 16j). Now perform Steps 2, 3, and 
4fori =l,...,r. 

2. For x<i>, compute the bound b(x<i>, p + n-'6j) 
from (11) or (12). 

3. If b(x<i>, p ? n- 6j) < MAX, then x(i> cannot 
increase the current value of MAX. Moreover, as the 
variances d(x<i>, p) and hence the bounds b(x<i>, 
p + n- 16j) are nonincreasing in i, neither can any <i,> 
for i' > i, and we terminate with the current MAX. If, 
however, b(x<i>, p ? n- 16j) > MAX, then continue to 
Step 4. 

4. Compute d(x<i>, p +? n -j) from (8) and in- 
crease MAX if necessary. Continue at Step 2 for the 
next i. 

The best candidate Xj has the minimum MAX value. 
Further refinements are possible: At Step 4, for exam- 
ple, if MAX becomes larger than dmax(p ? n- 16j,) for a 
candidate xj, already evaluated, then further consider- 
ation of xj is unnecessary. 

Even with this enhancement, G optimality remains 
expensive. The results can also be disappointing: 
Paradoxically the D- or V-optimal designs often pos- 
sess smaller values of dmax than those generated by the 
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G-optimality algorithm intended to minimize dmax. 
The G criterion is particularly prone to becoming 
trapped at a (poor) local optimum. 

Fortunately, though, a simple modification pro- 
duces substantially smaller values of dmax on the 
average and simultaneously reduces execution time 
yet further. Within an excursion, minimizing dmax(p ? 
n 

- 
16j) seeks the best change one step ahead-an opti- 

mal strategy for the final step. At an earlier stage, 
however, suppose that x(1), ..., X(m) would be the best 
set of m > 1 points to collectively introduce. It ap- 
pears that selecting a single additional point to mini- 
mize dmax(p + n- 1'j) can lead to a poor compromise 
not included in x(1) ..., x(m). The modification retains 
the criterion c(p) = dmax(P) to determine whether a 
G-optimality excursion has been successful and in 
selecting the final point (where the preceding compu- 
tational improvements are still relevant). The criterion 
dmax is temporarily ignored at all other steps of an 
excursion. At these steps, follow the much cheaper 
DETMAX strategy and either add or subtract a point 
at the candidate where the current design achieves 
either maximum or minimum d(xj, p), subject to (3). A 
wide range of empirical studies have clearly demon- 
strated the superior performance of this variant, and it 
is adopted for the examples of Section 3, where em- 
pirical execution times are also reported. 

Turning to V optimality, an efficient computational 
procedure has already been described by Welch 
(1983), where details may be found. Briefly, in (10) one 
may write 

r-1 d2(xi, xj, p) =f T(xj)A(p)f(xj) = a(xj, p), (13) 
i= 1 

where A(p) is the k x k matrix 

M-l(p){r-1 E f(xi)f(xi)}M- 1(p). 

Hence, if the quadratic forms a(xj, p) are maintained, 
an addition or subtraction step is straightforward. 
Efficient updating of a(xj, p) (j = 1,..., r) as p changes 
also requires maintenance of A(p). Because two sets of 
quadratic forms-d(xj, p) and a(xj, p)-are updated, 
with similar computational complexities, a V- 
optimality step is about twice as expensive as D opti- 
mality. 

2.3 Random Initial Designs 
Like DETMAX, the generalized algorithm does not 

guarantee a design minimizing c(p) as it may lead to a 
local optimum. Following Mitchell (1974), repeated 
attempts are made from a number of random initial 
designs, abandoning an attempt when the excursions 
are forced to n + 6 or n - 6 points. To generate the 
starting design, Galil and Kiefer (1980) advocated 
sampling nran random candidates, with nran itself ran- 
domly distributed between 1 and k/2. By sequentially 

adding n - nran further points according to (4), the 
initial n-point design is produced. This strategy is 
adopted for all of the examples in Section 3. 

Galil and Kiefer also suggest that experimentation 
with larger nran can be profitable in some (probably 
uncommon) cases. We have an option to allow nran 
between user-defined limits a and b. Selecting these 
limits to allow nran > n and then subtracting nran- n 

points does not appear to have been investigated. For 
instance, consider the first-order model with six ex- 
planatory variables, 

E(Y(j)) = ]o + flx(i),l + + 6 X(i)6, 

where x(i) = (x(i)1 , ...(i)6). Twelve observations are 
to be taken from the design region consisting of the 64 
candidate vectors x = (? 1, ..., + 1). Galil and Kiefer 
reported difficulty in obtaining the D-optimal design 
with DETMAX for this and related cases, only suc- 
ceeding in 14 out of 200 attempts when (a, b) = (1, 6). 
With (a, b) taking the values (1, 3), (4, 12), (13, 64), and 
(65, 256), we achieved D-optimality success fre- 
quencies from 50 attempts of 5, 9, 11, and 16, respec- 
tively, clearly suggestive of a trend with nran. 

Since the D-, G-, and V-optimal designs coincide for 
this example, sharing the orthogonal Hadamard 
structure, experimentation with the criterion may also 
be helpful. The G and V criteria attained optimality in 
8 out of 100 and 85 out of 100 attempts, respectively. 
Both of these rates are aggregated over the four pairs 
of (a, b), as varying (a, b) has little effect. It is not clear 
why the V algorithm is so successful in locating a 
Hadamard structure here. 

3. EXAMPLES 

Experiments with mixtures have received much at- 
tention in the literature; Cornell (1981) provides a 
review. They involve explanatory variables with non- 
negative levels summing to one to represent the pro- 
portions of components in a mixture. Vuchkov, Dam- 
galiev, and Yontchev (1981) (VDY) describe the 
sequential generation of D-optimal designs for mix- 
ture experiments that also include independent pro- 
cess variables. 

The first series of examples applies the generalized 
excursion algorithm to the case of three mixture vari- 
ables and one process variable. A design point x(,) = 
(x i)..., X(,)4) is therefore constrained such that 

X(i)l +- X(i)2 + X(i)3 
= 1; 

x s >0, s = 1, ....3. (14) 

The second-order model canonical parameterization 
given by VDY is 

3 3 4 

E(Y((i))= siE X(i)s + , I st X(i)s (i)t + ]44X(i)4- 
s= 1 s= 1 t=s+ 1 

This model has k = 10 parameters. As a design region 

TECHNOMETRICS ?, VOL. 26, NO. 3, AUGUST 1984 

220 



COMPUTER-AIDED DESIGN OF EXPERIMENTS 

suppose that the mixture proportions are continuous 
between zero and one, and approximate their ranges 
by the seven levels x(i)s = 0(1/6)1 (s = 1, ..., 3). To 
ascertain whether seven levels are sufficient, 13-level 
grids spaced at intervals of 1/12 are also used. In 
contrast, assume that the process variable is confined 
to only three values-coded - 1, 0, and 1-for any of 
the reasons described in Section 1. Clearly if this 
variable could be continuously set with ease, then 
again, a finer grid of values would be appropriate. 
With three seven-level mixture components and a 
three-level process variable, there are 84 combinations 
of levels satisfying the constraints (14) to comprise the 
design region. The number of candidates increases to 
273 if the mixtures are at 13 levels. 

The excursion algorithm was executed 10 times for 
n = 10, ..., 15 observations, with the D, G, and V 
criteria and both the 84-point and 273-point grids. 
During a G or V excursion, dmax or dave is evaluated 
over the chosen search grid. To facilitate comparison, 
however, the dmax and dave values presented for the 
final designs are always computed over the finer 273- 
point grid. We also report {det(M- 1)} /k, the quantity 
minimized by D optimality; the exponent 1/k reduces 
the determinant to units of variance for consistency 
with the other criteria. Another property of possible 
interest is Amax, the maximum eigenvalue of M-~(p), 
also interpretable as the maximum variance of any 
linear combination of the parameter estimators aT/? 
subject to aTa = 1. Minimizing imax is commonly 
called E optimality. 

A set of 10 attempts often yields a variety of designs. 
Table 1 lists the properties of selected designs per- 
forming well for one, or preferably several, of the 
tabulated criteria. When no design simultaneously 
minimizes all criteria, the choice is subjective. Thus 
when n = 13, two designs found by employing G opti- 
mality on a 273-point grid are listed. The first has the 
smaller dmax and Amax whereas the second has better 
dave and {det(M- 1)} i/k. 

The designs in Table 1 demonstrate relatively little 
variability in {det(M- 1)} l/k. Hence for these examples, 
D optimality appears to exploit negligible improve- 
ments in {det(M- 1)} /k. Conversely, the remaining cri- 
teria show greater diversity. Most striking is the case 
n = 11, where dmax is 18.2 for D optimality and 12.8 for 
G and V optimality, with an even larger proportional 
improvement for 2max Except for n = 10, G optimality 
produces designs with values of dmax and dave substan- 
tially lower than those of D optimality. Therefore, the 
G optimal designs with asterisks have been subjective- 
ly selected as a compromise among the various cri- 
teria. For four out of the six values of n, these designs 
exploit the finer 273-point grid, but there would be 
little practical disadvantage in restricting the choice to 
the 84-point design region. 

Table 1. Design Properties for the Example 
With Three Mixture Variables and 

One Process Variable 

Criterion 

n r =84 r = 273 d,,, de {det (M -l)}l/k Amax 

10 G 17.8 9.9 14.6 390* 
D, V, G D, V 18.3 10.2 14.3 389 

V 23.3 9.6 15.4 391 
11 V, G V, G 12.8 8.2 14.3 213* 

D D 18.2 9.1 14.2 340 
12 G 13.5 8.2 14.4 234* 

G 13.8 8.1 14.3 227 
G V 14.0 8.2 14.4 229 
V 15.3 8.1 14.3 250 
D D 15.5 8.7 13.8 344 

13 G 13.0 7.9 14.3 219* 
V 13.1 7.7 14.2 225 

G 13.1 7.7 14.1 225 
G 13.3 7.6 13.8 237 

V 13.9 7.7 13.9 244 
D D 15.2 8.4 13.8 236 

14 G 13.1 7.6 13.9 209* 
G 13.1 7.7 14.2 251 
V 13.6 7.4 14.2 203 

V 14.4 7.5 13.9 247 
D 16.0 8.0 13.7 231 

D 16.4 8.6 13.7 206 
15 G 13.4 7.4 13.9 210* 

G 13.4 7.5 14.0 205 
V 14.7 7.3 14.2 225 
D 14.7 7.6 13.6 220 

V V 15.0 7.2 13.6 258 
D 15.0 8.9 13.6 241 

* Compromise among the various criteria. 
NOTE: Search grids of size r = 84 and r = 273 are employed, but dm,, 
and da,v are always computed over the 273-point grid. 

The design points of the selected designs with 
asterisks form the first part of Table 2-the seven 
points common to all of the designs plus those that 
relate to a particular n. The first two elements of the 
tabulated points are the levels 0, 1, .. ., 12 of two of the 
mixture variables; the third element represents the 
levels 0, 1, or 2 of the process variable. The remaining 
mixture component is fixed by the mixture constraints 
(14). 

For r = 84, mean execution times per attempt on an 
IBM 3081 computer were .68, 1.32, and 1.73 seconds 
for D, G, and V optimality. For r = 273, the mean 
execution times increased to 1.88, 4.26, and 4.87 sec- 
onds, respectively.The averages are taken across the 
six values of n and are based on 60 attempts. 

A fair comparison of the designs produced here 
with those of VDY is not possible: their correspond- 
ing designs perform poorly but are disadvantaged by 
being sequentially constructed over a less flexible grid. 

The second series of examples typifies the program 
of leaching experiments that motivated this research. 
In leaching uranium from an ore to recover the metal 
in solution, four operating conditions might be ex- 
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Table 2. Design -Point Levels for Designs Marked * in Tables 1 and 3 

n Levels 

Example With Three Mixture Variables and One Process Variable a 
4,4, 0 
4, 4, 0 
3, 3, 0 
0, 6, 2 
0,0, 2 
0, 5, 2 

1, 1, 2, 1 
1, 0, 1, 1 
1, 0, 1, 1 
1, 1, 1, 0 
0, 1, 2, 1 
0, 1, 1,0 

6,0, 1 
4,4,2 6,0,1 
3,3,2 5,0,1 6,6,2 
4,3,0 5,3,2 6,0,1 6,6,2 
0,6,2 4,4,0 6,0,1 6,0,2 

0, 12,1 3, 6 0 6, 0, 0 6, 0, 2 

Four-Variable Leaching Experiment Exampleb 
1, 2, 1, 1 
1,1,1,2 1,1,2,1 
1, 1, 0,1 1,1,1,0 2,1, 1, 1 
1, 1, 2, 1 1, 2, 1, 1 2, 0, 1, 1 2, 1, 0, ' 

0, 2, 1, 1 1, 0, 1, 1 1, 1, 0,1 1, 1, 1, ( 
0,1,2,1 1,1,0,1 1,1,1,2 1,2,1,1 

6,6, 2 
6, 6, 2 7,0, 1 

1 
0 2,1,1,1 
1 2, 0, 1, 1, 

"Common: 0,0,0; 0,6, 1; 0, 12,0;0, 12, 2; 6,6, 1; 12,0,0; 12,0,2. 
bFixed: 0, 0, 0, 0; 0, 0, 2, 2; 0, 2, 0, 2; 0, 2, 2, 0; 2, 0, 0, 0; 2, 0, 2, 2; 2, 2, 0, 2; 2, 2, 2, 0. Common: 1,0, 0, 2; 1, 0, 2, 0; 1, 2, 0, 0; 1, 2, 2, 2. 

plored: ore grind size, reaction time, sulphuric acid 
concentration, and temperature. All of these explana- 
tory variables are continuous, but it is convenient in 
practice to restrict the experiment to three levels for 
each factor, the minimum for estimation of a second- 
order model. The levels are 

1. Grind size (mm)-.5, 1.0, 1.5 
2. Reaction time (hours)-8, 16, 24 
3. Acid concentration (g/litre)-30, 65, 100 
4. Temperature (?C)-50, 70,90 

with the lower and upper levels coinciding with the 
range of operating conditions of interest. 

Although it is convenient to experiment at only 
these levels, one usually wishes to estimate the yield at 
any set of conditions within the factor ranges. There- 
fore, dmax and dave are considered over a finer grid with 
each explanatory variable at seven recoded levels 
- 1(1/3)1. Thus the region of interest is approximated 
by r = 74 = 2,401 points. To restrict the design to 
three levels, we set the upper-replication constraint in 
(3) as uj = 1 if Xj has all four variables at levels - 1, 0, 
or 1, and uj = 0 otherwise (j = 1,..., 2,401). 

Similarly, the lower constraints in (3) may be em- 
ployed for augmentation. Suppose that observations 
have already been taken for a 24- 1 experiment: the 
eight fixed points in the second part of Table 2. At 
these points in the design region we must have at least 
one observation in the augmented design, and lj in (3) 
adopts the value 1/n accordingly. Elsewhere we set 
Ij= 0. 

The second-order model in the four explanatory 
variables x(i) = (x(i), ...,(i)4), 

4 

E(YM)) = 30 + E Is X(i)s 
s= 1 

4 4 

+ E ZSt X(i)s X() i = 1, ..., n, 
s= 1 t=s 

had 15 parameters. We consider augmented designs of 
n = 15, ..., 20 observations. Ten attempts were made 
with the D and V excursion criteria for each n; G 
optimality was also applied 10 times for n = 15 and 16 
but only five times for n = 17,..., 20. 

The properties of selected designs are presented in 
Table 3. As in the first example, the cataloged designs 
show little variation in {det(M-1)}1/k, but this time 
there are only modest differences in dmax. The G excur- 
sion criterion also fails to achieve the smallest dmax for 
n = 16 and n = 18, though the difference is marginal 
in the latter instance. 

Table 3. Design Properties for the Four- Variable 
Leaching Experiment Example 

n Criterion dx dave {det (M -)} Ilk A 

15 V 30.0 15.8 2.36 20.3* 
D, G 30.0 19.0 2.36 34.4 

16 V 27.2 13.7 2.36 17.7* 
G 28.0 14.3 2.42 18.1 
D 30.8 17.3 2.33 30.8 

17 G 27.2 14.4 2.37 19.3 
V 28.0 13.1 2.35 18.8* 
D 29.5 13.5 2.30 21.1 
V 66.0 13.0 2.40 12.1 

18 D 24.7 12.9 2.28 19.6 
G 25.2 13.0 2.29 19.9 
D 26.0 14.1 2.26 22.1 
V 26.1 11.6 2.28 11.7* 

19 G 24.3 12.7 2.29 20.6 
V 25.3 11.2 2.31 10.2* 
D 25.5 13.6 2.27 24.0 
D 26.7 12.1 2.24 12.9 
D 27.9 14.3 2.23 23.1 

20 G 25.1 12.8 2.29 18.1 
V 27.1 11.0 2.29 12.1* 
D 27.8 14.1 2.23 27.1 
D 28.0 12.3 2.23 13.5 
V 30.4 11.3 2.41 10.6 
D 31.9 14.6 2.20 22.4 

* Compromise among the various criteria. 
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10 
11 
12 
13 
14 
15 

15 
16 
17 
18 
19 
20 

0, 1, 2 
0,0, 2 
0, 0, 2 
0, 0, 2 
0,0, 1 
0,0, 2 

1, 1, 1,0 
0, 1, 1, 1 
0, 2, 1, 1 
0, 1, 1, 2 
0, 1, 1, 2 
0, 0, 1, 1 
2, 1, 2, 1 
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Turning to dave and max, the V criterion is superior 
in all cases, with particularly large improvements rela- 
tive to D optimality for n = 15, 16, and 18. The satu- 
rated case n = 15 is of interest in that the three excur- 
sion criteria produce designs with the same dmax and 
(det(M- 1)} /k, yet D and G happen to choose a design 
with 20% larger dave and 70% larger 2max than the 
V-optimal design. 

For all six values of n, the V-optimal designs with 
asterisks in Table 3 offer a reasonable compromise 
among the various criteria. Their design points may 
be found in Table 2. The 15-point design, for instance, 
is made up of the eight points fixed by prior experi- 
mentation, four points commonly chosen, and the 
three further points particular to n = 15. The levels 0, 
1, and 2 correspond to recoded values -1, 0, and 1. 

Mean execution times per attempt on an IBM 3081 
computer were 5.6, 7.3, and 31.1 seconds for D, V, and 
G optimality. The D and V averages are based on 60 
attempts and the G average on 40 tries. G optimality is 
much more expensive in this example partly because it 
considers and, therefore, updates the response- 
estimator variances throughout the 2,401-point grid. 
D and V optimality only update their working arrays 
over the restricted 81-point grid. For V optimality, all 
of the 2,401 points are involved in the summation that 
initializes A(p) in (13), but the quadratic forms a(xj, p) 
are only required for potential design points Xj in the 
restricted set. 

4. CONCLUSIONS 

D optimality has received more attention in the 
design literature than any other optimality criterion. 
Yet the foregoing examples (and others not reported 
here) show that D optimality may exploit improve- 
ments in {det(M- )} 1/k that are of little practical sig- 
nificance. These improvements may be at appreciable 
expense to other criteria, at least for small, near- 
saturated designs. Ironically DETMAX can be too 
successful in finding D-optimal designs: If it produced 
a comprehensive range of suboptimal designs, we 
might find one with better all-round performance. 

Nevertheless, the excursion in DETMAX is a 
powerful heuristic. Where the objective is response 
estimation, the G and V variants may produce im- 
provements in dmax and dave large enough to be practi- 
cally worthwhile. It has been shown that these criteria 
sometimes generate designs that also achieve substan- 
tially smaller values of 2max' Whatever the objective- 
in practice most experiments have multiple 
objectives-criterion-robust designs are preferred. By 
trying a number of excursion criteria, one is more 
likely to find such a robust design. 

Part of D optimality's popularity stems from com- 
putational convenience. Attention to efficient updat- 
ing and other computational details, however, makes 

the time penalty of the G and V criteria more accept- 
able. An analysis of the computer operations involved 
suggests that V optimality will be about twice as 
expensive as D optimality. The corresponding ratio 
for G optimality is less clear in general, but the noted 
examples required from two to six times the compu- 
tational effort for D optimality. The implemented al- 
gorithms have been applied to unrestricted design 
regions of up to about 1,000 points. 

The approach adopted here is to specify the design 
region by a finite set of points. This affords flexibility 
to restrict the design to convenient levels of the ex- 
planatory variables or to approximate continuous 
variables by finer grids. Such an approach will become 
computationally cumbersome, though, for a large 
number of continuous variables. 

A FORTRAN listing of the Algorithms for the 
Construction of Experimental Designs (ACED) com- 
puter package is available from the author. Version 
1.5.1 implements all of the facilities described here. 
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