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a b s t r a c t

Sequential experiment design strategies have been proposed for efficiently augmenting initial designs

to solve many problems of interest to computer experimenters, including optimization, contour and

threshold estimation, and global prediction. We focus on batch sequential design strategies for

achieving maturity in global prediction of discrepancy inferred from computer model calibration.

Predictive maturity focuses on adding field experiments to efficiently improve discrepancy inference.

Several design criteria are extended to allow batch augmentation, including integrated and maximum

mean square error, maximum entropy, and two expected improvement criteria. In addition, batch

versions of maximin distance and weighted distance criteria are developed. Two batch optimization

algorithms are considered: modified Fedorov exchange and a binning methodology motivated by

optimizing augmented fractional factorial skeleton designs.

Published by Elsevier Ltd.
1. Introduction

The National Nuclear Security Administration (NNSA) is tasked
with maintaining the reliability of the nation’s nuclear weapons
stockpile. In 2001, the three national security laboratories began
implementation of a Quantification of Margins and Uncertainties
(QMU) framework to support quantitative inferences of design
margins (M) and performance uncertainties (U) for weapons
systems maintained by the stockpile stewardship program that
began in 1994. In this article, we develop nine sequential
approaches to adding new field data for calibration of computer
models to efficiently achieve stability in code predictions of
quantities of interest. The concepts developed in this article,
perhaps with application specific modifications, support QMU
methodology by recommending efficient use of experimental
resources to improve code predictions of metrics used in the
computation of M and U. In particular, a rigorous sequential
experimental design capability would support recommendation
I-1b of the recent National Research Council evaluation of QMU
methodology as applied to the stockpile stewardship program [1]:
‘‘The laboratories and NNSA should strive to improve the connec-
tions between advanced simulation and computing simulation
programs and experimental programs.’’
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: þ1 505 667 4470.
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We present the proposed sequential design framework for a
general statistical model, followed by specialization to the Kennedy
and O’Hagan [2] statistical model commonly used as the basis for
calibrating uncertain model parameters in simulations to available
field data. In this context, stability is desired in predictions of
discrepancy (computer model inadequacy), the calibrated compu-
ter model, and physical reality. The focus is on collecting new field
data or simulations according to batch sequential algorithms based
on maximizing expected improvement and distance-based criteria.

There is now an extensive literature in the statistical design
and analysis of computer models on the use of expected improve-
ment criteria in sequential experimental design strategies. The
focus has primarily been on optimization of computer models.
Schonlau et al. [3] and Jones et al. [4] introduced a one-step
sequential algorithm for efficient optimization, with extensions
allowing for batch updates and for constrained optimization
involving multiple independent model outputs. Williams et al.
[5] extended this methodology for sequential optimization of
control parameters in integrated computer models. Lehman et al.
[6] proposed a sequential algorithm for finding a robust setting of
the control variables in an integrated computer model. Keane [7]
developed a sequential design to construct Pareto fronts for
multi-objective optimization with expensive computer models.
Booker et al. [8] provided a rigorous framework for sequential
optimization of computer models with convergence theory,
extended to constrained optimization problems in Audet
et al. [9]. Regis and Shoemaker [10] presented an alternative
algorithm for constrained optimization of computer models with
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convergence results. Ranjan et al. [11] proposed a sequential
algorithm for estimating a contour from a computer model.

Johnson et al. [12] and Morris and Mitchell [13] successfully
employed distance-based criteria for the purpose of generating
initial designs for computer experiments. Loeppky et al. [14]
consider the use of distance-based metrics in batch sequential
augmentation of computer experiment designs for the purpose of
achieving improved global prediction of model output.

Any of the sequential design criteria proposed in this article
can be implemented in a one at a time fashion. However, adding
runs one at a time can often lead to sub-optimal run placement.
Loeppky et al. [14] illustrate that this is true with many of the
common criteria used to select new runs for improving surrogate
predictions of complex computer models. Furthermore, budget
and time constraints often dictate that batches of new runs must
be added. In the case of a slow computer model, one at time
updates are simply not feasible due to the time required to
produce new runs. In addition it is often the case that multiple
processors are available for collecting new code runs, so that one
at a time updates would be inefficient since not all of the available
resources are utilized. In the case of physical experiments, it is
generally more cost effective for laboratories to process batches of
experimental units at a time. This may be driven by the complex-
ity of arranging experimental setups or by a fixed allocation of
time for use of an experimental facility. In general the choice of
batch size is typically not under the control of the experimenter
but is dictated by the availability of resources.

Section 2 formally introduces the predictive maturity frame-
work. Two expected improvement criteria are introduced for
application in batch sequential design. Section 3 specializes the
predictive maturity framework to the computer model calibration
approach introduced by Kennedy and O’Hagan [2]. Batch sequen-
tial implementations of integrated and maximum mean square
error criteria, maximum entropy and distance-based criteria, are
developed. Section 4 presents a simulation study to evaluate the
performance of twelve experiment design strategies in terms of
prediction errors for calibration problems with and without
discrepancy present. Section 5 concludes with a discussion of
sequential design to achieve predictive maturity.
2. Predictive maturity

Suppose there is interest in making predictive inference about
a physical system. For example, let xðxÞ denote the true response
of the physical system assuming design settings x, where inputs x
are controllable parameters that can be ‘‘dialed in’’ prior to
conducting field experiments to learn about xðUÞ. In actuality,
we never directly observe xðxÞ for any x; we observe corrupted
versions yðxÞ, where a variety of possible errors eðxÞ prevent direct
observation of xðxÞ

yðxÞ ¼ xðxÞþeðxÞ:

For the moment, eðxÞ collectively represents all sources of
observational error, including measurement errors, systematic
errors, and replicate variability.

To make progress, statistical models for xðxÞ and eðxÞ are
specified. For example, empirical modeling of data often involves
specifying a linear model for xðxÞ

xðxÞ ¼
Xp

i ¼ 0

bifiðxÞ,

where fiðxÞ are regression functions (e.g. f0ðxÞ ¼ 1, fiðxÞ ¼
xi, i¼ 1,. . .,p, specifies a simple linear model), and independent
and identically distributed mean-zero Gaussian errors eðxÞ

eðxÞ �N 0,1=le
� �

,

where le is the precision (inverse variance) of the observational
error process. In the following we will consider a statistical model
for xðxÞ that connects xðxÞ to a ‘‘best’’ code calculation. In general
applications, errors eðxÞ are often heteroscedastic or correlated. To
keep this discussion general, we suppose the statistical models for
xðxÞ and eðxÞ are indexed by parameters hx and he. For example, in
the linear model specification above

hx ¼ ðb0,. . .,bpÞ and ye ¼ le:

A Bayesian approach to statistical inference is taken in the
following discussion. Given field data yðx1Þ,. . .,yðxnÞð Þ observed at
design settings ðx1,. . .,xnÞ, and a priori knowledge about hx and he
embodied in the joint prior density pðhx,heÞ, the posterior density
of hx and he is derived as follows

p hx,he9yðx1Þ,. . .,yðxnÞ
� �

pL hx,he9yðx1Þ,. . .,yðxnÞ
� �

pðhx,heÞ,

where L hx,he9yðx1Þ,. . .,yðxnÞ
� �

is the likelihood function, i.e. the
joint density of the data yðx1Þ,. . .,yðxnÞð Þ viewed as a function of
the parameters hx and he. The likelihood function provides the
metric by which parameter settings are judged to be consistent
with data: higher values indicate greater consistency. The poster-
ior distribution updates prior knowledge about the parameters hx
and he by conditioning on the data yðx1Þ,. . .,yðxnÞð Þ: parameter
settings simultaneously consistent with the data and prior are
more likely, with the likelihood component gaining influence as
more field data are collected.

We turn our attention now to the problem of predicting reality
xðxÞ at unsampled input setting x. Inference is based on the
predictive density p xðxÞ9yðx1Þ,. . .,yðxnÞ

� �
,

p xðxÞ9yðx1Þ,. . .,yðxnÞ
� �
¼

Z
hx ,he

p xðxÞ9hx,he,yðx1Þ,. . .,yðxnÞ
� �

p hx,he9yðx1Þ,. . .,yðxnÞ
� �

dhx dhe,

which represents the knowledge about xðxÞ obtained by collecting
field data yðx1Þ,. . .,yðxnÞð Þ. The first density in the integral,
p xðxÞ9hx,he,yðx1Þ,. . .,yðxnÞ
� �

, is derived directly from the statistical
modeling assumptions. Often, given parameter settings hx and he,
xðxÞ is independent of yðx1Þ,. . .,yðxnÞð Þ so that

p xðxÞ9hx,he,yðx1Þ,. . .,yðxnÞ
� �

¼ p xðxÞ9hx,he
� �

;

however, this need not be the case and, in fact, this simplification
is not available to us in the main analysis to follow. The second
density in the integral, p hx,he9yðx1Þ,. . .,yðxnÞ

� �
, is the posterior

distribution of hx and he. In the more complicated settings of
practical analyses, an analytic expression for p hx,he9yðx1Þ,. . .,

�
yðxnÞÞ is typically unavailable; in this event, techniques such as
Markov chain Monte Carlo (MCMC) are employed to sample this
posterior, and the predictive density is estimated by the mixture
density

p xðxÞ9yðx1Þ,. . .,yðxnÞ
� �

�
1

M

XM
i ¼ 1

p xðxÞ9hx,i,he,i,yðx1Þ,. . .,yðxnÞ
� �

:

It is natural to define predictive maturity in terms of achieving
stability in the predictive density p xðxÞ9yðx1Þ,. . .,yðxnÞ

� �
as a

function of the field data collected. Specifically, stability is
reached when the collection of additional field data results in
minimal changes to the predictive density as measured by an
appropriate metric.

2.1. Information

One approach to measuring changes in probability density
functions is through information gain. In Bayesian experiment
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design (Chaloner and Verdinelli [15]), this is typically measured
through the expected Kullback–Leibler distance between the
posterior and the prior predictive distributions. In the subsequent
development, we will utilize the following result.

Result 1. Suppose y¼ ðyT
1 ,yT

2 ,yT
3Þ

T has a multivariate Gaussian
distribution with mean vector 0 and covariance matrix

R¼

R11 R12 R13

RT
12 R22 R23

RT
13 RT

23 R33

0
B@

1
CA:

Let p1ðy1Þ ¼ pðy19y2Þ and p2ðy1Þ ¼ pðy19y2,y3Þ. Define the fol-

lowing matrices:

R11:2 ¼R11�R12R
�1
22 RT

12,

R33:2 ¼R33�RT
23R

�1
22 R23,

R13:2 ¼R13�R12R
�1
22 R23:

Then

E log
p2

p1

� �
9y2

� �
¼

1

2
logð9R11:29Þ�logð9R11:2�R13:2R

�1
33:2R

T
13:29Þ

h i
:

Alternative distance metrics have been employed to generate
experiment designs. For example, Bingham and Chipman [16]
utilize Hellinger distance in their proposed criterion for selecting
an experiment design with two-level factors that maximizes the
ability to discriminate between linear models.

Consider the following batch sequential algorithm for achiev-
ing predictive maturity:
1.
 Given field data y x1ð Þ,. . .,y xnð Þð Þ, propose new input settings
x�1,. . .,x�np

and define the improvement

Inðx9x�1,. . .,x�np
Þ ¼�log

fnþnp ðxðxÞÞ
fnðxðxÞÞ

� �
,

where

fnðxðxÞÞ ¼ p xðxÞ9yðx1Þ,. . .,yðxnÞ
� �

and

fnþnp ðxðxÞÞ ¼ p xðxÞ9yðx1Þ,. . .,yðxnÞ,yðx
�
1Þ,. . .,yðx

�
np
Þ

� 	
:

Compute the posterior expected improvement

EInðx9x�1,. . .,x�np
Þ ¼�E log

fnþnp ðxðxÞÞ
fnðxðxÞÞ

� �
9yðx1Þ,. . .,yðxnÞ

� �
:

2.
 Determine settings xnþ1,. . .,xnþnp minimizing max
x

EInðx9x�1,. . .,
x�np
Þ :

EInðxnþ1,. . .,xnþnp Þ ¼ argmin
x�

1
,...,x�np

max
x

EInðx9x�1,. . .,x�np
Þ:

Collect field data yðxnþ1Þ,. . .,yðxnþnp Þ and set n to nþnp.

3.
 Continue steps (1)–(2) until changes in EInðUÞ become negli-

gible with respect to an absolute or relative stopping criterion.

This procedure will be referred to as the Expected Improve-
ment for Predictive Stability (EIPS) algorithm. Given input setting
xn, max

x
EInðx9x�Þ is the largest entropy between the current and

proposed predictive densities for xðxÞ. Ideally, we would like this
entropy to be as close to zero as possible, indicating that little
information is gained by collecting new field data for predicting
xðxÞ. On the other hand, larger values of this metric correspond to
greater instability, and so choosing xnþ1 to minimize EInðx9x�Þ
results in the largest possible one-step reduction in instability.
The EIPS algorithm possesses the desirable feature that it uses the
predictive distribution itself, rather than summary metrics such
as moments, to make inference regarding how best to collect new
field data.

2.2. Moments

As an alternative, we consider sequential algorithms based on
expected improvement criteria for global prediction of response
surfaces. For example, define the improvement

InðxÞ ¼ xðxÞ�xn



 

g ,

where g is a positive integer and xn ¼ xðxjÞ :
�

xj is closest
to x, j¼ 1,. . .,ng. The ‘‘closeness’’ of xj to x is measured via a
distance metric, such as Euclidean or Mahalanobis distance. This
is an integer power of the absolute difference between xðUÞ
evaluated at input setting x and at the nearest previously sampled
input setting. We propose adding the batch of input sites
x�1,. . .,x�np

to the current design. The proposed algorithm requires
the posterior expected improvement:

EInðx9x�1,. . .,x�np
Þ ¼ E xðxÞ�xnþnp




 


g9yðx1Þ,. . .,yðxnÞ

h i
,

where xnþnp
¼ xðvjÞ : vj is closest to x, j¼ 1,. . .,nþnp

n o
and

v¼ fx1,. . .,xn,x�1,. . .,x�np
g.

To understand the behavior of the expected improvement,
note that it partitions the input space into nþnp disjoint regions.
Region j consists of all x ‘‘closer to’’ vj than any other sampled
input setting, for j¼1,y,nþnp. This criterion is bounded below by
zero and takes larger values if either of the following circum-
stances occurs:
1.
 Large prediction variance in the difference xðxÞ�xðvjÞ for any x
in region j, suggesting some predictions are imprecise given
current field data.
2.
 Rapid changes in predictions on short length scales measured
by the squared difference in predictions at x and vj in region j,
suggesting the possibility of biased prediction resulting from
undersampling this region.

This suggests collecting field data at input settings x�1,. . .,x�np

minimizing max
x

EInðx9x�1,. . .,x�np
Þ, in order to mitigate either or

both of the circumstances above that can lead to prediction
errors. This leads to the following batch sequential algorithm for
achieving predictive maturity:
1.
 Given field data yðx1Þ,. . .,yðxnÞð Þ, propose new input settings
x�1,. . .,x�np

and compute EInðx9x�1,. . .,x�np
Þ.
2.
 Determine settings xnþ1,. . .,xnþnp minimizing max
x

EInðx9
x�1,. . .,x�np

Þ:

EInðxnþ1,. . .,xnþnp Þ ¼ argmin
x�

1
,...,x�np

max
x

EInðx9x�1,. . .,x�np
Þ:

Collect field data yðxnþ1Þ,. . .,yðxnþnp Þ and set n to nþnp.
3. Continue steps (1)–(2) until changes in EInðUÞ become

negligible with respect to an absolute or relative stopping
criterion.

This algorithm generalizes the Expected Improvement for
Global Fit (EIGF) algorithm of Lam and Notz [17], which was
developed for one-step sequential additions of new deterministic
computer model runs for the purpose of efficiently achieving good
response surface surrogates for prediction at unsampled model
input settings. Hence, we will refer to this procedure as the
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Generalized EIGF, or GEIGF, algorithm. Note that increasing the
value of g produces a more global search.

In the subsequent development, we will utilize the following
result.

Result 2. Suppose y¼ ðyT
1 ,yT

2 ,yT
3Þ

T has a multivariate Gaussian
distribution with mean vector 0 and covariance matrix

R¼

R11 R12 R13

RT
12 R22 R23

RT
13 RT

23 R33

0
B@

1
CA:

Let IðjÞ1,g ¼
Pn1

i ¼ 1 9y1i�y2i,j9
g

andIðjÞ3,g ¼
Pn1

i ¼ 1 9y1i�y3i,j9
g
, where n1

is the length of y1, g is a positive integer, and j indexes a block of

y2 or y3 having length equal to n1. Define the following matrices:

R11:2 ¼R11�R12R
�1
22 RT

12,

R33:2 ¼R33�RT
23R

�1
22 R23,

R13:2 ¼R13�R12R
�1
22 R23,

Rj
1�3ð Þ:2 ¼R11:2�Rj

13:2�ðR
j
13:2Þ

T
þRj

33:2,

where Rj
13:2 and Rj

33:2 denote submatrices corresponding to the j-

th block of y3. Then

E½IðjÞ
h,g9y2� ¼

Xn1

i ¼ 1
ðs2

hi92Þ
g=2
Xg

k ¼ 0

g

k

� �
zk

hi92 ð�1Þkmg�kðzhi92Þþmg�kð�zhi92Þ

h i
,

h¼ 1,3,

where s2
1i92 ¼ R11:2ð Þð Þii (the (i,i) element of R11:2) and s2

3i92 ¼

Rj
1�3ð Þ:2

� 	� 	
ii
; z1i92 ¼ ðy2i,j�ŷ1iÞ=s1i92 and z3i92 ¼ ðŷ3i,j�ŷ1iÞ= s3i92 for

ŷ1 ¼R12R
�1
22 y2 and ŷ3 ¼RT

23R
�1
22 y2; and

m‘ðzÞ ¼ z‘�1fðzÞþð‘�1Þm‘�2ðzÞ,

for ‘Z2 a positive integer, m0ðzÞ ¼ 1�FðzÞ, m1ðzÞ ¼fðzÞ, and fðzÞ,
FðzÞ denote the standard Gaussian probability density and cumu-

lative distribution functions, respectively.

When proposing a batch of new input settings x�1,. . .,x�np
, the

maximization of expected improvement in the EIPS or GEIGF
algorithms can be replaced by an integration of expected
improvement over the input space with respect to a weight
function w(x), which we take to be 1 in the subsequent develop-
ment. However, this function could be chosen to put more weight
on parts of the input space where output is more sensitive to
input changes, for example.
3. Calibration and prediction of computer models

Kennedy and O’Hagan [2] proposed what has become a
standard statistical framework for calibrating uncertain para-
meters in computer models to available field data, and analyzing
the resulting calibrated predictions for the purposes of validating
a computer model or certifying an engineering system, for
example. Let Zðz,tÞ denote the computer model evaluated at
design settings z and physics model settings t. Note the design
parameters z in the computer model match up one to one with
the design parameters x specifying experiments —different nota-
tion is used to make it clear there is no requirement that
experiments and computer model runs be collected at the exact
same design settings. The parameters t are specific to physics
models embedded in the code. They may or may not have
corresponding ‘‘true’’ (but unknown) values in nature. One feature
distinguishing them from design settings is that they cannot be
controlled for the purposes of collecting field data. Let t¼h denote
the unknown setting of the physics parameters that provides the
best match of code calculation to physical reality. Let the
discrepancy dðxÞ be defined as the difference between reality
and the best code calculation

dðxÞ ¼ xðxÞ�Zðx,hÞ:

We assume dðxÞ is a mean-zero Gaussian process (GP) with
correlation length parameters qd and precision parameter ld. Let
rdðx1�x2Þ denote the correlation function of this GP. We assume a
product power exponential form for the covariance function

cdðx1�x2Þ ¼
1

ld
rdðx1�x2Þ,

rdðx1�x2Þ ¼
Yp

j ¼ 1

r4ðx1j�x2jÞ
2

d,j , rd,j ¼ expð�bd,j=4Þ,

where rd,j represents the correlation between discrepancies with
inputs at the same levels except in the j-th dimension, where the
inputs are separated by the midrange value of 0.5, assuming all
inputs have been scaled to the unit cube. Higdon et al. [18] and
Williams et al. [19] provide details on this parameterization of
Gaussian process models and additional references.

If the code is ‘‘fast’’, i.e. computationally inexpensive, no
statistical model for Zðz,tÞ is required as code runs can be
obtained as needed. If the code is ‘‘slow’’, a stochastic model
must be specified for Zðz,tÞ to allow prediction of unsampled
input settings (z,t). In this setting, we assume a mean-zero
Gaussian process for Zðz,tÞ, a priori independent of dðxÞ, indexed
by correlation length parameters qZ and precision parameter lZ.
Let rZððz1,t1Þ�ðz2,t2ÞÞ denote the correlation function of this GP. As
before, we assume a product power exponential form for the
covariance function

cZððz1,t1Þ�ðz2,t2ÞÞ ¼
1

lZ
rZððz1,t1Þ�ðz2,t2ÞÞ,

rZððz1,t1Þ�ðz2,t2ÞÞ ¼
Yp

j ¼ 1

r4ðz1j�z2jÞ
2

Z,j

Yq

j ¼ 1

r4ðt1j�t2jÞ
2

Z,jþp ,

rZ,j ¼ expð�bZ,j=4Þ:

The covariance and correlation functions restricted to the z
inputs are to be interpreted as follows: cZðz1�z2Þ ¼ cZððz1,tÞ�
ðz2,tÞÞ and rZðz1�z2Þ ¼ rZððz1,tÞ�ðz2,tÞÞ.

We will proceed under the assumption of a ‘‘slow’’ code. To
complete the model specification, we will assume the observation
errors eðxÞ are mean-zero, Gaussian noise with precision le,
independent of gðz,tÞ and dðxÞ.

We assume a prior distribution for the parameters

pðh,qZ,lZ,qd,ld,leÞ ¼ pðhÞpðqZÞpðlZÞpðqdÞpðldÞpðleÞ:

The prior distribution on the best unknown physics parameter
setting h, pðhÞ, is generally derived from a combination of expert
judgment and analysis of relevant separate (or integral) effects
data. See Higdon et al. [18] for standard prior assignments to the
Gaussian process model parameters. Given field data
yn ¼ ðyðx1Þ,. . .,yðxnÞÞ and computer model runs gm ¼ ðZðz1,t1Þ,. . . ,
Zðzm,tmÞÞ, the posterior distribution of all the parameters is
derived from

pðh,qZ,lZ,qd,ld,le9gm,ynÞpLðh,qZ,lZ,qd,ld,le9gm,ynÞpðh,qZ,lZ,qd,ld,leÞ

Lðh,qZ,lZ,qd,ld,le9gm,ynÞpLðh,qZ,lZ,qd,ld,le,gm9ynÞLðqZ,lZ9gmÞ:

The likelihood of the observed field data and calculations is
represented as the product of two terms: the first is the likelihood
of the observed field data given the calculations, and the second is
the likelihood of the calculations. This decomposition is
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important, as the second term can be computationally intensive
when the number of calculations m is large. Thus computational
considerations may dictate fixing ðqZ,lZÞ at reasonable values (e.g.
a maximum likelihood estimate) and reducing the complete
likelihood to the more computationally tractable first term
(assuming the amount of field data, n, is relatively small). As this
posterior distribution is analytically intractable, samples from it
are taken using MCMC methods.

We will track predictions for the discrepancy pðdðxÞ9gm,ynÞ in
the proposed predictive maturity algorithms. As mentioned pre-
viously, predictions of physical reality pðxðxÞ9gm,ynÞ and cali-
brated code pðZðx,hÞ9gm,ynÞ could be tracked using simple
modifications of the same algorithms. We assume that a high-
quality code surrogate is available prior to collecting new field
data, although the algorithm could be modified to simultaneously
accomplish that goal. We propose adapting the approach of
Loeppky et al. [14] for obtaining stability in code surrogate
performance (emulator maturity) to achieving the goal of pre-
dictive maturity with calibrated computer models:
1.
1.

2.
Assume initial field data and computer model runs have been
collected. If possible, algorithms for achieving emulator matur-
ity have been run with the computer model. A calibration is
performed using these initial field data and model runs.
2.
 Apply a sequential design criterion to the discrepancy dðxÞ for
the purpose of sequentially choosing a batch of design settings
at which new field experiments will be conducted, using
estimates of the relevant statistical model parameters from
the current calibration.
3.
 If desired, pair up the new design sites obtained by the process
in step (2) with physics parameter settings t to obtain new
computer model runs. For example, physics parameter settings
could be chosen according to some space-filling criterion or
from the results of the current calibration, perhaps based on
sampling the h posterior distribution.
4.
 Perform a new calibration that incorporates the new field data
resulting from step (2), and the new computer model runs
from step (3). Repeat steps (2)–(3) until terminating the
algorithm based on a stopping rule.

3.1. Expected improvement for calibrated computer models

We now specialize Results 1 and 2 to the Kennedy and
O’Hagan [2] calibration framework. The adoption of GP models
in this framework allows the assumptions of these results to be

satisfied. Let D1 ¼ fd11,. . .,d1n1
g and D2 ¼ fd21,. . .,d2n2

g denote two

designs. The notation RðD1,D2Þ denotes a n1 � n2 matrix of

correlations with (i,j) element rðd1i�d2jÞ. Let Dy ¼ fx1,. . .,xng,

DZ ¼ fðz1,t1Þ,. . .,ðzm,tmÞg, Dh
Z ¼ fðx1,hÞ,. . .,ðxn,hÞg, Dx ¼ fx

�
1,. . .,x�np

g,

and Dh
x ¼ fðx

�
np

,hÞ,. . .,ðx�np
,hÞg. The EIPS criterion is given by

�E logðp2=p1Þ9y2

� 
in Result 1 with the following substitutions
y1 ¼ dðxÞ, y2 ¼ ðyðx1Þ,. . .,yðxnÞ,Zðz1,t1Þ,. . .,Zðzm,tmÞÞ,

and y3 ¼ ðxðx
�
1Þ,. . .,xðx

�
np
ÞÞ;
R11 ¼ 1=ld, R12 ¼ ðRdðfxg,DyÞ=ld 0T
Þ, R13 ¼ Rdðfxg,DxÞ=ld,

R22 ¼

RZðDy,DyÞ=lZþRdðDy,DyÞ=ldþK=le RZðDh
Z,DZÞ=lZ

RZðDh
Z,DZÞ

T=lZ RZðDZ,DZÞ=lZ

0
@

1
A,

where

K¼Diagðs2
i ,i¼ 1,. . .,nÞ,
R23 ¼
RZðDy,DxÞ=lZþRdðDy,DxÞ=ld

RZðDZ,Dh
xÞ=lZ

 !
, and

R33 ¼RZðDx,DxÞ=lZþRdðDx,DxÞ=ld,

where s2
i is the assumed variance of yðxiÞ (if available);� 	
3.
 R11:2 ¼ ð1=ldÞ 1�tr½Rdðfxg,DyÞ
T Rdðfxg,DyÞS

�1
11 �=ld

where

S11 ¼ RZðDy,DyÞ�RZðD
h
Z,DZÞR

�1
Z ðDZ,DZÞRZðD

h
Z,DZÞ

T=lZ
þRdðDy,DyÞ=ldþK=le,

R33:2 ¼ TZxx=lZþRdðDx,DxÞ=ld�ðTZyx=lZþRdðDy,DxÞ

=ldÞT S�1
11 TZyx=lZþRdðDy,DxÞ=ld
� �

where

TZxx ¼RZðDx,DxÞ�RZðDZ,Dh
xÞ

T R�1
Z ðDZ,DZÞRZðDZ,Dh

xÞ and

TZyx ¼RZðDy,DxÞ�RZðD
h
Z,DZÞR

�1
Z ðDZ,DZÞRZðDZ,Dh

xÞ, and

R13:2 ¼ ðRdðfxg,DxÞ�Rdðfxg,DyÞS
�1
11 ðTZyx=lZþRdðDy,DxÞ=ldÞÞ=ld:

The EIPS criterion is easily extended to functional computer
and experimental outputs (e.g. time series or collections of
features) in the Kennedy and O’Hagan framework. Functional
computer output is modeled as follows:

gðz,tÞ ¼Kwðz,tÞ,

where K is a matrix of fixed basis vectors (e.g. subset of
eigenvectors selected from principal component analysis of a
suite of computer model runs) and w is the vector of correspond-
ing coefficients. The functional discrepancy is modeled similarly,

dðxÞ ¼DvðxÞ,

where D is a matrix of fixed basis vectors (e.g. Gaussian kernels)
and v is the vector of corresponding coefficients. Following
Higdon et al. [20], we assume the coefficients of basis decom-
positions in both the computer model and discrepancy are
modeled as a priori independent GPs. Let viðD1Þ ¼ ðviðd11Þ,. . .,
viðd1n1

ÞÞ denote the i-th discrepancy coefficient evaluated on the
design D1, and wiðD2Þ ¼ ðwiðd21Þ,. . .,wiðd2n2

ÞÞ denote the i-th
model coefficient evaluated on D2. This extension is accomplished
by setting y1 ¼ ðv1ðxÞ,. . .,vpd ðxÞÞ, y2 ¼ ðv̂,û,ŵÞ where ðv,u,wÞ ¼
ðv1ðDyÞ,. . .,vpd ðDyÞ,w1ðD

h
ZÞ,. . . ,wpZ ðD

h
ZÞ,w1ðDZÞ,. . .,wpZ ðDZÞÞ, and

y3 ¼ ðv1ðDxÞ,. . .,vpd ðDxÞ,w1ðD
h
xÞ,. . .,wpZ ðD

h
xÞÞ. Here, pd and pZ are

the total number of discrepancy and model coefficients, and y2 is
the least squares estimate of the basis coefficients found by
projecting the complete vector of experimental data and model
outputs onto the basis as described by Higdon et al. [20].

The GEIGF criterion is given by E½I3,g9y2� in Result 2 with the
above substitutions, modified as follows:
1.
 y3 ¼ ðdðxÞ,. . .,dðxnÞ,dðx�1Þ,. . .,dðx
�
np
ÞÞ;
2.
 R13 ¼ ðRdð xf g,DyÞ=ld Rdðfxg,DxÞ=ld Þ,

R23 ¼
RdðDy,DyÞ=ld RdðDy,DxÞ=ld

0 0

� �
and

R33 ¼
RdðDy,DyÞ=ld RdðDy,DxÞ=ld
RdðDy,DxÞ

T=ld RdðDx,DxÞ=ld

 !
;

T T
 !
3.
 R33:2 ¼
dyy dyx

TT
dyx Tdxx

where

Tdyy ¼ ð1=ldÞðIn�RdðDy,DyÞS
�1
11 =ldÞRdðDy,DyÞ,

Tdyx ¼ ð1=ldÞðIn�RdðDy,DyÞS
�1
11 =ldÞRdðDy,DxÞ and

Tdxx ¼ ð1=ldÞðRdðDx,DxÞ�RdðDy,DxÞ
T S�1

11 RdðDy,DxÞ=ldÞ, and
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R13:2 ¼
1

ld
ðRdð xf g,DyÞðIn�S�1

11 RdðDy,DyÞ=ldÞ

Rdðfxg,DxÞ�Rdðfxg,DyÞS
�1
11 RdðDy,DxÞ=ldÞ;
4.
 ŷ1 ¼Rdðfxg,DyÞS
�1
11 ðy

n�RZðD
h
Z,DZÞR

�1
Z ðDZ,DZÞgmÞ=ld and

ŷ3 ¼
RdðDy,DyÞ

RdðDy,DxÞ
T

 !
S�1

11 ðy
n�RZðD

h
Z,DZÞR

�1
Z ðDZ,DZÞgmÞ=ld:
We take y3 ¼ ðv1ðDyÞ,. . .,vpd ðDyÞ,v1ðDxÞ,. . .,vpd ðDxÞÞ in the exten-
sion of this criterion to the functional data setting.

We examine the GEIGF criterion with two choices of g, 2 and 4.
Lam [21] chose g¼2 as a standard setting, but noted that g¼4
produced better results for some examples where a more global
search is required.

Comments on the proposed algorithm:
1.
 The discrepancy was chosen as the focus for generating new
field data, motivated by the fact that achieving stability in the
discrepancy is critical in order that use of the discrepancy as
an empirical correction to the computer model be deemed
acceptable for interpolative, and possibly extrapolative, pre-
dictions required in validation or certification contexts. How-
ever, expected improvements for both physical reality and
calibrated code can be tracked by making simple modifications
to the expected improvement for the discrepancy and, in fact,
the algorithm could be modified to generate updates based on
one or a mixture of these alternatives.
2.
 Code updates may make use of knowledge gained from the
calibration about the region of physics parameter space most
relevant to matching physical reality. The focus of emulator
maturity is on ensuring a quality global fit to the computer
model output, which will be beneficial to calibration by
reducing both bias and variability in the code surrogate and
thus more rapidly leading to identification of the relevant
region of parameter space.
3.
 The algorithms as presented are designed to accommodate
batch updates. However, the multivariate optimization
required to add all proposed inputs in a batch at once quickly
becomes computationally challenging. Hence the inputs are
added using a modified Fedorov exchange algorithm (Fedorov
[22]), which performs a greedy optimization over each pro-
posed run in the batch while fixing the others, cycling through
the proposed runs until negligible improvement in the criter-
ion value is observed. GP parameters are not updated until a
batch is completed.
4.
Table 1

Matrices needed for IMSE-d calculation.
The requirement that candidate design settings from step
(2) of the proposed sequential design algorithm be fixed for
generating the candidate computer model run in step (3) can
be relaxed so that different candidate design settings are
allowed in steps (2) and (3). However, the algorithm reflects
the typical situation that in practice, code runs are often
desired at the design settings for which field data are available
or proposed.
Matrix Size (i,j) element

Wdy n� n Yp

k ¼ 1
exp �

1

2
bd,kðxik�xjkÞ

2

� �
c

1

2
ðxikþxjkÞ,2bd,k;0,1

� �

Wdx np � np
Yp

k ¼ 1
exp �

1

2
bd,kðx

�
ik�x�jkÞ

2

� �
c

1

2
ðx�ikþx�jkÞ,2bd,k;0,1

� �

Wdxy np � n Yp

k ¼ 1
exp �

1

2
bd,kðx

�
ik�xjkÞ

2

� �
c

1

2
ðx�ikþxjkÞ,2bd,k;0,1

� �
3.2. Mean square error-based criteria

Neither the EIPS nor the GEIGF criteria submit to closed-form
integration over the input domain with respect to standard
weight functions such as the uniform or Gaussian density func-
tions. Integrals must be estimated using standard numerical
integration techniques such as Monte Carlo sampling or quad-
rature (Genz and Malik [23], O’Hagan [24]). If ease of integration
over the input domain is of concern, one could consider batch
updates using the integrated mean square error criterion for
discrepancy, IMSE-d. Lu et al. [25] develop this criterion in terms
of predicting physical reality xðxÞ (rather than discrepancy dðxÞ)
for the purpose of recommending follow-up computer model runs
and field data experiments simultaneously. The IMSE-d criterion
chooses candidate input settings x�1,. . .,x�np

to minimize the
integrated posterior variance of the discrepancy function,R

RVarðdðxÞ9yn,gm,xðx�1Þ,. . .,xðx
�
np
ÞÞwðxÞdx, for rectangular region R.

The posterior variance is given by

VarðdðxÞ9yn,gm,xðx�1Þ,. . .,xðx
�
np
ÞÞ ¼R11:2�R13:2R

�1
33:2R

T
13:2,

where the matrices on the right-hand side are as specified for the
EIPS criterion in Section 3.1. This can be easily integrated with
respect to some common weight functions. We will demonstrate
this for w xð Þ ¼ 1 on the unit cube. Let cðw,o; l,uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=oÞ

p
½Fð

ffiffiffiffiffiffiffi
2o
p

ðu�wÞÞþFð
ffiffiffiffiffiffiffi
2o
p

ðw�lÞÞ�1� where F Uð Þ denotes the stan-
dard Gaussian cumulative distribution function. The following
result is required.

Result 3.Z uk

lk

exp �bkðxk�xikÞ
2
�bkðxk�x�jkÞ

2
h i

dxk

¼ exp �
1

2
bkðxik�x�jkÞ

2

� �
c

1

2
ðxikþx�jkÞ,2bk; lk,uk

� �
:

Table 1 defines three matrices needed in the calculation of

IMSE-d.

Applying Result 3 on the unit cube, we obtainZ
0,1½ �

p
var dðxÞ9yn,gm,xðx�1Þ,. . .,xðx

�
np
Þ

� 	
dx¼

1�ðtr½WdyðS
�1
11 þSyxR

�1
33:2ST

yxÞ�þtr½ðWdx�2WdxySyxÞR
�1
33:2�Þ=ld

� 	
=ld,

where Syx ¼ S�1
11 TZyx=lZþRdðDy,DxÞ=ld
� �

. The posterior variance
can also be used in the MMSE-d criterion, which chooses candi-
date input settings x�1,. . .,x�np

to minimize the maximum posterior
variance of the discrepancy function. Sacks and Schiller [26]
compared IMSE and MMSE criteria for spatial design applications,
while Sacks et al. ([27,28]) considered these criteria in the context
of computer experiment design.

The functional extensions of these criteria take y3 to be
equivalent to physical reality, y3 ¼ ðv1ðDxÞ,. . .,vpd ðDxÞ, w1ðD

h
xÞ,

. . .,wpZ ðD
h
xÞÞ.

3.3. Entropy

Shewry and Wynn [29] developed a maximum entropy criter-
ion for sampling and experiment design. Given a finite system,
the motivation of this criterion is to select a sample from the
system to maximize the information for predicting unsampled
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system values given the sample. The ME-d criterion chooses
candidate input settings x�1,. . .,x�np

to maximize R33:2j j, where this
matrix is specified as for the EIPS criterion in Section 3.1 with
y3 ¼ ðdðx�1Þ,. . .,dðx

�
np
ÞÞ in the scalar output case and

y3 ¼ ðv1ðDxÞ,. . .,vpd ðDxÞÞ in the functional output case.
3.4. Distance-based criteria

Two additional batch sequential design criteria applied to
discrepancy will be considered: maximin Euclidean distance
and maximin sensitivity-weighted distance. Let ‘sðx1,x2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i ¼ 1 tiðx1i�x2iÞ
2

q
denote Mahalanobis distance with mean 0

and standard deviations 1=
ffiffiffiffiti
p

. Consider the following distance

metric involving two designs, a fixed design D1 ¼ fd11,. . .,d1n1
g

and a proposed design D2 ¼ fd21,. . .,d2n2
g:

‘sðD1,D2Þ ¼ min
i¼ 1,. . .,n1

j¼ 1,. . .,n2

‘sðd1i,d2jÞ4 min
i¼ 1,. . .,n2�1

j¼ iþ1,. . .,n2

‘sðd2i,d2jÞ:

The maximin Euclidean distance (MmED) and maximin sensi-
tivity-weighted distance (MmSWD) criteria choose input settings
x�1,. . .,x�np

at each stage to maximize ‘1ðDy,DxÞ (s¼1) and ‘bd ðDy,DxÞ

(s¼bd), respectively, where bd is the vector of roughness
parameters ðbd,i ¼�4logðrd,iÞÞ in the GP model of discrepancy.
The roughness parameters are related to the local (and global)
sensitivities of the input parameters, hence the terminology
‘‘sensitivity-weighted distance.’’ These criteria maximally sepa-
rate proposed input settings for new experiments from existing
experiments according to two choices of distance measure.
Johnson et al. [12] introduced maximin Euclidean distance as a
criterion to select designs for GP modeling of deterministic
computer model output. Sensitivity-weighted distance is
motivated by the fact that ‘bd ðDy,DxÞ is a bijection of the correla-
tion between the discrepancies corresponding to the nearest
input settings in Dy and Dx or in Dx. Therefore, the MmSWD
criterion minimizes the maximum discrepancy correlation, thus
proposing input settings in locations of design space at which
neighborhood information for making GP predictive inference
is weak.

A functional extension of MmSWD maximizes
Ppd

i ¼ 1 ‘bvi
ðDy,

DxÞ=lvi
, where bvi

and lvi
are the roughness and precision

parameters corresponding to the discrepancy basis coefficient vi,
respectively. This criterion gives greater weight to minimum
distances involving discrepancy coefficients with larger variance
and thus larger overall contributions to discrepancy.
Table 2
Main and total effect sensitivity indices for the ten code inputs.

Input bi Main

effect (%)

Total

effect (%)

Input bi Main

effect (%)

Total

effect (%)

z1 1.1895 17.8 26.3 z6 0.6895 6.1 9.6

z2 1.0895 15.0 22.5 z7 0.5895 4.5 7.1

z3 0.9895 12.4 18.9 z8 0.4895 3.1 5.0

z4 0.8895 10.1 15.6 z9 0.3895 2.0 3.2

z5 0.7895 8.0 12.5 z10 0.2895 1.1 1.8
4. Example

We conducted a simulation study to assess the effects of
several factors on global prediction for the three scalar outputs
of interest in calibration problems, described in Section 3:
discrepancy, best code calculation (calibrated code), and reality.
The design space (x) is six-dimensional, and the code has four
calibration parameters (h). The design used for code emulation is
fixed (a 100-run space-filling Latin hypercube (LH) design in the
ten code inputs), and only the impact of experimental information
on global prediction is considered.

The ‘‘code’’ used in this study is the ten dimensional version of
a function used by Sobol’ and Levitan [30],

ZðzÞ ¼ exp
X10

i ¼ 1

bizi

 !
�I10
where

I10 ¼
Y10

i ¼ 1

ebi�1

bi
and ziA 0,1½ �, i¼ 1,. . .,10:

The first six inputs, z1,y,z6, are taken to be the design settings
while the last four inputs, z7,y,z10, are the calibration para-
meters. The coefficients bi chosen for this study result in the input
main and total effect sensitivity indices (Chan et al. [31]) of
Table 2.

The total standard deviation of code output with respect to
uniform input variation is approximately 42, with 80% of this
variance explained collectively by the main effects of the ten
inputs. This specification represents a code that varies smoothly
with each input and has most of its output variation explained by
relatively simple effects, a situation typical of many applications
in the physical sciences.

Physical reality was constructed for this study by taking the
true setting for each of the four calibration parameters to be 0.5,
and adding a discrepancy to the resulting best code calculation.
The discrepancy is constructed as follows: First, a mean zero and
variance one Gaussian process is constructed that uses the
canonical configuration of Loeppky et al. [32] to define the
correlation lengths rd,i in the six design dimensions

bd,i ¼ t 1�
i�1

6

� �b

� 1�
i

6

� �b
" #

, rd,i ¼ expð�bd,i=4Þ, i¼ 1,. . .,6:

The parameters t40 and bZ1 are specified. Next, a sample is
generated from this GP on a 625-run space-filling LH design in six
dimensions, centered to have mean zero, and scaled to have a
specified variance (5% or 15% of total variance in code output, see
below). Finally, discrepancy at any design setting is computed by
evaluating the kriging predictor with these correlation lengths
and the centered, scaled sample.

The parameters t and b are overall measures of output complex-
ity and effect sparsity, respectively. Larger values of t correspond to
shorter correlation lengths in each input dimension, resulting in a
discrepancy with increased activity on short length scales. Smaller
values of b result in a more even distribution of input effects; if b¼1
each input has an equivalent effect on output variation. Therefore, as
discussed in Loeppky et al. [32], discrepancy constructed as
described in the previous paragraph will be more difficult to predict
for larger values of t and smaller values of b.

Experimental data are generated by adding zero-mean Gaussian
noise with specified variance to this constructed physical reality.

This study compares twelve design strategies for conducting a
total budget of 64 experiments. A symmetric LH design (Ye et al.
[33]) that specifies all 64 runs in one stage is compared with nine
sequential design criteria and two space-filling sequences: Sobol’
LPt (Sobol [34]) and scrambled Sobol’ LPt (Matousek [35]). The
sequential criteria are EIPS, GEIGF (with g¼2 and 4), IMSE-d,
MMSE-d, ME-d, MmED, MmSWD, and bin-based LH design
(Loeppky et al. [14]). These criteria are all implemented in batch
sequential fashion. With the exception of bin-based LH designs,
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the batch sequential design algorithm applied to each design
criterion proceeds as follows:
1.
 Start with an initial 32-run space-filling LH design in the six
design variables, and the experimental data collected from this
design.
2.
 Estimate any parameters required to calculate the design
criterion (e.g. GP parameters of the code emulator and discre-
pancy function, calibration parameter setting) using information
from the current design. We use posterior mean estimates of
these parameters based on 1000 MCMC realizations.
3.
 Augment the current design with a proposed batch of eight
runs, and perform a continuous optimization of this batch with
respect to the design criterion (using parameter estimates
from the previous step if necessary) employing a modified
Fedorov exchange (Fedorov [22]).
4.
 Collect new experimental data on the optimal batch from the
previous step, augment the current design with this optimal
batch, and continue with step (2) until termination.

In this context, termination occurs once 64 runs are obtained,
i.e. after four batches are added to the initial design. Termination
could also be defined by sufficient stabilization of the optimal
design criterion value.

Step (3) in the above algorithm is modified to construct bin-
based LH designs, first introduced in Loeppky et al. [14] and
described there in additional detail with examples of particular
constructions. Bin-based LH design first identifies an optimal
sequence of bin designs, where the bin structure associates values
of each input with levels. For example, a common approach
divides each input into two bins (e.g. level 0 corresponds to input
values [0, 0.5] and level 1 to input values (0.5, 1]). The initial
design projects into the first bin structure, as does an orthogonal
array based LH design (McKay et al. [36], Tang [37], Owen [38]).
The bin augmentations are added by combinatorial design con-
siderations or sequentially optimizing a criterion such as max-
imin distance over the aggregate bin design. The bin
augmentations associate a set of values of the input that is
sampled so that the aggregate designs are approximately Latin
hypercube, using a procedure such as the following:
1.
 For each input dimension, the input range associated with
each bin level is divided into the number of strata equal to the
number of runs that currently project into that bin plus the
number of new runs assigned to that bin in the proposed
augmentation.
2.
 For each input dimension assign new input values associated
with each bin level in the augmentation as a sample from
strata not containing any runs in the current design and
optimized with respect to the maximin distance criterion
applied to the aggregate design.

Bin-based LH design extends the concept of OA-based LH
design with a method to sequentially augment such designs
maintaining the LH concept of having dense coverage of margin-
als. Further extension and development of these methods appear
in Loeppky et al. [39].

We now summarize the factors varied in this simulation study:
�
 Design: The 12 strategies as described above.

�

Fig. 1. Tukey’s 95% family-wise confidence intervals for difference in mean RMSPE
Discrepancy variance: Used in discrepancy construction, this
has two levels—5% and 15% of total variance in code output.
between each pair of design strategies. Confidence intervals are grouped by
�

strategy as indicated: symmetric LH design (slhd), bin-based LH design (blhd),

IMSE-d (imse), GEIGF with g¼4 (eigf4), Sobol’ LP (s), MMSE-d (mmse), MmED
Complexity: The t parameter in discrepancy construction,
with two levels—1 and 10.
t

(mmed), EIPS (eips), scrambled Sobol’ LPt (sn), GEIGF with g¼2 (eigf2), MmSWD
�

(mmswd), and ME-d (me).
Sparsity: The b parameter in discrepancy construction, with
two levels—1 and 9.
�
 Experimental error: Used in experimental data generation, this
has three levels—1%, 5% and 10% of total variance in code
output.

Two cases are evaluated: (1) no discrepancy, using a full
factorial design in the Design and Experimental Error factors;
and (2) discrepancy present, using a full factorial design in all five
factors. Each level combination in these designs is replicated
five times.

For each final 64-run design, the posterior means of the
discrepancy, calibrated code and reality predictive distributions
based on 500 MCMC realizations are compared with the corre-
sponding true values using both root mean square and maximum
absolute prediction errors (RMSPE and MAPE, respectively) calcu-
lated on a 625-run space-filling LH design. Analyses of variance
on the RMSPE and MAPE values were run for both cases, allowing
for main effects and two-factor interactions, and the AIC criterion
was used to select the best subset of effects for each analysis.
Tukey’s honest significant difference method (Tukey [40]) was
used to identify the significant pairwise differences among main
effect levels for each factor presented in the following two
subsections.
4.1. Case 1: no discrepancy

RMSPE and MAPE values for predicting discrepancy, which in
this case is zero throughout the design parameter space, were
inferior for the sequential design strategy based on ME-d relative
to every other strategy. Similarly, RMSPE values for calibrated
code predictions were inferior for ME-d relative to every other
strategy. MAPE values were superior for MmED relative to every
other strategy except MmSWD, and for MmSWD relative to all but
three of the other strategies. MAPE values for ME-d were inferior
except for two of the one-stage design strategies. Finally, RMSPE



Fig. 2. Boxplots of RMSPE values by design strategy: symmetric LH design (slhd),

Sobol’ LPt (s), scrambled Sobol’ LPt (sn), bin-based LH design (blhd), MmED

(mmed), GEIGF with g¼2 (eigf2), GEIGF with g¼4 (eigf4), EIPS (eips), ME-d (me),

IMSE-d (imse), MMSE-d (mmse), and MmSWD (mmswd).

Table 3
Tukey’s 95% family-wise confidence intervals for difference in mean RMSPE

between the two levels of discrepancy variance (d var) and the three levels of

experimental error variance (e var).

Pairwise difference Lower bound Upper bound

RMSPE ðdvar¼ 15%Þ�RMSPE ðdvar¼ 5%Þ 1.97 2.60

RMSPE ðevar¼ 5%Þ�RMSPE ðevar ¼ 1%Þ 1.11 2.04

RMSPE ðevar¼ 10%Þ�RMSPE ðevar ¼ 1%Þ 2.45 3.39

RMSPE ðevar¼ 10%Þ�RMSPE ðevar ¼ 5%Þ 0.88 1.81

Table 4
Count of pairwise comparisons in favor of each design strategy, aggregated over

RMSPE and MAPE values for prediction of discrepancy, calibrated code and reality.

Criteria No discrepancy Discrepancy present

RMSPE MAPE RMSPE MAPE

Symmetric LH design 3 2 13 5

Sobol LPt 3 0 4 �6

Scrambled Sobol LPt 3 1 5 �1

Bin LH design 3 0 6 �4

MmED 3 12 �2 19

MmSWD 3 10 �14 13

EIPS 3 1 4 �1

GEIGF (g¼2) 3 2 4 �1

GEIGF (g¼4) 3 1 4 3

IMSE-d 3 1 5 �5

MMSE-d 3 1 4 �1

ME-d �33 �31 �33 �21
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and MAPE values for predicting reality were inferior for ME-d
relative to every other strategy.

4.2. Case 2: discrepancy present

RMSPE and MAPE values for predicting discrepancy were
inferior for ME-d relative to every other strategy. Fig. 1 provides
Tukey’s 95% confidence intervals for the difference in mean
RMSPE between each pair of design strategies. The poor perfor-
mance of ME-d relative to every other design strategy is evident
from these results.

Fig. 2 provides boxplots of RMSPE values by design strategy.
The poor performance of ME-d is confirmed, in terms of both
greater mean RMSPE and a significantly higher likelihood of
observing substantially larger RMSPE values than typically seen
with the other design strategies.

Both RMSPE and MAPE values from discrepancy prediction
were larger for more complex discrepancy functions (large t) and
for discrepancy functions with less effect sparsity (small b),
consistent with the results of Loeppky et al. [32]. Tukey’s 95%
confidence intervals for difference in mean RMSPE are given by

RMSPE ðt¼ 10Þ�RMSPE ðt¼ 1ÞA ð0:58,1:22Þ and

RMSPE ðb¼ 1Þ�RMSPE ðb¼ 9ÞAð0:54,1:18Þ:

As expected, we also found that prediction of discrepancy is
more difficult when either discrepancy or experimental error
variances are larger. Table 3 presents Tukey’s 95% confidence
intervals for the difference in mean RMSPE for these factors.

RMSPE values for calibrated code predictions were inferior for
ME-d relative to every other strategy, while MmSWD was inferior
to all but three of the other strategies. MAPE values for MmSWD
and MmED were superior relative to every other strategy, while
Sobol LPt, bin-based LH design, and IMSE-d were inferior to one-
stage symmetric LH design, GEIGF with g¼4 and ME-d.

Interestingly, RMSPE and MAPE values from calibrated code
predictions were smaller for more complex discrepancy functions.
This suggests that in the presence of discrepancy, some complexity
may provide useful information about the best calibration parameter
setting h. Of course, excessive complexity is undesirable as it results
in inadequate prediction of the discrepancy function.

RMSPE values for predicting reality were superior for the one-
stage symmetric LH design relative to all other strategies except
for bin-based LH design. The ME-d strategy was inferior to every
other strategy, while MmSWD was inferior to every other strategy
except MmED and ME-d. MmED was inferior to approximately
half of the other strategies. MAPE values for MmED were superior
to all but three of the other strategies, while ME-d was inferior to
every other strategy.

As with discrepancy prediction, both RMSPE and MAPE values
from reality predictions were larger for more complex discre-
pancy functions.

4.3. Conclusions

Table 4 summarizes the main results of this simulation study:
�
 The one-stage symmetric LH design is never outperformed in
controlling average prediction errors, and only rarely sur-
passed in controlling maximum prediction errors.

�
 The maximum entropy criterion ME-d is outperformed by the

other strategies for predicting discrepancy, calibrated code and
reality.

�
 The space-filling sequences and bin-based LH design control

average error better than maximum error, while this relation-
ship is reversed for the two distance-based criteria.

�
 The remaining criteria are rarely outperformed in controlling

average or maximum prediction errors, although IMSE-d is
slightly less effective at mitigating maximum errors when
discrepancy is present.

Fig. 3 shows projections of the final 64-run designs into (x1, x2)
space from several of the strategies for the no discrepancy case.
Comparing Table 4 and Fig. 3 suggests several observations regarding
the relative prediction performance of these design strategies:
�
 Design strategies that spread points throughout the input
space, particularly in active input dimensions, result in smaller
average prediction errors. This reflects the fact that GP-based
predictors generally perform better when paired with space-
filling designs (e.g. Jones and Johnson [41]) due to the local
nature of the fitting procedure.

�
 Design strategies that concentrate runs near boundaries tend to

control maximum prediction error better, because the largest
prediction errors with GP models are often located on or near
boundaries due to a relative lack of information for fitting.



Fig. 3. Final 64-run designs projected into (x1, x2) space. Open triangles denote the 32-run initial design used for each sequential design strategy (except bin-based LH

design). (a) Open circles denote the 64-run symmetric LH design and black squares denote the 32 runs added by ME-d. (b) Black (gray) squares (circles) denote the 32 runs

added by MmSWD (MmED). (c) Black (gray) squares (circles) denote the 32 runs added by EIPS (GEIGF with g¼4). (d) Open circles denote the 64-run bin-based LH design

and black squares denote the 32 runs added by IMSE-d.
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�
 The maximum entropy ME-d criterion locates points near
boundaries of the design space, resulting in poor average
prediction error, and these points tend to clump, thus also
failing to mitigate maximum prediction error.

Clumping is not necessarily discouraged in designs for predictive
maturity, as some clumping could be beneficial for estimation of
replicate variability in the experimental data. However, it is clear that
space-filling design strategies that expend some effort exploring
relevant boundaries of design space would tend to perform well with
respect to both RMSPE and MAPE.

The four calibration parameters of this simulation study
collectively explain roughly 13% of main effect variation (see
Table 2). The simulation study was repeated for three additional
cases in which the four calibration parameters explain 20%, 40%
and 60% of main effect variation. The conclusions presented in
this subsection carry over to these cases, although designs based
on the ME-d criterion progressively improve relative to the other
strategies with respect to RMSPE and MAPE as the main effect
contribution of the design parameters decreases.
5. Discussion

The results of Section 4 suggest that if given a total budget
for conducting experiments to be used for calibrating a code,
a single-stage space-filling design strategy (such as symmetric LH
design) is likely to result in prediction performance comparable to
that obtained from sequential strategies. However, if a current
experimental database were to be augmented, several design
criteria studied in this article would likely be suitable in a (batch)
sequential algorithm for efficiently achieving predictive maturity.
In particular, bin-based LH design, EIPS, GEIGF, IMSE-d and
MMSE-d should be considered.

The comparable performance of batch designs relative to
single-stage designs does suggest that one might be better off
using all available resources in one stage. However, how one
should proceed when the initial run sizes are inadequate to
achieve the desired level of maturity dictates that sequential
strategies must be employed. In such cases it is useful to know
that batch sequential updates are nearly as efficient as running
the full design, had that been possible. We envision that sequen-
tial updates are only employed in situations where the initial run
sizes were inadequate.

Most of the sequential design criteria proposed in this article
are motivated by the existing literature on computer model
evaluation or Bayesian experiment design. The main contribu-
tions of this article are extensions of these criteria to allow design
augmentation in batches, and application of these criteria to the
problem of achieving predictive maturity in discrepancy infer-
ences derived from probabilistic calibration of computer models
to experimental data.
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This work can be expanded in many directions. For example,
the code was fixed in the simulation study of Section 4. However,
it is likely that certain code properties could impact the perfor-
mance of sequential design strategies, such as the proportion of
total output variance explained by simple versus complex effects,
the partitioning of sensitivity to the design and calibration
parameters (including interactions between these), and the beha-
vior of the code near boundaries of the design space relative to
the interior region. Variations in the numbers of design and
calibration parameters, and the size of the initial design relative
to the experimental budget could be explored, as well as the
batch sizes of sequential augmentations.

If no good estimate of experimental replicate variability is
available, it would be possible to modify the sequential optimiza-
tion algorithm to require a specified fraction of runs in each new
batch to be replicates of runs already made (see Lu et al. [25]).
Sensitivity of prediction performance to this fraction could then
be explored. Practical applications will often restrict the design
space to a discrete, finite set of input level combinations for which
it is feasible to conduct new experiments. This would require
modification of the continuous optimization used in this article;
for example, a Fedorov exchange on the set of allowable design
specifications could be employed. Bin-based LH design should be
particularly effective in this setting.

Ongoing simulation studies suggest that any benefits of employ-
ing a batch sequential design strategy relative to a fixed design
strategy dissipate as the dimension of the design space increases
beyond even five inputs, consistent with the conclusions reached in
Section 4 and Loeppky et al. [14]. This suggests a hybrid sequential
design strategy in which batches are constructed, for example, to
form a space-filling sample in conjunction with the current design
and are selected based on evaluating a design criterion such as one
of those proposed here. Evaluation of such hybrid strategies is the
subject of ongoing work.

In many applications, including annual assessments of the
nuclear weapon systems maintained by NNSA, full system per-
formance calculations require the integration of many individual
components and sub-systems. Many sources of experimental data
D p0,p1ð Þ ¼ �log
2
RR p0 xð Þp1 x0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp k01 x,x0ð Þ½ � 9S0 xð ÞþS1 x0ð Þ9
p dx dx0RR p0 xð Þp0 x0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp k00 x,x0ð Þ½ � 9S0 xð ÞþS0 x0ð Þ9
p dx dx0 þ

RR p1 xð Þp1 x0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp k11 x,x0ð Þ½ � 9S1 xð ÞþS1 x0ð Þ9
p dx dx0

2
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3
5

are often available to inform on different levels of the physical
hierarchy comprising the full system, perhaps including data on
the full system itself. Component level data is generally easier to
obtain and less costly compared with sub-system or full system
data, while the latter are generally more informative for con-
straining physical models in the regimes of interest. For a given
experimental budget, the question arises as to how these
resources should be allocated to various campaigns so that the
experimental information obtained for improving the required
performance predictions is optimized. The sequential design
Dðp0,p1Þ ¼�log
2
P

i,j
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strategies of this article could be used to recommend new
experiments for achieving predictive maturity at each relevant
level of the hierarchy, as a component of a comprehensive
resource allocation framework.

Model calibration was presented in a fully Bayesian context;
however, calculation of the design criterion functions assumed
plug-in point estimates of all parameters derived from calibration.
This restriction is not essential for the implementation of these
criteria, although it certainly reduces computational effort. Two
alternatives are readily available:
�
 Compute the posterior mean of the design criteria, or

�
 Compute the design criteria using the relevant posterior

predictive distributions.

Although the second alternative is the most desirable Bayesian
solution, for many criteria it presents serious practical challenges.
For example, computation of the EIPS criterion is nontrivial, given
that it involves the expected value of a Kullback–Leibler distance
between two predictive distributions with respect to the marginal
distribution of an output vector.

A consequence of the statistical models assumed for calibra-
tion and prediction (Kennedy and O’Hagan [2], Higdon et al. [20])
is that the predictive distributions of relevance to this discussion
are mixtures of Gaussian distributions. A simple approach is to
approximate these mixture distributions by a single Gaussian
distribution, with mean and covariance matched to the corre-
sponding quantities calculated from the mixtures constituting the
predictive distributions. A more complicated approach is to
construct design criteria that allow more direct calculation with
the actual predictive distributions.

We present an example of the latter approach by considering
an alternative distance metric that provides modest simplification
of the required calculations. Sfikas et al. [42] proposed the
following distance metric between two probability density func-
tions p0 and p1:

Dðp0,p1Þ ¼�log
2
R

p0ðzÞp1ðzÞdzR
p2

0ðzÞþp2
1ðzÞ

� 
dz

" #
:

This metric is symmetric and positive, and is equal to zero when
p0¼p1. When the pi are mixtures of Gaussian distributions f,

piðzÞ ¼

Z
f z;liðxÞ,RiðxÞ
� �

piðxÞdx,

we have
where

kijðx,x0Þ ¼ ðliðxÞ�ljðx
0ÞÞ

T
ðRiðxÞþRjðx0ÞÞ�1

ðliðxÞ�ljðx
0ÞÞ:

The distribution p1¼p0 is the posterior distribution of the
parameters from the current calibration. It is generally known
only up to a normalizing constant, and so the distance criterion
Dðp0,p1Þ must be estimated based on independent samples
x1,. . .,xM and x01,. . .,x0Mfrom p0:
A modified EIPS criterion is obtained by setting p0 ¼ fnðxðxÞÞ and
p1 ¼ fnþnp ðxðxÞÞ in the notation of Section 2.1, and selecting the batch
to maximize the minimum distance Dðp0,p1Þ. Note that l2ðxÞ is a
function of the proposed batch yðx�1Þ,. . .,yðx

�
np
Þ, requiring an integra-

tion to compute Dðp0,p1Þ that cannot be reduced to closed form.
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